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The Big Picture

Growing demand for user-created 3D content:

• Spore [Maxis ’08]

• LittleBigPlanet [Media Molecule ’08]

• The Sims 3 [Electronic Arts ’09]

• Second Life [Linden Labs ’03]
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Abstract
We present a sketching interface for quickly and easily designing
freeform models such as stuffed animals and other rotund objects.
The user draws several 2D freeform strokes interactively on the
screen and the system automatically constructs plausible 3D
polygonal surfaces. Our system supports several modeling
operations, including the operation to construct a 3D polygonal
surface from a 2D silhouette drawn by the user: it inflates the
region surrounded by the silhouette making wide areas fat, and
narrow areas thin. Teddy, our prototype system, is implemented as
a Java™ program, and the mesh construction is done in real-time
on a standard PC. Our informal user study showed that a first-time
user typically masters the operations within 10 minutes, and can
construct interesting 3D models within minutes.

CR Categories and Subject Descriptions: I.3.6 [Computer
Graphics]: Methodology and Techniques – Interaction Techniques;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling – Geometric algorithms

Additional Keywords: 3D modeling, sketching, pen-based
systems, gestures, design, chordal axes, inflation

1 INTRODUCTION
Although much progress has been made over the years on 3D
modeling systems, they are still difficult and tedious to use when
creating freeform surfaces. Their emphasis has been the precise
modeling of objects motivated by CAD and similar domains.
Recently SKETCH [29] introduced a gesture-based interface for
the rapid modeling of CSG-like models consisting of simple
primitives.

This paper extends these ideas to create a sketching interface
for designing 3D freeform objects. The essential idea is the use of
freeform strokes as an expressive design tool. The user draws 2D
freeform strokes interactively specifying the silhouette of an object,
and the system automatically constructs a 3D polygonal surface
model based on the strokes. The user does not have to manipulate
control points or combine complicated editing operations. Using
our technique, even first-time users can create simple, yet
expressive 3D models within minutes. In addition, the resulting
models have a hand-crafted feel (such as sculptures and stuffed animals) which is difficult to accomplish with most conventional

modelers. Examples are shown in Figure 2.
We describe here the sketching interface and the algorithms for

constructing 3D shapes from 2D strokes. We also discuss the
implementation of our prototype system, Teddy. The geometric
representation we use is a standard polygonal mesh to allow the
use of numerous software resources for post-manipulation and
rendering. However, the interface itself can be used to create other
representations such as volumes [25] or metaballs [17].

Like SKETCH [29], Teddy is designed for the rapid
construction of approximate models, not for the careful editing of
precise models. To emphasize this design goal and encourage
creative exploration, we use the real-time pen-and-ink rendering
described in [16], as shown in Figure 1. This also allows real-time
interactive rendering using Java on mid-range PCs without

Figure1: Teddy in use on a display-integrated tablet.

Figure 2: Painted models created using Teddy and painted
using a commercial texture-map editor.
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Abstract

In this paper, we investigate a data-driven synthesis approach to
constructing 3D geometric surface models. We provide methods
with which a user can search a large database of 3D meshes to find
parts of interest, cut the desired parts out of the meshes with intel-
ligent scissoring, and composite them together in different ways to
form new objects. The main benefit of this approach is that it is both
easy to learn and able to produce highly detailed geometric models
– the conceptual design for new models comes from the user, while
the geometric details come from examples in the database. The
focus of the paper is on the main research issues motivated by the
proposed approach: (1) interactive segmentation of 3D surfaces, (2)
shape-based search to find 3D models with parts matching a query,
and (3) composition of parts to form new models. We provide new
research contributions on all three topics and incorporate them into
a prototype modeling system. Experience with our prototype sys-
tem indicates that it allows untrained users to create interesting and
detailed 3D models.
Keywords: databases of geometric models, 3D shape matching,
interactive modeling tools

1 Introduction

One of the most significant obstacles in computer graphics is pro-
viding easy-to-use tools for creating detailed 3D models. Most
commercial modeling systems are difficult to learn, and thus their
use has been limited to a small set of trained experts. Conversely,
3D sketching programs are good for novices, but practical for cre-
ating only simple shapes. Our goal is to provide a tool with which
almost anybody can create detailed geometric models quickly and
easily.
In this paper, we investigate “modeling by example,” a data-

driven approach to constructing new 3D models by assembling
parts from previously existing ones. We have built an interac-
tive tool that allows a user to find and extract parts from a large
database of 3D models and composite them together to create new
3D models. This approach is useful for creating objects with inter-
changeable parts, which includes most man-made objects (vehi-
cles, machines, furniture, etc.) and several types of natural objects
(faces, fictional animals). Our current implementation employs a
database of more than 10,000 models, including multiple examples
of almost every type of household object.
The main motivation for this approach is that it allows untrained

users to create detailed geometric models quickly. Unlike previous
interactive modeling systems, our users must only search, select,
and combine existing parts from examples in the database – i.e.,

Figure 1: Modeling by example: geometric parts extracted from a
database of 3D models can be used to create new objects. The large
brown chair was built from the circled parts of the others.

they rarely have to create new geometry from scratch. As a result,
the user interface can be simpler and accessible to a wider range
of people. For example, when making the rocking chair shown in
Figure 1, the user started with a simple chair (top-left), and then
simply replaced parts. The commands were very simple, but the
result has all the geometric details created by the expert modelers
who populated the database. This approach provides a new way
to make 3D models for students, designers of virtual worlds, and
participants in on-line 3D games.
In the following sections, we address the main research issues in

building such a system: segmenting 3D surfaces into parts, search-
ing a database of 3D models for parts, and compositing parts from
different models. Specifically, we make the following research
contributions: (1) an intelligent scissors algorithm for cutting 3D
meshes, (2) a part-in-whole shape matching algorithm, (3) a method
for aligning 3D surfaces optimally, and (4) a prototype system for
data-driven synthesis of 3D models. Experience with our prototype
system indicates that it is both easy to learn and useful for creating
interesting 3D models.

2 Related Work

This paper builds upon related work in several sub-fields of com-
puter graphics, geometric modeling, and computer vision.
Geometric modeling: Our system is a 3D modeling tool. How-
ever, its purpose is quite different than most previous modeling sys-
tems (e.g., [Wavefront 2003]). It is intended for rapidly combining

iWIRES: An Analyze-and-Edit Approach to Shape Manipulation

Ran Gal
Tel Aviv University

Olga Sorkine
New York University

Niloy J. Mitra
IIT Delhi

Daniel Cohen-Or
Tel Aviv University

Figure 1: A complex model (left) consisting of 108 components is analyzed and 250 intelligent wires (in green) are extracted. Editing a few
wires induces a new wire configuration (in blue) and leads to the result on the right.

Abstract

Man-made objects are largely dominated by a few typical features
that carry special characteristics and engineered meanings. State-
of-the-art deformation tools fall short at preserving such character-
istic features and global structure. We introduce iWIRES, a novel
approach based on the argument that man-made models can be dis-
tilled using a few special 1D wires and their mutual relations. We
hypothesize that maintaining the properties of such a small number
of wires allows preserving the defining characteristics of the entire
object. We introduce an analyze-and-edit approach, where prior
to editing, we perform a light-weight analysis of the input shape
to extract a descriptive set of wires. Analyzing the individual and
mutual properties of the wires, and augmenting them with geomet-
ric attributes makes them intelligent and ready to be manipulated.
Editing the object by modifying the intelligent wires leads to a pow-
erful editing framework that retains the original design intent and
object characteristics. We show numerous results of manipulation
of man-made shapes using our editing technique.

Keywords: mesh editing, man-made objects, structured deforma-
tion, space deformation, constraint propagation

1 Introduction

In recent years, shape editing has been extensively studied by the
geometric modeling community. In particular, research efforts have
been devoted to allow the user to directly manipulate surfaces while
preserving their geometric surface details. Generally speaking, a
key challenge in shape editing is to enable intuitive manipulation –
that is, the performed change is the one expected. Clearly, such
a notion is highly domain dependent. It is natural to expect that
manipulation applied to the shape preserves the local surface de-
tails [Botsch and Sorkine 2008]. Such detail-preserving techniques
treat the edited object to be made of a homogeneous, rubber-like
material that responds uniformly to user manipulations. These ap-
proaches have been highly successful for organic objects, such as
faces, body parts, animals, etc. However, they are less suited for
man-made shapes, such as furniture, cutlery, mechanical parts or
electronic devices. Such engineered models are largely dominated
by flat or smooth faces, where the shape is defined by a few typical
features which carry special characteristics and geometric meaning.

We hypothesize that conserving the properties of this rather small
number of features allows preserving the defining characteristics of
the entire object. In contrast, a surface manipulation that assumes a
homogeneous surface, oblivious to the special characteristics of the
shape, actually damages its high-level structure, thus defeating the
purpose of editing. We use the term editing, rather than deforma-
tion, as the former is not supposed to be destructive by definition.
Editing is rather a constructive operation that implicitly aims at pre-
serving the essence of the shape (see Figure 1).

Our work is inspired by the research of Singh and Fiume [1998]
and Orzan et al. [2008]. These works show that an entire shape or
an image can be defined and characterized by a rather small set of
curves. We adopt the name wires of Singh and Fiume to denote
the curves that are key structural features capturing the shape. Our
3D geometry editing framework aims to preserve these key features
and characteristics of objects, especially man-made ones.

Teddy ’99 Modeling by Example ’04

SketchUp ’07 iWIRES ’09

3Saturday, December 26, 2009



Motivation
Professional design:

• Formalized processes [Navinchandra ’91]

• Extensive previsualization [Brown ’89]

Casual design:

• Looser constraints [Gero ’90]

• Serendipitous/opportunistic [Tweedie ’96]
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Exploration

Suggest new, high-quality designs 
to users

Collaboration

Leverage models created by 
user community
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Parametric Models
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Parametric Models

[Allen et al. ‘03]

[Ashikhmin & Shirley ‘00][Weber & Penn ‘95]
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High-Dimensional Spaces

Uniform Random Samples

Figure 5: (Left) Typical points sampled from the computed density functions of trees (top) and humans (bottom). (Right) Typical points
chosen uniformly at random from these parametric spaces.

5 Density Estimation
To generate high-quality alternatives to a given parameter config-

uration, we use the set of models created by the user community

to estimate the density of desirable models in the space. This es-

timate must be computed with some care, since the distribution of

quality is highly nonuniform in many interesting parametric spaces

(see Figure 5). Let {xi} be a set of N database points from an

n-dimensional design space D, assumed to be drawn from an un-

known probability density function f(x). Since we wish to develop

a general method that is applicable to a wide variety of distinct

spaces, we cannot make any assumptions about the intrinsic struc-

ture of f(x): therefore, we are faced with a nonparametric density

estimation problem.

Multivariate nonparametric density estimation is a well studied

problem with applications in numerous fields. One of the most pop-

ular techniques is the sample-point kernel estimator, first introduced

by Parzen [1962], in which an approximation f̂(x) of f(x) is re-

covered by centering a smooth kernel Ki(x) at each of the points

in the training set:

f̂(x) =
1
N

NX

i=1

Ki(x).

Under reasonable assumptions, it can be shown that kernel methods

converge at least as quickly as any other nonparametric estimation

technique. We employ this approximation with Gaussian kernels:

Ki(x) = G(x;xi,Σi) =

1

(2π)n/2 |Σi|1/2
exp

»
−1

2
(x− xi)

T Σ−1
i (x− xi)

–
,

where Σi is a bandwidth matrix chosen as described in Section 5.1.

5.1 Bandwidth Estimation
For kernel density estimation to perform well in practice, one must

choose the bandwidth matrices—which control the size and shape

of the individual kernels—with some care. For n ≤ 3, the optimal

structure of Σi can be determined analytically, but these results do

not generalize to higher dimensions [Scott and Sain 2004]. Like-

wise, iterative cross-validation techniques that attempt to learn the

optimal kernel structure can be prohibitively expensive in higher

dimensions.

Approaches based on the sample covariance of the kth
nearest

neighbors of a given point have been shown to perform well for

n > 4, but may suffer from sharp discontinuities as the set of near-

est neighbors does not vary smoothly across the space. Therefore,

we employ a fixed-mean version of the distance-weighted empirical

covariance matrix described by Bengio and Vincent [2004]. This

approach is predicated on a “soft” weighted-neighborhood notion

of locality, thereby ensuring a continuous density estimate. For a

kernel centered at a point x, the bandwidth matrix has entries

Σs,t =
NX

i=1

ωi

ˆ
(xi)s − (x)s

˜ ˆ
(xi)t − (x)t

˜
,

where ωi are normalized weights. We choose

ωi =
G(xi;x, α�x− xd(k)�2I)PN

j=1 G(xj ;x, α�x− xd(k)�2I)
,

where α is a smoothing parameter and xd(k) is the kth
nearest

neighbor of x amongst the {xi}; in our implementation, we take

k = n. In this manner, the width of each weighting kernel is pro-

portional to the distance from its center to its kth
nearest neighbor,

which allows each bandwidth matrix to smoothly adapt to the lo-

cal shape and scale of the underlying distribution. If the database

points in some region of the space lie on or near a low-dimensional

manifold, the shape of a kernel centered in that region will coincide

with the principal directions of that manifold.

5.2 Bandwidth Shrinkage
Unfortunately, all bandwidth estimators based on empirical covari-

ances exhibit serious defects when N is not much larger than n.

For instance, unless N � n, Σ will be ill-conditioned. Worse still,

when N < n, Σ loses full rank, becomes singular, and is no longer

positive definite. These limitations are highly relevant, since one of

the key properties of our method is that it can function even with

few initial database points.

To overcome these deficiencies, we modify the shrinkage esti-

mator of Schäfer and Strimmer [2005] to apply to weighted co-

variance matrices, and employ it in all of our bandwidth compu-

tations. This involves computing a shrinkage target matrix Φ and

optimal intensity λ, and then substituting the shrinkage estimator

Figure 5: (Left) Typical points sampled from the computed density functions of trees (top) and humans (bottom). (Right) Typical points
chosen uniformly at random from these parametric spaces.
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Mapping Spaces

f : Rn → [0, 1]

“Quality” of a model
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Mapping Spaces

f : Rn → [0, 1]

f( )� f( )

“Quality” of a model
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Kernel Density Estimation

10Saturday, December 26, 2009



• Collect set of user-created models{xi}

Kernel Density Estimation
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• Collect set of user-created models{xi}

• Center a Gaussian kernel                at each oneKi(xi,Σi)

Kernel Density Estimation
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• Collect set of user-created models{xi}

• Center a Gaussian kernel                at each oneKi(xi,Σi)

Kernel Density Estimation

• Sum kernels to estimate  ̂f(x) ≈ f(x)
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Uniform Kernels
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Kernel Estimation

Must choose size/shape carefully:

• No analytic solutions for 

• Iterative cross-validation expensive

• kth nearest neighbors more promising...

n ≥ 3
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kth Nearest Neighbors
• Find kth nearest neighbors for each 

• Use computed covariance matrix as 

xi

Σi
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kth Nearest Neighbors
• Find kth nearest neighbors for each 

• Use computed covariance matrix as 

xi

Σi
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Soft Kernels
Distance-weighted matrix [Bengio & Vincent ’04]:

Σs,t =
�N

i=1 ωi [(xi)s − (x)s] [(xi)t − (x)t]

14Saturday, December 26, 2009



Soft Kernels
Distance-weighted matrix [Bengio & Vincent ’04]:

Σs,t =
�N

i=1 ωi [(xi)s − (x)s] [(xi)t − (x)t]
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Uniform Kernels
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Soft Adaptive Kernels
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Kernel Degeneracies

With covariance-based estimators:

• Unless           ,     is ill-conditioned

• When           ,     is singular

N � n

N < n

Σ

Σ
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Kernel Degeneracies

With covariance-based estimators:

• Unless           ,     is ill-conditioned

• When           ,     is singular

N � n

N < n

Σ

Σ

Need 1000 models to bootstrap 
100-dimensional space
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Shrinkage

We generalize the Shrinkage estimator of 
[Schäffer & Strimmer ’05]:

Σ� = λdiag(Σ) + (1− λ)Σ
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Shrinkage

We generalize the Shrinkage estimator of 
[Schäffer & Strimmer ’05]:

Σ� = λdiag(Σ) + (1− λ)Σ

• Always nonsingular, positive-definite
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Shrinkage

We generalize the Shrinkage estimator of 
[Schäffer & Strimmer ’05]:

Σ� = λdiag(Σ) + (1− λ)Σ

• Always nonsingular, positive-definite

• Has minimum mean-squared error
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Shrinkage

We generalize the Shrinkage estimator of 
[Schäffer & Strimmer ’05]:

Σ� = λdiag(Σ) + (1− λ)Σ

• Always nonsingular, positive-definite

• Has minimum mean-squared error

• Fully automatic and nonparametric
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Shrinkage

We generalize the Shrinkage estimator of 
[Schäffer & Strimmer ’05]:

Σ� = λdiag(Σ) + (1− λ)Σ

• Always nonsingular, positive-definite

• Has minimum mean-squared error

• Fully automatic and nonparametric

See the paper for details
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Sampling
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Sampling
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Local Sampling
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Local Sampling
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Local Sampling
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Local Sampling

19Saturday, December 26, 2009



20Saturday, December 26, 2009



Results

• Released 12/07

• 20,000+ downloads in a year

• 19 initial models in the database

• 6,936 created trees

• Average modeling time 15.1 minutes

• 15% of users “fluent” in 3D modeling
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Figure 11: Trees created by users of our prototype exploratory modeling software.
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