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Overview

Most state-of-the-art techniques for multi-class image segmentation and
labeling use conditional random fields defined over pixels or image regions.
While region-level models often feature dense pairwise connectivity,
pixel-level models are considerably larger and have only permitted sparse
graph structures. In this paper, we consider fully connected CRF
models defined on the complete set of pixels in an image. The resulting
graphs have billions of edges, making traditional inference algorithms
impractical. Our main contribution is a highly efficient approximate
inference algorithm for fully connected CRF models in which the
pairwise edge potentials are defined by a linear combination of Gaussian
kernels. Our experiments demonstrate that dense connectivity at the pixel
level substantially improves segmentation and labeling accuracy.

Model

E (x) =
∑
i

ψu(xi)︸ ︷︷ ︸
unary term

+
∑
i

∑
j>i

ψp(xi, xj)︸ ︷︷ ︸
pairwise term

Gaussian edge potentials

ψp(xi, xj) = µ(xi, xj)
K∑

m=1

w (m)k (m)(fi, fj)

I Label compatibility function µ
I Linear combination of Gaussian kernels

k (m)(fi, fj) = exp(−1

2
(fi − fj)Σ(m)(fi − fj))

I Arbitrary feature space fi

Multi-class image segmentation

Find a pixel level class labeling for an image
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TextonBoost [3]
ψu(xi) learned from data

Color sensitive model (position pi and color ci)
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I Potts model µ(xi, xj) = 1[xi 6=xj ]

I Semi-metric model: µ(xi, xj) learned from data

Mean-field approximation

Find the most likely assignment (MAP)

x̂ = argmax
x

P(x) where P(x)=exp(−E (x))

Mean-field approximation
I Find Q(x) =

∏
i Q(xi) close to P(x) using KL-divergence D(Q‖P)

I x̂i ≈ argmaxxi Q(xi)

Initialize Q . Qi(xi)← 1
Zi

exp{−φu(xi)}
while not converged do

Q̃
(m)
i (l)←

∑
j 6=i k

(m)(fi , fj)Qj(l) for all m . Message passing

Q̂i(xi)←
∑

l∈L µ
(m)(xi , l)

∑
m w (m)Q̃

(m)
i (l) . Compatibility transform

Qi(xi)← exp{−ψu(xi)− Q̂i(xi)} . Local update
normalize Qi(xi)

end while

Message passing using filtering

Update all Q̃
(m)
i (l) simultaneously
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Qj(l)

Efficiently computed using a cross-bilateral filter [2, 1]

I Gaussian is band-limiting Q̄
(m)
i (l)

I Q̄
(m)
i (l) is smooth

I well reconstructed by sparse samples

Gaussian convolution
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Sampling

f
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Evaluated using the permutohedral lattice [1]

I Down-sample Qj(l) in high
dimensional space

I Compute Gaussian convolution on
samples

I Up-sample Q̃
(m)
i (l)

Down-Sampling Blurring Up-Sampling

Results

MSRC dataset

I 591 images
I 21 classes

Time Global Avg

Unary - 84.0 76.6
Grid CRF 1s 84.6 77.2

Robust Pn 30s 84.9 77.5
FC CRF 0.2s 86.0 78.3
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MSRC accurate annotations

I 94 manually annotated images
I 5-fold cross validation

Global Avg

Unary 83.2± 1.5 80.6± 2.3
Grid CRF 84.8± 1.5 82.4± 1.8

Robust Pn 86.5± 1.0 83.1± 1.5
FC CRF 88.2± 0.7 84.7± 0.7
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PASCAL VOC 2010 dataset

I 1928 images
I 20 classes + background
I µ learned from data

Time Acc

Unary - 27.6
Grid CRF 2.5s 28.3
FC Potts 0.5s 29.1

FC label comp 0.5s 30.2
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