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Clustering is a fundamental procedure in the analysis of scientific
data. It is used ubiquitously across the sciences. Despite decades
of research, existing clustering algorithms have limited effective-
ness in high dimensions and often require tuning parameters for
different domains and datasets. We present a clustering algo-
rithm that achieves high accuracy across multiple domains and
scales efficiently to high dimensions and large datasets. The pre-
sented algorithm optimizes a smooth continuous objective, which
is based on robust statistics and allows heavily mixed clusters to
be untangled. The continuous nature of the objective also allows
clustering to be integrated as a module in end-to-end feature
learning pipelines. We demonstrate this by extending the algo-
rithm to perform joint clustering and dimensionality reduction
by efficiently optimizing a continuous global objective. The pre-
sented approach is evaluated on large datasets of faces, hand-
written digits, objects, newswire articles, sensor readings from
the Space Shuttle, and protein expression levels. Our method
achieves high accuracy across all datasets, outperforming the best
prior algorithm by a factor of 3 in average rank.
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C lustering is one of the fundamental experimental procedures
in data analysis. It is used in virtually all natural and social

sciences and has played a central role in biology, astronomy,
psychology, medicine, and chemistry. Data-clustering algorithms
have been developed for more than half a century (1). Significant
advances in the last two decades include spectral clustering (2–4),
generalizations of classic center-based methods (5, 6), mixture
models (7, 8), mean shift (9), affinity propagation (10), subspace
clustering (11–13), nonparametric methods (14, 15), and feature
selection (16–20).

Despite these developments, no single algorithm has emerged
to displace the k -means scheme and its variants (21). This
is despite the known drawbacks of such center-based meth-
ods, including sensitivity to initialization, limited effectiveness in
high-dimensional spaces, and the requirement that the number
of clusters be set in advance. The endurance of these methods
is in part due to their simplicity and in part due to difficulties
associated with some of the new techniques, such as additional
hyperparameters that need to be tuned, high computational cost,
and varying effectiveness across domains. Consequently, scien-
tists who analyze large high-dimensional datasets with unknown
distribution must maintain and apply multiple different cluster-
ing algorithms in the hope that one will succeed. Books have
been written to guide practitioners through the landscape of
data-clustering techniques (22).

We present a clustering algorithm that is fast, easy to use, and
effective in high dimensions. The algorithm optimizes a clear
continuous objective, using standard numerical methods that
scale to massive datasets. The number of clusters need not be
known in advance.

The operation of the algorithm can be understood by contrast-
ing it with other popular clustering techniques. In center-based
algorithms such as k -means (1, 24), a small set of putative cluster
centers is initialized from the data and then iteratively refined. In
affinity propagation (10), data points communicate over a graph
structure to elect a subset of the points as representatives. In the
presented algorithm, each data point has a dedicated representa-
tive, initially located at the data point. Over the course of the algo-
rithm, the representatives move and coalesce into easily separable
clusters. The progress of the algorithm is visualized in Fig. 1.

Our formulation is based on recent convex relaxations for clus-
tering (25, 26). However, our objective is deliberately not convex.
We use redescending robust estimators that allow even heavily
mixed clusters to be untangled by optimizing a single contin-
uous objective. Despite the nonconvexity of the objective, the
optimization can still be performed using standard linear least-
squares solvers, which are highly efficient and scalable. Since the
algorithm expresses clustering as optimization of a continuous
objective based on robust estimation, we call it robust continu-
ous clustering (RCC).

One of the characteristics of the presented formulation is that
clustering is reduced to optimization of a continuous objective.
This enables the integration of clustering in end-to-end fea-
ture learning pipelines. We demonstrate this by extending RCC
to perform joint clustering and dimensionality reduction. The
extended algorithm, called RCC-DR, learns an embedding of
the data into a low-dimensional space in which it is clustered.
Embedding and clustering are performed jointly, by an algorithm
that optimizes a clear global objective.

We evaluate RCC and RCC-DR on a large number of datasets
from a variety of domains. These include image datasets, docu-
ment datasets, a dataset of sensor readings from the Space Shut-
tle, and a dataset of protein expression levels in mice. Exper-
iments demonstrate that our method significantly outperforms
prior state-of-the-art techniques. RCC-DR is particularly robust
across datasets from different domains, outperforming the best
prior algorithm by a factor of 3 in average rank.

Formulation
We consider the problem of clustering a set of n data points.
The input is denoted by X = [x1, x2, . . . , xn ], where xi ∈RD .
Our approach operates on a set of representatives U =
[u1, u2, . . . , un ], where ui ∈ RD . The representatives U are ini-
tialized at the corresponding data points X. The optimization
operates on the representation U, which coalesces to reveal the
cluster structure latent in the data. Thus, the number of clusters
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Fig. 1. RCC on the Modified National Institute of Standards and Technology (MNIST) dataset. Each data point xi has a corresponding representative ui . The
representatives are optimized to reveal the structure of the data. A–C visualize the representation U using the t-SNE algorithm (23). Ground-truth clusters
are coded by color. (A) The initial state, U = X. (B) The representation U after 20 iterations of the optimization. (C) The final representation produced by
the algorithm.

need not be known in advance. The optimization of U is illus-
trated in Fig. 1.

The RCC objective has the following form:

C(U) =
1

2

n∑
i=1

‖xi − ui‖22 +
λ

2

∑
(p,q)∈E

wp,q ρ
(
‖up − uq‖2

)
. [1]

Here E is the set of edges in a graph connecting the data points.
The graph is constructed automatically from the data. We use
mutual k -nearest neighbors (m-kNN) connectivity (27), which is
more robust than commonly used kNN graphs. The weights wp,q

balance the contribution of each data point to the pairwise terms
and λ balances the strength of different objective terms.

The function ρ(·) is a penalty on the regularization terms.
The use of an appropriate robust penalty function ρ is central
to our method. Since we want representatives ui of observa-
tions from the same latent cluster to collapse into a single point,
a natural penalty would be the `0 norm (ρ(y) = [y 6= 0], where
[·] is the Iverson bracket). However, this transforms the objec-
tive into an intractable combinatorial optimization problem. At
another extreme, recent work has explored the use of convex
penalties, such as the `1 and `2 norms (25, 26). This has the
advantage of turning objective 1 into a convex optimization prob-
lem. However, convex functions—even the `1 norm—have lim-
ited robustness to spurious edges in the connectivity structure
E , because the influence of a spurious pairwise term does not
diminish as representatives move apart during the optimization.
Given noisy real-world data, heavy contamination of the connec-
tivity structure by connections across different underlying clus-
ters is inevitable. Our method uses robust estimators to automat-
ically prune spurious intercluster connections while maintaining
veridical intracluster correspondences, all within a single contin-
uous objective.

The second term in objective 1 is related to the mean shift
objective (9). The RCC objective differs in that it includes an
additional data term, uses a sparse (as opposed to a fully con-
nected) connectivity structure, and is based on robust estimation.

Our approach is based on the duality between robust estima-
tion and line processes (28). We introduce an auxiliary variable
lp,q for each connection (p, q) ∈ E and optimize a joint objective
over the representatives U and the line process L = {lp,q}:

C(U,L) =
1

2

n∑
i=1

‖xi − ui‖22 [2]

+
λ

2

∑
(p,q)∈E

wp,q

(
lp,q‖up − uq‖22 + Ψ(lp,q)

)
.

Here Ψ(lp,q) is a penalty on ignoring a connection (p, q): Ψ(lp,q)
tends to zero when the connection is active (lp,q→ 1) and to one
when the connection is disabled (lp,q → 0). A broad variety
of robust estimators ρ(·) have corresponding penalty functions

Ψ(·) such that objectives 1 and 2 are equivalent with respect to
U: Optimizing either of the two objectives yields the same set
of representatives U. This formulation is related to iteratively
reweighted least squares (IRLS) (29), but is more flexible due to
the explicit variables L and the ability to define additional terms
over these variables.

Objective 2 can be optimized by any gradient-based method.
However, its form enables efficient and scalable optimization by
iterative solution of linear least-squares systems. This yields a
general approach that can accommodate many robust noncon-
vex functions ρ, reduces clustering to the application of highly
optimized off-the-shelf linear system solvers, and easily scales to
datasets with hundreds of thousands of points in tens of thou-
sands of dimensions. In comparison, recent work has considered
a specific family of concave penalties and derived a computation-
ally intensive majorization–minimization scheme for optimizing
the objective in this special case (30). Our work provides a highly
efficient general solution.

While the presented approach can accommodate many esti-
mators in the same computationally efficient framework, our
exposition and experiments use a form of the well-known
Geman–McClure estimator (31),

ρ(y) =
µy2

µ+ y2
, [3]

where µ is a scale parameter. The corresponding penalty func-
tion that makes objectives 1 and 2 equivalent with respect
to U is

Ψ(lp,q) = µ
(√

lp,q − 1
)2
. [4]

Optimization
Objective 2 is biconvex on (U,L). When variables U are fixed,
the individual pairwise terms decouple and the optimal value
of each lp,q can be computed independently in closed form.
When variables L are fixed, objective 2 turns into a linear least-
squares problem. We exploit this special structure and optimize
the objective by alternatingly updating the variable sets U and L.
As a block coordinate descent algorithm, this alternating mini-
mization scheme provably converges.

When U are fixed, the optimal value of each lp,q is given by

lp,q =

(
µ

µ+ ‖up − uq‖22

)2

. [5]

This can be verified by substituting Eq. 5 into Eq. 2, which yields
objective 1 with respect to U.

When L are fixed, we can rewrite [2] in matrix form and obtain
a simplified expression for solving U,

arg min
1

2
‖X− U‖2F +

λ

2

∑
(p,q)∈E

wp,q lp,q‖U(ep − eq)‖22, [6]
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where ei is an indicator vector with the i th element set to 1. This
is a linear least-squares problem that can be efficiently solved
using fast and scalable solvers. The linear least-squares formula-
tion is given by

UM = X, where [7]

M = I + λ
∑

(p,q)∈E

wp,q lp,q(ep − eq)(ep − eq)>.

Here I ∈ Rn×n is the identity matrix. It is easy to prove that

A ,
∑

(p,q)∈E

wp,q lp,q(ep − eq)(ep − eq)> [8]

is a Laplacian matrix and hence M is symmetric and positive
semidefinite. As with any multigrid solver, each row of U in Eq.
7 can be solved independently and in parallel.

The RCC algorithm is summarized in Algorithm 1: RCC. Note
that all updates of U and L optimize the same continuous global
objective 2.

The algorithm uses graduated nonconvexity (32). It begins
with a locally convex approximation of the objective, obtained
by setting µ such that the second derivative of the estimator is
positive (ρ̈(y)> 0) over the relevant part of the domain. Over
the iterations, µ is automatically decreased, gradually introduc-
ing nonconvexity into the objective. Under certain assumptions,
such continuation schemes are known to attain solutions that are
close to the global optimum (33).

The parameter λ in the RCC objective 1 balances the strength
of the data terms and pairwise terms. The reformulation of RCC
as a linear least-squares problem enables setting λ automatically.
Specifically, Eq. 7 suggests that the data terms and pairwise terms
can be balanced by setting

λ =
‖X‖2
‖A‖2

. [9]

The value of λ is updated automatically according to this formula
after every update of µ. An update involves computing only the
largest eigenvalue of the Laplacian matrix A. The spectral norm
of X is precomputed at initialization and reused.

Additional details concerning Algorithm 1 are provided in SI
Methods.

Joint Clustering and Dimensionality Reduction
The RCC formulation can be interpreted as learning a graph-
regularized embedding U of the data X. In Algorithm 1 the
dimensionality of the embedding U is the same as the dimension-
ality of the data X. However, since RCC optimizes a continuous
and differentiable objective, it can be used within end-to-end fea-
ture learning pipelines. We now demonstrate this by extending
RCC to perform joint clustering and dimensionality reduction.
Such joint optimization has been considered in recent work (34,
35). The algorithm we develop, RCC-DR, learns a linear map-
ping into a reduced space in which the data are clustered. The

Algorithm 1. RCC

I: input: Data samples {x}n
i=1.

II: output: Cluster assignment {ĉi}n
i=1.

III: Construct connectivity structure E.
IV: Precompute χ = ‖X‖2, wp,q, δ.
V: Initialize ui = xi, lp,q = 1, µ� max ‖xp − xq‖2

2, λ = χ
‖A‖2

.
VI: while

∣∣Ct − Ct−1
∣∣ < ε or t < maxiterations do

VII: Update lp,q using Eq. 5 and A using Eq. 8.
VIII: Update {ui}n

i=1 using Eq. 7.
IX: Every four iterations, update λ = χ

‖A‖2
, µ = max

(
µ
2 , δ

2

)
.

X: Construct graph G = (V, F) with fp,q = 1 if ‖u∗p − u∗q‖2 < δ.
XI: Output clusters given by the connected components of G.

mapping is optimized as part of the clustering objective, yielding
an embedding in which the data can be clustered most effectively.
RCC-DR inherits the appealing properties of RCC: Clustering
and dimensionality reduction are performed jointly by optimiz-
ing a clear continuous objective, the framework supports non-
convex robust estimators that can untangle mixed clusters, and
optimization is performed by efficient and scalable numerical
methods.

We begin by considering an initial formulation for the RCC-DR
objective:

C(U,Z,D) = ‖X− DZ‖22 + γ

n∑
i=1

‖zi‖1 [10]

+ν

 n∑
i=1

‖zi − ui‖22 +
λ

2

∑
(p,q)∈E

wp,qρ (‖up − uq‖2)

.
Here D∈RD×d is a dictionary, zi ∈Rd is a sparse code cor-
responding to the i th data sample, and ui ∈Rd is the low-
dimensional embedding of xi . For a fixed D, the parameter ν
balances the data term in the sparse coding objective with the
clustering objective in the reduced space. This initial formulation
10 is problematic because in the beginning of the optimization
the representation U can be noisy due to spurious intercluster
connections that have not yet been disabled. This had no effect
on the convergence of the original RCC objective 1, but in for-
mulation 10 the contamination of U can infect the sparse coding
system via Z and corrupt the dictionary D. For this reason, we use
a different formulation that has the added benefit of eliminating
the parameter ν:

C(U,Z,D) = ‖X− DZ‖22 + γ

n∑
i=1

‖zi‖1 [11]

+

n∑
i=1

ρ1 (‖zi − ui‖2) +
λ

2

∑
(p,q)∈E

wp,qρ2 (‖up − uq‖2).

Here we replaced the `2 penalty on the data term in the reduced
space with a robust penalty. We use the Geman–McClure esti-
mator 3 for both ρ1 and ρ2.

To optimize objective 11, we introduce line processes L1 and
L2 corresponding to the data and pairwise terms in the reduced
space, respectively, and optimize a joint objective over U, Z, D,
L1, and L2. The optimization is performed by block coordinate
descent over these groups of variables. The line processes L1 and
L2 can be updated in closed form as in Eq. 5. The variables U are
updated by solving the linear system

UMdr = ZH, [12]

Table 1. Datasets used in experiments

Name Instances Dimensions Classes Imbalance

MNIST (41) 70,000 784 10 ∼1
Coil-100 (45) 7,200 49,152 100 1
YaleB (43) 2,414 32,256 38 1
YTF (44) 10,036 9,075 40 13
Reuters-21578 9,082 2,000 50 785
RCV1 (38) 10,000 2,000 4 6
Pendigits (42) 10,992 16 10 ∼1
Shuttle 58,000 9 7 4,558
Mice Protein (39) 1,077 77 8 ∼1

For each dataset, the number of instances, number of dimensions, num-
ber of ground-truth clusters, and the imbalance, defined as the ratio of the
largest and smallest cardinalities of ground-truth clusters, are shown.
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Table 2. Accuracy of all algorithms on all datasets, measured by AMI

Dataset k-means++ GMM Fuzzy MS AC-C AC-W N-Cuts AP Zell SEC LDMGI GDL PIC RCC RCC-DR

MNIST 0.500 0.404 0.386 0.264 NA 0.679 NA 0.478 NA 0.469 0.761 NA NA 0.893 0.828
COIL-100 0.803 0.786 0.796 0.685 0.703 0.853 0.871 0.761 0.958 0.849 0.888 0.958 0.965 0.957 0.957
YTF 0.783 0.793 0.769 0.831 0.673 0.801 0.752 0.751 0.273 0.754 0.518 0.655 0.676 0.836 0.874
YaleB 0.615 0.591 0.066 0.091 0.445 0.767 0.928 0.700 0.905 0.849 0.945 0.924 0.941 0.975 0.974
Reuters 0.516 0.507 0.272 0.000 0.368 0.471 0.545 0.386 0.087 0.498 0.523 0.401 0.057 0.556 0.553
RCV1 0.355 0.344 0.205 0.000 0.108 0.364 0.140 0.313 0.023 0.069 0.382 0.020 0.015 0.138 0.442
Pendigits 0.679 0.695 0.695 0.694 0.525 0.728 0.813 0.639 0.317 0.741 0.775 0.330 0.467 0.848 0.854
Shuttle 0.215 0.266 0.204 0.362 NA 0.291 0.000 0.322 NA 0.305 0.591 NA NA 0.488 0.513
Mice Protein 0.425 0.385 0.417 0.534 0.315 0.525 0.536 0.554 0.428 0.537 0.527 0.400 0.394 0.649 0.638

Rank 7.8 8.6 9.9 9.9 12.4 6.3 6.3 8.1 10.4 7.2 4.9 9.9 10 2.4 1.6

For each dataset, the maximum AMI is highlighted in bold. Some prior algorithms did not scale to large datasets such as MNIST (70,000 data points in
784 dimensions). RCC or RCC-DR achieves the highest accuracy on seven of the nine datasets. RCC-DR achieves the highest or second-highest accuracy on
eight of the nine datasets. The average rank of RCC-DR across datasets is lower by a multiplicative factor of 3 or more than the average rank of any prior
algorithm. NA, not applicable.

where

Mdr = H + λ
∑

(p,q)∈E

wp,q l
2
p,q(ep − eq)(ep − eq)> [13]

and H is a diagonal matrix with hi,i = l1i .
The dictionary D and codes Z are initialized using principal

component analysis (PCA). [The K-SVD algorithm can also be
used for this purpose (36).] The variables Z are updated by accel-
erated proximal gradient-descent steps (37),

Z̄ = Zt + ωt(Zt − Zt−1) [14]

Zt+1 = proxτγ‖.‖1

(
Z̄− τ

(
D>(−X + DZ̄) + (Z̄− U)H

))
,

where τ = 1

‖D>D‖
2
+‖H‖2

and ωt = t
t+3

. The proxε‖.‖1 operator

performs elementwise soft thresholding:

proxε‖.‖1(v) = sign(v) max
(
0, |v | − ε

)
. [15]

The variables D are updated using

D̄ = XZ>
(

ZZ>+βI
)−1

[16]

Dt+1 = ηDt + (1− η)D̄, [17]

where β is a small regularization value set to β = 10−4tr(ZZ>).
A precise specification of the RCC-DR algorithm is provided

in Algorithm S1.

Experiments
Datasets. We have conducted experiments on datasets from mul-
tiple domains. The dimensionality of the data in the different
datasets varies from 9 to just below 50,000. Reuters-21578 is
the classic benchmark for text classification, comprising 21,578
articles that appeared on the Reuters newswire in 1987. RCV1
is a more recent benchmark of 800,000 manually categorized
Reuters newswire articles (38). (Due to limited scalability of
some prior algorithms, we use 10,000 random samples from
RCV1.) Shuttle is a dataset from NASA that contains 58,000
multivariate measurements produced by sensors in the radiator
subsystem of the Space Shuttle; these measurements are known
to arise from seven different conditions of the radiators. Mice
Protein is a dataset that consists of the expression levels of 77
proteins measured in the cerebral cortex of eight classes of con-
trol and trisomic mice (39). The last two datasets were obtained
from the University of California, Irvine, machine-learning
repository (40).
MNIST is the classic dataset of 70,000 hand-written digits

(41). Pendigits is another well-known dataset of hand-written
digits (42). The Extended Yale Face Database B (YaleB)

contains images of faces of 28 human subjects (43). The
YouTube Faces Database (YTF) contains videos of faces of dif-
ferent subjects (44); we use all video frames from the first 40 sub-
jects sorted in chronological order. Columbia University Image
Library (COIL-100) is a classic collection of color images of 100
objects, each imaged from 72 viewpoints (45). The datasets are
summarized in Table 1.

Baselines. We compare RCC and RCC-DR to 13 baselines,
which include widely known clustering algorithms as well as
recent techniques that were reported to achieve state-of-the-art
performance. Our baselines are k -means++ (24), Gaussian
mixture models (GMM), fuzzy clustering, mean-shift cluster-
ing (MS) (9), two variants of agglomerative clustering (AC-
Complete and AC-Ward), normalized cuts (N-Cuts) (2), affinity
propagation (AP) (10), Zeta l -links (Zell) (46), spectral embed-
ded clustering (SEC) (47), clustering using local discriminant
models and global integration (LDMGI) (48), graph degree link-
age (GDL) (49), and path integral clustering (PIC) (50). The
parameter settings for the baselines are summarized in Table S1.

Measures. Normalized mutual information (NMI) has emerged
as the standard measure for evaluating clustering accuracy in the
machine-learning community (51). However, NMI is known to
be biased in favor of fine-grained partitions. For this reason, we
use adjusted mutual information (AMI), which removes this bias
(52). This measure is defined as follows:

Fig. 2. Runtime comparison of RCC-DR with AP and LDMGI. Runtime is
evaluated as a function of dataset size, using randomly sampled subsets of
different sizes from the MNIST dataset.
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Fig. 3. Visualization of RCC output on the MNIST dataset. (A) Ten randomly sampled instances xi from each large cluster discovered by RCC, one cluster per row.
(B) Corresponding representatives ui from the learned representation U. (C) Two random samples from each of the small outlying clusters discovered by RCC.

AMI(c, ĉ) =
MI(c, ĉ)− E [MI(c, ĉ)]√
H (c)H (ĉ)− E [MI(c, ĉ)]

. [18]

Here H (·) is the entropy, MI(·, ·) is the mutual information, and
c and ĉ are the two partitions being compared. For completeness,
Table S2 provides an evaluation using the NMI measure.

Results. Results on all datasets are reported in Table 2. In addi-
tion to accuracy on each dataset, Table 2 also reports the average
rank of each algorithm across datasets. For example, if an algo-
rithm achieves the third-highest accuracy on half of the datasets
and the fourth-highest one on the other half, its average rank
is 3.5. If an algorithm did not yield a result on a dataset due to
its size, that dataset is not taken into account in computing the
average rank of the algorithm.

RCC or RCC-DR achieves the highest accuracy on seven
of the nine datasets. RCC-DR achieves the highest or second-
highest accuracy on eight of the nine datasets and RCC achieves
the highest or second-highest accuracy on five datasets. The aver-
age rank of RCC-DR and RCC is 1.6 and 2.4, respectively. The
best-performing prior algorithm, LDMGI, has an average rank
of 4.9, three times higher than the rank of RCC-DR. This indi-
cates that the performance of prior algorithms is not only lower
than the performance of RCC and RCC-DR, it is also incon-
sistent, since no prior algorithm clearly leads the others across

A B C

Fig. 4. (A–C) Visualization of the representations learned by RCC (A) and the best-performing prior algorithms, LDMGI (B) and N-Cuts (C). The algorithms
are run on 5,000 randomly sampled instances from the MNIST dataset. The learned representations are visualized using t-SNE.

datasets. In contrast, the low average rank of RCC and RCC-DR
indicates consistently high performance across datasets.

Clustering Gene Expression Data. We conducted an additional
comprehensive evaluation on a large-scale benchmark that con-
sists of more than 30 cancer gene expression datasets, collected
for the purpose of evaluating clustering algorithms (53). The
results are reported in Table S3. RCC-DR achieves the highest
accuracy on eight of the datasets. Among the prior algorithms,
affinity propagation achieves the highest accuracy on six of the
datasets and all others on fewer. Overall, RCC-DR achieves the
highest average AMI across the datasets.

Running Time. The execution time of RCC-DR optimization is
visualized in Fig. 2. For reference, we also show the correspond-
ing timings for affinity propagation, a well-known modern clus-
tering algorithm (10), and LDMGI, the baseline that demon-
strated the best performance across datasets (48). Fig. 2 shows
the running time of each algorithm on randomly sampled sub-
sets of the 784-dimensional MNIST dataset. We sample subsets
of different sizes to evaluate runtime growth as a function of
dataset size. Performance is measured on a workstation with an
Intel Core i7-5960x CPU clocked at 3.0 GHz. RCC-DR clusters
the whole MNIST dataset within 200 s, whereas affinity propaga-
tion takes 37 h and LDMGI takes 17 h for 40,000 points.
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Visualization. We now qualitatively analyze the output of RCC by
visualization. We use the MNIST dataset for this purpose. On this
dataset, RCC identifies 17 clusters. Nine of these are large clusters
with more than 6,000 instances each. The remaining 8 are small
clusters that encapsulate outlying data points: Seven of these con-
tain between 2 and 11 instances, and one contains 148 instances.
Fig. 3A shows 10 randomly sampled data points xi from each of the
large clusters discovered by RCC. Their corresponding represen-
tatives ui are shown in Fig. 3B. Fig. 3C shows 2 randomly sampled
data points from each of the small outlying clusters. Additional
visualization of RCC output on the Coil-100 dataset is shown in
Fig. S3.

Fig. 4 compares the representation U learned by RCC to rep-
resentations learned by the best-performing prior algorithms,
LDMGI and N-Cuts. We use the MNIST dataset for this purpose
and visualize the output of the algorithms on a subset of 5,000
randomly sampled instances from this dataset. Both of the prior
algorithms construct Euclidean representations of the data, which

can be visualized by dimensionality reduction. We use t-SNE (23)
to visualize the representations discovered by the algorithms. As
shown in Fig. 4, the representation discovered by RCC cleanly
separates the different clusters by significant margins. In contrast,
the prior algorithms fail to discover the structure of the data and
leave some of the clusters intermixed.

Discussion
We have presented a clustering algorithm that optimizes a con-
tinuous objective based on robust estimation. The objective is
optimized using linear least-squares solvers, which scale to large
high-dimensional datasets. The robust terms in the objective
enable separation of entangled clusters, yielding high accuracy
across datasets and domains.

The continuous form of the clustering objective allows it to be
integrated into end-to-end feature learning pipelines. We have
demonstrated this by extending the algorithm to perform joint
clustering and dimensionality reduction.
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SI Methods
Initialization and Output. We initialize the optimization with U=
X and lp,q =1. The output clusters are the weakly connected
components of a graph in which a pair xi and xj is connected
by an edge if and only if ‖ui − uj‖2 < δ. The threshold δ is set to
be the mean of the lengths of the shortest 1% of the edges in E .

Connectivity Structure. The connectivity structure E is based on
m-kNN connectivity (27), which is more robust than commonly
used kNN graphs. We use k =10 and the cosine similarity metric
for m-kNN graph construction. In an m-kNN graph, two nodes
are connected by an edge if and only if each is among the k
nearest neighbors of the other. This allows statistically differ-
ent clusters (e.g., different scales) to remain disconnected. A
downside of this connectivity scheme is that some nodes in an
m-kNN graph may be sparsely connected or even disconnected.
To make sure that no data point is isolated we augment E with
the minimum-spanning tree of the k -nearest neighbors graph of
the dataset. To balance the contribution of each node to the
objective, we set

wp,q =

∑n
i=1 Ni

n
√

NpNq

, [S1]

where Ni is the number of edges incident to xi in E .

Graduated Nonconvexity. The penalty function in Eq. 3 is non-
convex and its shape depends on the value of the parameter µ.
To support convergence to a good solution, we use graduated
nonconvexity (32). We begin by setting µ such that the objec-
tive is convex over the relevant range and gradually decrease µ
to sharpen the penalty and neutralize the influence of spurious
connections in E . Specifically, µ is initially set to µ = 3r2, where
r is the maximal edge length in E . The value of µ is halved every
four iterations until it drops below δ/2.

Parameter Setting. The termination conditions are set to maxit-
erations = 100 and ε = 0.1.

For RCC-DR, the sparse coding parameters are set to d =100,
ξ=8, γ=0.2, and η=0.9. The dictionary is initialized using
PCA components. Due to the small input dimension, we set
d =8 for the Shuttle, Pendigits, and Mice Protein datasets. The
parameters δ2 and µ2 in RCC-DR are computed using Z, by anal-
ogy to their counterparts in RCC. To set δ1, we compute the dis-
tance ri of each data point zi from the mean of data Z and set

Algorithm S1. Joint Clustering and Dimensionality Reduction

I: input: Data samples {x}n
i=1, dimensionality d, parameters γ, ξ, η.

II: output: Cluster assignment {ĉi}n
i=1 and latent factors D.

III: Construct connectivity structure E.
IV: Initialize dictionary D and codes Z.
V: Precompute wp,q, δ1, δ2.
Vi: Initialize ui = zi, l

1
i = 1, l2

p,q = 1,µ1 = ξδ1, µ2 � max ‖zp − zq‖2
2, λ.

VII: while
∣∣Ct − Ct−1

∣∣ < ε or t < maxiterations do
VIII: Update l1

i and l2
p,q using Eq. 5.

IX: Update {zi}n
i=1 using Eq. 14.

X: Update {ui}n
i=1 using Eq. 12.

XI: Every 4 iterations, update λ, µi = max
(
µi
2 , δi

2

)
.

XII: Every 10 iterations, update D using Eq. 17.
XIII: Construct graph G = (V, F) with fp,q = 1 if ‖u∗

p − u∗
q‖2 < δ2.

XIV: Output clusters given by the connected components of G.

δ1 =mean(2ri). The initial value of µ1 is set to µ1 = ξδ1. The
parameter λ is set automatically to

λ =
‖ZH‖2

‖A‖2 + ‖H‖2
. [S2]

Implementation. We use an approximate nearest-neighbor search
to construct the connectivity structure (54) and a conjugate gra-
dient solver for linear systems (55).

The RCC-DR Algorithm. The RCC-DR algorithm is summarized in
Algorithm S1: Joint Clustering and Dimensionality Reduction.

SI Experiments
Datasets. For Reuters-21578 we combine the train and test sets
of the Modified Apte split and use only samples from cate-
gories with more than five examples. For RCV1 we consider
four root categories and a random subset of 10,000 samples.
For text datasets, the graph is constructed on PCA projected
input. The number of PCA components is set to the number of
ground-truth clusters. We compute term frequency–inverse doc-
ument frequency features on the 2,000 most frequently occurring
word stems.

On YaleB we consider only the frontal face images and pre-
process them using gamma correction and DoG filter. For YTF
we use all of the video frames from the first 40 subjects sorted
in chronological order. For all image datasets we scale the pixel
intensities to the range [0, 1]. For all other datasets, we normalize
the features so that ‖x‖22 ≈ D .

Baselines. For k -means++, GMM, Mean Shift, AC-Complete,
AC-Ward, and AP we use the implementations in the scikit-learn
package. For fuzzy clustering, we use the implementation pro-
vided by Matlab. For N-Cuts, Zell, SEC, LDMGI, GDL, and PIC
we use the publicly available implementations published by the
authors of these methods. For all algorithms that use k -nearest
neighbor graphs, we set k = 10.

Unlike the presented algorithms, many baselines rely on multi-
ple executions with random restarts. To maximize their reported
accuracy, we use 10 random restarts for these baselines. Follow-
ing common practice, for k -means++, GMM, and LDMGI we
pick the best result based on the value of the objective function
at termination, whereas for fuzzy clustering, N-Cuts, Zell, SEC,
GDL, and PIC we take the average across 10 random restarts.

Most of the baselines require setting one or more parameters.
For a fair comparison, for each algorithm we tune one major
parameter across datasets and use the default values for all other
parameters. For all algorithms, the tuned value is selected based
on the best average performance across all datasets. Parameter
settings for the baselines are summarized in Table S1. The nota-
tion (m : s : M) indicates that parameter search is conducted in
the range (m,M ) with the step s .

Additional Accuracy Measure. For completeness, we evaluate the
accuracy of RCC, RCC-DR, and all baselines, using the NMI
measure (51, 52). The results are reported in Table S2.

Results on Gene Expression Datasets. Table S3 lists AMI results
on more than 30 cancer gene expression datasets collected by
de Souto et al. (53). The maximum number of samples across
datasets is only 248 and for all but one dataset the dimension
D >>n . Since these datasets are statistically very different from
those discussed earlier, for each algorithm we retune the major
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parameter for the same range as given in Table S1. For both
RCC and RCC-DR, we set k =9. For RCC-DR we set d =12
and γ=0.5. The author-provided code for GDL breaks on these
datasets.

Robustness to Hyperparameter Settings. The parameters of the
RCC algorithm are set automatically based on the data. The
RCC-DR algorithm does have a number of parameters but is
largely insensitive to their settings. In the following experiment,
we vary the sparse-coding parameters d , η, and γ in the ranges
d =(40 : 20 : 200), η=(0.55 : 0.05 : 0.95), and γ=(0.1 : 0.1 : 0.9).
Fig. S1 A and B compares the sensitivity of RCC-DR to these
parameters with the sensitivity of the best-performing prior
algorithms to their key parameters. For each baseline, we use
the default search range proposed in their respective papers.
The x axis in Fig. S1 corresponds to the parameter index. As
Fig. S1 demonstrates, the accuracy of RCC-DR is robust to
hyperparameter settings: The relative change of RCC-DR accu-
racy in AMI on YaleB is 0.005, 0.008, and 0 across the range
of d , η, and γ, respectively. On the other hand, the sensi-
tivity of the baselines is much higher: The relative change in
accuracy of SEC, LDMGI, N-Cuts, and GDL is 0.091, 0.049,
0.740, and 0.021, respectively. Moreover, for SEC, LDMGI, and
GDL no single parameter setting works best across different
datasets.

Robustness to Dataset Imbalance. We now evaluate the robust-
ness of different approaches to imbalance in class sizes. This
experiment uses the MNIST dataset. We control the degree of

imbalance by varying a parameter s between 0.1 and 1. The class
“0” is sampled with probability s , the class “9” is sampled with
probability 1, and the sampling probabilities of other classes vary
linearly between s and 1. For each value of s , we sample 10,000
data points and evaluate the accuracy of RCC, RCC-DR, and the
top-performing baselines on the resulting dataset. The results are
reported in Fig. S2. The RCC and RCC-DR algorithms retain
their accuracy advantage on imbalanced datasets.

Visualization. Fig. S3A shows 10 randomly sampled data points
xi from each of 10 clusters randomly sampled from the clusters
discovered by RCC on the Coil-100 dataset. Fig. S3B shows the
corresponding representatives ui .

Learned Representation. One way to quantitatively evaluate the
success of the learned representation U in capturing the struc-
ture of the data is to use it as input to other clustering algorithms
and to evaluate whether they are more successful on U than they
are on the original data X. The results of this experiment are
reported in Table S4. Table S4, Left reports the performance of
multiple baselines when they are given, as input, the representa-
tion U produced by RCC. Table S4, Right reports corresponding
results when the baselines are given the representation U pro-
duced by RCC-DR.

The results indicate that the performance of prior cluster-
ing algorithms improves significantly when they are run on the
representations learned by RCC and RCC-DR. The accuracy
improvements for k -means++, AC-Ward, and affinity propaga-
tion are particularly notable.
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Fig. S1. (A and B) Robustness to hyperparameter settings on the YaleB (A) and Reuters (B) datasets.

Fig. S2. Robustness to dataset imbalance.
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Fig. S3. Visualization of RCC output on the Coil-100 dataset. (A) Ten randomly sampled instances xi from each of 10 clusters randomly sampled from clusters
discovered by RCC, one cluster per row. (B) Corresponding representatives ui from the learned representation U.

Table S1. Parameter settings for baselines

Baseline Parameters

GMM Diagonal covariance: regularization constant = 10−3

Fuzzy Exponent ∈
(

1.1, 1.2[1:1:9]
)

MS Flat kernel: estimated bandwidth h’s quantile parameter ∈
[0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1]

N-Cuts Graph construction parameters: order = 3,
scale ∈ (0.1 : 0.1 : 1)×max wij

AP Preference = median of similarities, damping factor = 0.9,
max iter = 1,000, convergence iter = 100

Zell Graph construction parameter a ∈
(

10[−2:0.5:2]
)

SEC µ ∈
(

10[−9:3:15]
)

, γ = 1

LDMGI Regularization constant λ ∈
(

10[−8:2:8]
)

GDL Graph construction parameter a ∈
(

10[−2:0.5:2]
)

PIC Graph construction parameter a ∈
(

10[−2:0.5:2]
)

Table S2. Accuracy of all algorithms on all datasets, measured by NMI

Dataset k-means++ GMM fuzzy MS AC-C AC-W N-Cuts AP Zell SEC LDMGI GDL PIC RCC RCC-DR

MNIST 0.500 0.405 0.386 0.282 NA 0.679 n/a 0.609 NA 0.469 0.761 NA NA 0.893 0.827
Coil-100 0.835 0.832 0.828 0.750 0.739 0.876 0.891 0.843 0.965 0.872 0.906 0.965 0.970 0.963 0.963
YTF 0.788 0.779 0.774 0.846 0.680 0.806 0.758 0.783 0.273 0.760 0.532 0.664 0.684 0.850 0.882
YaleB 0.650 0.621 0.140 0.234 0.479 0.788 0.934 0.799 0.913 0.863 0.950 0.931 0.946 0.978 0.976
Reuters 0.536 0.510 0.272 0.000 0.392 0.492 0.545 0.504 0.087 0.498 0.523 0.401 0.057 0.556 0.553
RCV1 0.355 0.338 0.205 0.000 0.108 0.364 0.140 0.355 0.023 0.069 0.382 0.020 0.015 0.138 0.442
Pendigits 0.680 0.695 0.695 0.703 0.526 0.729 0.813 0.647 0.317 0.742 0.775 0.330 0.467 0.850 0.855
Shuttle 0.216 0.267 0.204 0.365 NA 0.291 0.000 0.326 NA 0.305 0.591 NA NA 0.488 0.513
Mice Protein 0.431 0.392 0.424 0.624 0.324 0.530 0.542 0.592 0.437 0.543 0.532 0.411 0.405 0.668 0.656

Rank 7.9 9 10.2 9.4 12.6 6.6 6.5 6.7 10.4 7.6 5 10 10 2.7 1.9

For each dataset, the maximum achieved NMI is highlighted in bold. NA, not applicable.
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Table S3. AMI on cancer gene expression datasets

Dataset k-means++ GMM fuzzy MS AC-C AC-W N-Cuts AP Zell SEC LDMGI PIC RCC RCC-DR

Alizadeh-2000-v1 0.340 0.024 0.156 0.000 0.021 0.101 0.096 0.232 0.250 0.238 0.123 0.033 0.000 0.426
Alizadeh-2000-v2 0.568 0.922 0.570 0.631 0.543 0.922 0.922 0.563 0.922 0.922 0.738 0.922 1.000 1.000
Alizadeh-2000-v3 0.586 0.604 0.591 0.530 0.417 0.616 0.601 0.540 0.702 0.574 0.582 0.625 0.792 0.792
Armstrong-2002-v1 0.372 0.372 0.372 0.202 0.323 0.308 0.372 0.381 0.308 0.323 0.355 0.308 0.528 0.546
Armstrong-2002-v2 0.891 0.803 0.460 0.495 0.775 0.746 0.838 0.586 0.802 0.891 0.509 0.802 0.642 0.838
Bhattacharjee-2001 0.444 0.406 0.471 0.242 0.389 0.601 0.563 0.377 0.496 0.570 0.378 0.378 0.495 0.600
Bittner-2000 −0.012 −0.002 −0.002 0.000 0.013 0.002 0.042 0.243 0.115 −0.002 0.014 0.115 −0.016 0.156
Bredel-2005 0.297 0.208 0.297 −0.000 0.324 0.384 0.203 0.139 0.278 0.259 0.295 0.278 0.468 0.466
Chen-2002 0.570 0.622 0.570 0.155 0.413 0.441 −0.005 0.347 −0.005 −0.005 0.592 −0.005 0.293 0.326
Chowdary-2006 0.764 0.808 0.764 0.488 0.764 0.859 0.859 0.443 0.859 0.859 0.859 0.859 0.360 0.393
Dyrskjot-2003 0.507 0.532 0.503 0.063 0.332 0.474 0.303 0.558 0.269 0.389 0.385 0.177 0.359 0.383
Garber-2001 0.242 0.137 0.156 −0.000 0.314 0.210 0.204 0.274 0.246 0.200 0.191 0.246 0.240 0.173
Golub-1999-v1 0.688 0.583 0.688 0.418 0.044 0.831 0.650 0.430 0.615 0.615 0.615 0.615 0.527 0.490
Golub-1999-v2 0.680 0.730 0.708 0.571 0.642 0.737 0.693 0.516 0.689 0.703 0.600 0.689 0.656 0.597
Gordon-2002 0.651 0.669 0.651 0.432 0.646 0.483 0.681 0.304 −0.005 0.791 0.669 0.664 0.349 0.343
Laiho-2007 −0.007 0.184 −0.007 −0.032 −0.017 −0.007 0.030 0.061 0.073 −0.007 0.093 0.044 0.000 0.000
Lapointe-2004-v1 0.088 0.141 0.117 0.101 0.039 0.151 0.179 0.162 0.151 0.088 0.149 0.151 0.171 0.156
Lapointe-2004-v2 0.008 0.013 0.160 0.002 0.173 0.033 0.153 0.210 0.147 0.028 0.118 0.171 0.155 0.239
Liang-2005 0.301 0.301 0.301 0.078 0.301 0.301 0.301 0.481 0.301 0.301 0.301 0.301 0.401 0.419
Nutt-2003-v1 0.171 0.137 0.082 0.123 0.074 0.159 0.156 0.116 0.109 0.086 0.078 0.113 0.142 0.129
Nutt-2003-v2 −0.025 −0.025 −0.025 0.000 −0.025 −0.024 −0.025 −0.027 −0.031 −0.025 −0.027 −0.030 −0.030 −0.029
Nutt-2003-v3 0.063 0.259 0.063 −0.053 0.105 0.004 0.080 −0.002 0.059 0.080 0.174 0.059 0.000 0.000
Pomeroy-2002-v1 −0.012 −0.022 −0.012 −0.000 0.105 −0.020 −0.006 0.061 −0.020 0.008 −0.026 −0.020 0.111 0.140
Pomeroy-2002-v2 0.502 0.544 0.580 0.434 0.601 0.591 0.617 0.586 0.568 0.577 0.602 0.568 0.582 0.582
Ramaswamy-2001 0.618 0.650 0.636 0.009 0.511 0.623 0.651 0.592 0.618 0.620 0.663 0.639 0.635 0.676
Risinger-2003 0.210 0.194 0.203 0.000 0.114 0.297 0.223 0.309 0.201 0.258 0.153 0.201 0.227 0.248
Shipp-2002-v1 0.264 0.149 0.179 −0.005 0.050 0.208 0.132 0.113 −0.002 0.168 0.203 −0.002 0.134 0.124
Singh-2002 0.048 0.029 0.048 0.071 0.069 0.019 0.033 0.123 −0.003 0.069 −0.003 0.066 0.034 0.034
Su-2001 0.666 0.720 0.660 0.539 0.595 0.662 0.738 0.657 0.687 0.650 0.667 0.660 0.725 0.702
Tomlins-2006-v2 0.368 0.333 0.261 0.000 0.152 0.215 0.292 0.340 0.226 0.383 0.354 0.311 0.348 0.373
Tomlins-2006 0.396 0.366 0.568 −0.000 0.279 0.454 0.409 0.374 0.647 0.469 0.419 0.590 0.485 0.513
West-2001 0.489 0.413 0.489 0.234 0.442 0.489 0.442 0.258 0.515 0.489 0.442 0.515 0.391 0.391
Yeoh-2002-v1 0.914 0.160 0.282 0.000 0.175 0.746 1.000 0.336 0.916 0.951 0.857 0.916 0.937 0.430
Yeoh-2002-v2 0.385 0.343 0.428 0.000 0.355 0.383 0.479 0.405 0.530 0.550 0.337 0.442 0.496 0.465

Mean 0.383 0.362 0.352 0.168 0.296 0.382 0.380 0.326 0.360 0.384 0.366 0.365 0.372 0.386

For each dataset, the maximum achieved AMI is highlighted in bold.

Table S4. Success of the learned representation U in capturing the structure of the data, evaluated by running prior clustering
algorithms on U instead of X

RCC RCC-DR

Dataset k-means++ AC-W AP SEC LDMGI GDL k-means++ AC-W AP SEC LDMGI GDL

MNIST 0.879 0.879 0.647 0.866 0.863 NA 0.808 0.809 0.679 0.808 0.808 NA
Coil-100 0.958 0.963 0.956 0.937 0.932 0.919 0.959 0.960 0.956 0.930 0.942 0.916
YTF 0.800 0.814 0.840 0.737 0.638 0.455 0.803 0.817 0.879 0.726 0.689 0.464
YaleB 0.960 0.964 0.975 0.957 0.872 0.566 0.967 0.967 0.974 0.958 0.872 0.541
Reuters 0.544 0.544 0.511 0.472 0.372 0.341 0.545 0.545 0.525 0.492 0.528 0.421
RCV1 0.460 0.425 0.368 0.461 0.301 0.018 0.488 0.474 0.384 0.455 0.209 0.026
Pendigits 0.750 0.717 0.759 0.730 0.526 0.630 0.742 0.729 0.756 0.706 0.742 0.676
Shuttle 0.255 0.291 0.338 0.343 0.132 NA 0.275 0.340 0.344 0.495 0.327 NA
Mice Protein 0.584 0.543 0.641 0.465 0.312 0.335 0.538 0.539 0.630 0.434 0.376 0.261

Left: using the representation learned by RCC as input to prior clustering algorithms. Right: using the representation learned by RCC-DR. Accuracy is
measured by AMI. The accuracy of prior algorithms increases substantially when a representation learned by RCC or RCC-DR is used as input instead of the
original data. In each case, the maximum AMI is highlighted in bold. NA, not applicable.
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