Space-Time Planning with Parameterized

Locomotion Controllers

SERGEY LEVINE
Stanford University
YONGJOON LEE
University of Washington
VLADLEN KOLTUN
Stanford University

and

ZORAN POPOVIC
University of Washington

‘We present a technique for efficiently synthesizing animations for characters
traversing complex dynamic environments. Our method uses parameterized
locomotion controllers that correspond to specific motion skills, such as
jumping or obstacle avoidance. The controllers are created from motion
capture data with reinforcement learning. A space-time planner determines
the sequence in which controllers must be executed to reach a goal location,
and admits a variety of cost functions to produce paths that exhibit different
behaviors. By planning in space and time, the planner can discover paths
through dynamically changing environments, even if no path exists in any
static snapshot. By using parameterized controllers able to handle naviga-
tional tasks, the planner can operate efficiently at a high level, leading to
interactive replanning rates.

Categories and Subject Descriptors: 1.3.6 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

General Terms: Algorithms

This work was supported in part by NSF grant CCF-0641402, an NSF
Graduate Research Fellowship, the UW Animation Research Labs, the UW
Center for Game Science, Microsoft, Intel, Adobe, and Pixar.

Authors’ addresses: S. Levine, Department of Computer Science, Stanford
University, Stanford, CA; email: svlevine @cs.stanford.edu; Y. Lee, Depart-
ment of Computer Science, University of Washington, Seattle, WA; email:
yongjoon@cs.washington.edu; V. Koltun, Department of Computer Sci-
ence, Stanford University, Stanford, CA; email: vladlen@cs.stanford.edu;
Z. Popovi¢, Department of Computer Science, University of Washington,
Seattle, WA; email: zoran @cs.washington.edu.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions @acm.org.

(© 2011 ACM 0730-0301/2011/05-ART23 $10.00

DOI 10.1145/1966394.1966402
http://doi.acm.org/10.1145/1966394.1966402

Additional Key Words and Phrases: Human animation, data-driven anima-
tion, optimal control, motion planning

ACM Reference Format:

Levine, S., Lee, Y., Koltun, V., and Popovi¢, Z. 2011. Space-time planning
with parameterized locomotion controllers. ACM Trans. Graph. 30, 3, Arti-
cle 23 (May 2011), 11 pages.

DOI = 10.1145/1966394.1966402
http://doi.acm.org/10.1145/1966394.1966402

1. INTRODUCTION

Navigation through complex dynamic environments is a common
problem in games and virtual worlds, and poor decision-making on
the part of computer-controlled agents (such as nonplayer charac-
ters) is a frequent source of frustration for users. In recent years, a
number of methods have been proposed that address the problem
of path planning and animation in large environments [Choi et al.
2003; Sung et al. 2005; Lau and Kuffner 2006; Sud et al. 2007].
Yet no method has been proposed that can efficiently and gracefully
handle the highly dynamic scenes that are common in games, and
no animation method has been proposed that takes future obstacle
motion into account during global planning. On the other hand, con-
siderable progress has been made in recent years on constructing
optimal and near-optimal kinematic controllers from motion cap-
ture data [Treuille et al. 2007; McCann and Pollard 2007; Lo and
Zwicker 2008; Lee et al. 2009]. These controllers sequence motion
clips to produce high-quality animations, but are limited to simple
environments described with a small set of parameters.

We present a method that combines path planning in space and
time with parameterized controllers to produce graceful anima-
tions for characters traversing highly dynamic environments. Our
planning algorithm selects controllers that, when concatenated in
sequence, generate an animation for a character traversing the dy-
namically changing environment. Intuitively, the controllers repre-
sent intelligent motion skills, such as obstacle avoidance or jumping,
which are composed to produce complex paths. The controller li-
brary is modular, and controllers can be added or removed to yield
characters that possess a wider or narrower variety of motion skills.

The use of parameterized controllers has three key advantages.
First, since controllers are high-level constructs that can negotiate

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

Fig. 1. Our technique animates characters traversing complex dynamic environments. Here, the character jumps on moving railroad cars to reach the opposite
platform.

local obstacles, the global planner need not consider as many envi-
ronmental details as standard sampling-based methods, allowing for
efficient planning in large environments. Second, the parameterized
controllers can synthesize finely tuned animations that would not be
possible with a rigid graph structure. Finally, since the controllers
expose only their low-dimensional task parameters to the space-
time planner, the time complexity of the planner is independent of
the number of motion clips used, in contrast to planners that operate
directly on motion graphs. Because of this, the controllers can use
a rich database of parameterized motion clips to construct fluid,
graceful animations without adversely impacting performance. In
order to fit the low-dimensional task parameters of the controllers to
an arbitrary polygonal environment, we employ a parameter adap-
tation algorithm that samples relevant points in the world and fits
the controller’s internal obstacle representation to them.

The planner assembles the sequence of controllers using a space-
time planning algorithm. The space-time planning formulation en-
ables the method to handle even highly dynamic scenes, in which
the character must not only avoid collisions with moving objects,
but can also use them to more efficiently reach the goal. This allows
our method to create much more intelligent behavior than previous
methods that plan on a static snapshot of the world.

A static snapshot of the world is often insufficient to generate a
feasible (much less optimal) trajectory in a highly dynamic envi-
ronment, and the planner must consider how the world will change
over the course of the planned path. Our method plans in both space
and time, over a set of landmarks sampled on supporting surfaces in
the world. Since space-time planning is performed on a much larger
search space than spatial planning, standard search algorithms such
as A* are not efficient enough to plan and replan in real time. We
therefore introduce a novel optimization to the A* algorithm to
make planning tractable for real-time applications.

The planner schedules a sequence of controllers that is optimal
for the sampled landmarks. It is able to handle a variety of cost
functions to achieve paths that exhibit desired behaviors, such as
minimal traversal time, preference for specific actions, or prefer-
ence for avoiding parts of the environment. This cost function can
differ significantly from the one used by individual controllers,
since it need not account for the details of individual tasks (such as
completing a jump). This allows us to generate paths with differ-
ent cost functions using the same set of controllers. Although the
controllers are unaware of the planner’s cost function, the optimal
planning algorithm automatically selects those controllers that are
most capable of minimizing the desired cost, resulting in a trajectory
that is optimal up to the capabilities of the controllers.

While controllers can efficiently execute high-level locomotion
tasks, they introduce additional complexity into the planning pro-
cess. Previous methods have demonstrated efficient space-time
planning for moving agents using backward planning from the goal,

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

which allows the path to be continuously replanned by reusing infor-
mation from previous planning episodes [van den Berg et al. 2006].
Unfortunately, backward planning is not suitable for controller-
based navigation in dynamic environments. Since backward plan-
ning begins at the goal and plans towards the start, the planner must
target not just a position in space-time, but also the current pose
of the character, which has much higher dimensionality. Backward
planning also requires a method for inverting the policy used by
the controllers to select an optimal sequence of clips for a given
set of task parameters. Finally, backward planning methods lose the
ability to reuse information from previous episodes when the target
moves unpredictably. Instead of using a backward planning algo-
rithm and continuously replanning, we introduce a novel culling
rule that allows A*-based space-time search to run at interactive
rates, while preserving optimality and completeness. This enables
our approach to generate plans in real time, and even replan in real
time with unpredictably moving targets.

2. RELATED WORK

Sampling-based planners were initially developed for robot path
planning [Kavraki et al. 1994], and were subsequently adopted for
path planning of virtual characters [Kamphuis et al. 2004]. Recently,
several methods have been described that combine animation with
path planning to create agile agents that can use motion capture
to navigate complex environments. Choi et al. [2003] propose a
method that samples potential footstep locations in the world and
generates animations with footstep constraints, but it is not efficient
enough to run in real time. Lau and Kuffner [2005] propose a method
that searches over animation sequences generated by a finite state
machine, in order to generate animations that traverse complex
environments. A follow-up work [Lau and Kuffner 2006] describes
a precomputed acceleration structure that enables the method to be
used in real-time applications. However, these methods plan with
individual animation clips rather than parameterized controllers.
This limits the number of motion clips that the character can utilize,
thus constraining the fluidity of the motion. In contrast, the number
of motion clips used by individual controllers in our algorithm has
no effect on the performance of the planner.

A number of methods have also been proposed that use proba-
bilistic roadmaps to plan paths for agents, which are then animated
using a separate animation module. Such methods are generally
very fast and are often used for crowd animation [Sung et al. 2005;
Sud et al. 2007; van den Berg et al. 2008], but usually assume that
the scene is entirely or largely static.

Several of the previously mentioned methods are able to handle
dynamic environments by quickly replanning an agent’s path when
its surroundings change [Sung et al. 2005; Lau and Kuffner 2006;
Sud et al. 2007], or by using a local planner that avoids small

Space-Time Planning with Parameterized Locomotion Controllers . 23:3

moving obstacles, such as other agents [van den Berg et al. 2008].
However, no technique has been proposed in computer graphics for
taking dynamic obstacles into account during global planning. In
robotics, global planning among predictably moving obstacles has
been addressed with velocity obstacles, which constrain the plan to
velocities that avoid collisions [Fiorini and Shiller 1998], as well as
with space-time planning algorithms that plan in a joint space-time
configuration space [Fraichard 1999; Zucker et al. 2007].

Early roadmap-based space-time planning methods directly sam-
pled roadmap nodes from the four-dimensional space-time volume
[Hsu et al. 2002]. More recent methods construct the roadmap on-
the-fly, by first sampling a static spatial probabilistic roadmap, and
then lazily creating space-time nodes as the spatial nodes are reached
[van den Berg and Overmars 2005; van den Berg et al. 2006]. Since
path planning in space-time may require the same spatial node to
be revisited multiple times, a number of techniques have been pro-
posed to speed up the planning process. Van den Berg and Overmars
[2006] propose a method for culling previously visited nodes in the
special case when the planner aims to minimize travel time, but no
such method has been proposed for reducing the number of nodes
with arbitrary cost functions. Space-time planning with more com-
plex costs has been addressed with anytime replanning methods
that trade off optimality for performance [van den Berg et al. 2006].
Our algorithm preserves optimality (within the sampling resolution
and the capabilities of the controllers) and handles a variety of cost
functions. Efficiency is retained with a novel culling technique that
significantly reduces the number of nodes that must be explored.

To animate a character using motion capture, motion clips must
be reassembled to follow a desired trajectory. Motion graphs ac-
complish precisely this [Arikan and Forsyth 2002; Kovar et al.
2002; Lee et al. 2002], and a number of recent developments have
extended motion graphs to produce motions not present in the orig-
inal database by interpolation [Safonova and Hodgins 2007] and
warping [Sung et al. 2005]. Motion graphs have been extended
for use in interactive applications through the use of controllers
that are trained with reinforcement learning to select or interpo-
late clips for executing simple tasks [McCann and Pollard 2007;
Treuille et al. 2007; Lo and Zwicker 2008]. By precomputing opti-
mal ways to achieve specific tasks, these controllers remove the need
to search the graph at runtime at the expense of being constrained
to a low-dimensional representation of the environment (such as
maneuvering around a single obstacle of varying size, or jumping
onto a single platform of varying height). In order to traverse a com-
plex environment, different controllers must be used in sequence.
Coros et al. [2009] proposed a reinforcement learning method for
sequencing physics-based controllers for performing simple tasks.
Unfortunately, precomputed policies cannot sequence controllers in
arbitrarily complex environments. Instead, we make use of planning
at the high level to deal with complex, dynamic worlds, while pre-
computed controllers are used to execute individual tasks. Recently,
Lee et al. [2009] proposed a technique for smoothly switching be-
tween kinematic controllers, which we employ to ensure that the
transitions between our controllers are seamless.

3. OVERVIEW

The proposed method operates on an arbitrary polygonal environ-
ment in which objects move along known trajectories. The trajec-
tories need not be periodic or finite, but the planner must be able to
query the state of the world at any time. In a real-time, unpredictable
application, this state can be obtained from the best known guess
of how the environment will evolve. Formally, we assume that we
have access to functions O, U : X x R — {0, 1}. O(x, 1) tells us

whether character configuration x at time ¢ is in collision with an
obstacle, and U(x, t) tells us if the character is not supported by
a valid horizontal surface when in configuration x at time t. We
specify the character’s configuration with a tuple x = (p, r, ¢, @),
where p and r are the character’s position and rotation, c is the
current parameterized motion clip, and « is the fraction of the clip
that has elapsed. The method also takes as input a set of parame-
terized locomotion controllers 7y, ..., m,. Each controller 7r; is an
optimal policy for executing a locomotion task (such as running
or jumping), operating on the state-space C x ©;, where C is the
set of available parameterized motion capture clips, and ®; is the
set of task parameters for the controller. The task parameter is a
compact description of the controller’s task and local environment.
For example, it might specify the desired movement direction, or
the location where a jump must begin.

The user specifies the character’s starting configuration x, and
time #,, as well as the desired goal position p,. The user also
specifies a cost function A(x,t, 7). This cost function can be
parameterized by any combination of configuration, time, and con-
troller, and returns a cost per second. The total cost of a path
can then be obtained by integrating over the cost function with
respect to time. The output of the algorithm is a sequence of tu-
ples (1, 61, T1), - .., (W, O, Tw). By executing controller r; with
parameters 0, € ©, for t; seconds, followed by 7, for 7, seconds,
etc., the character will traverse the changing environment from the
starting configuration x, and time f, to the goal location p,. The
algorithm is optimal up to sampling error (landmark placement and
temporal sampling of waiting times) with respect to the cost func-
tion A, under the additional assumption that there exists a “waiting”
controller that has lower cost per second than any other action. Vary-
ing the set of controllers or the cost function can produce a wide
range of character behaviors, as demonstrated in Section 7.2 and
the accompanying video.

In a preprocessing stage, the method samples a set of landmarks
‘P on all potential supporting surfaces in the environment. These
landmarks p € P are stored relative to the surface on which they
are sampled, so that p(¢) returns the location of the landmark at
time ¢. Thus the landmarks “follow” the surface on which they were
sampled. For a query (xy, #;, p,), where x; is the initial configuration
of the character with position py, the algorithm associates the start
and goal positions p, and p, with their supporting surfaces and adds
them to P. A space-time planner is then used to find an optimal
path from the starting configuration to the goal using a variant of
A* search. The planner computes a path over nodes of the form
(x, p,t), where p € P is a landmark and x € X is a configuration
that is located within some tolerance of p(¢). When considering a
new landmark p’, the planner determines if a local path (or “edge”)
exists from an existing node (x, p,) by executing a parameter
adaptation algorithm that uses the functions O and U to find the
parameters 6 that allow a controller 7 to travel between the two
landmarks, if possible. In the remainder of the article, we will use
the terms “source” and “target” to denote the source and target
landmarks for these local paths, saving “start” and “goal” for the
global start and goal positions p, and p,.

Since the space of possible space-time nodes is very large,
we introduce a culling rule that uses the previously stated wait-
ing cost assumption, together with recently developed transition
controllers [Lee et al. 2009], to plan at interactive speeds while
preserving optimality. This makes our approach suitable for in-
teractive applications, as demonstrated in Section 7.3, where we
adapt the algorithm for pursuing an unpredictably moving target.
Since the plan is constructed in both space and time, it takes
into account the motion of obstacles and supporting surfaces,

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

234 .

< B,

Fig. 2. Locomotion controllers used in our implementation. From left to
right: a controller for running around a corner, avoiding a cylindrical obsta-
cle, and jumping over a ditch at various heights.

S. Levine et al.

allowing the character to avoid collisions and make use of moving
platforms.

4. PARAMETERIZED LOCOMOTION
CONTROLLERS

To animate a character traversing a complex scene, a motion graph
can be “unrolled” into the environment, and the branch that reaches
the target at lowest cost can be used as the synthesized path. This
approach has been shown to produce compelling animations, but
suffers long planning times that make it unsuitable for interactive
applications [Safonova and Hodgins 2007]. Instead, we observe that
the character will usually traverse the environment by performing a
sequence of simple locomotion tasks, such as jumping or avoiding
obstacles. By precomputing controllers for these tasks with rein-
forcement learning, we can compute the path much faster while
retaining the high quality of animation driven by motion capture.
Instead of planning an optimal sequence of motion clips, the plan-
ning algorithm need only plan an optimal sequence of controllers
and adapt the low-dimensional task parameters of these controllers
to the local environment.

4.1 Control through Reinforcement Learning

Our controllers are trained with reinforcement learning to reach a
target in the presence of obstacles, by using a sequence of parame-
terized clips derived from motion capture data. The controllers are
created using methods proposed by Treuille et al. [2007], Lo and
Zwicker [2008], and Lee et al. [2009]. The controller is trained to
maximize a reward function R that indicates the desirability of an
action a at a state s. The reward function ensures that the controller
accomplishes the desired task and penalizes unrealistic transitions,
and is defined individually for each controller. The state is a tuple
s = (c, 0), where c is the current parameterized clip and 0 € ® is a
vector of task parameters. An action is specified by a paira = (¢, ®)
that identifies the next parameterized clip and its parameters. Param-
eterized clips improve a controller’s agility by allowing it to contin-
uously vary some aspect of the motion, such as the precise heading
after a running turn. As proposed by Lee et al. [2009], our parame-
ters only influence the portion of the clip before the blending phase,
allowing us to avoid adding the clip parameters to the state space.
The parameters define the controller’s internal obstacle representa-
tion, such as the position of a ditch the character must jump over.

Value iteration is used to compute a value function V for each
controller, which gives the discounted infinite sum of the reward
R. The value function enables us to select the long-term optimal
action efficiently at runtime for current state s according to the
policy 7 (s) = argmax,(R(s,a) + yV(s’)), where s’ is the next
state induced by the action a and y is the discount factor. Figure 2
shows the three controllers used in our implementation, and their
parameterizations are given in Appendix A.

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

4.2 Adaptation to Arbitrary Environments

In order to use a controller & to travel from a space-time node
(x, p, t) to a target landmark p’ through an arbitrary polygonal en-
vironment, we must be able to select appropriate task parameters 6.
This is a challenging task, because the controller’s simple internal
abstraction of the environment may not precisely fit the local re-
gion. To find appropriate parameters, we iteratively test candidate
parameters @ by simulating the resulting trajectories and, if these
trajectories fail to arrive at the target p’, treat the resulting failure
locations as samples for adapting the controller’s obstacle repre-
sentation. A controller can fail to arrive at the target p’ because the
character either becomes unsupported or comes into collision; that
is, for some time ¢ and configuration x during the controller’s trajec-
tory, we have O(x, t) = 1 orU(x, t) = 1.! The failing configuration
x is then added to a set of failure samples F. An initial set of sample
points is obtained by checking for collisions and loss of foot-support
along rays to the target. Several rays are tested in slightly different
directions, since most obstacle representations (such as cylinders)
cannot be unambiguously fitted to a single point.

For each controller 7r, we construct a function ¢, (F) that fits
the controller’s internal obstacle representation to the set of failure
samples F and returns the corresponding task parameters 8. Start-
ing with the initial failure set F obtained from the ray tests, we
iteratively evaluate the controller starting at (x, p, t) with parame-
ters ¢, (F), update the failure samples F, and repeat. The algorithm
terminates either when the controller successfully reaches the target
landmark p’, or when the internal obstacle representation cannot be
successfully fitted to F. The latter occurs if the algorithm does not
succeed after a maximum number of attempts (5 in our prototype),
or if the points in F do not satisty the assumptions of the controller,
for example if the fitted cylinder in a cylinder avoidance controller
encloses the target location.

By fitting the obstacle representation to failure points along eval-
uated trajectories, the adaptation algorithm samples those parts of
the environment that are relevant for the desired path. The whole
environment is far too complex to fit to the obstacle representation
directly, and by selecting only those points that actually cause fail-
ures, the controller is able to negotiate regions that are much more
complex than its internal representation. This process is more effi-
cient than randomly sampling obstructed points in the local region,
since the most relevant failure points are discovered with a guided
search from the initial samples. Further details on the implemen-
tation of ¢, for each of the controllers are discussed in Appendix
A. In the remainder of this article, we will use @, (x, t, p’) to de-
note the task parameters for controller returned by the adaptation
algorithm for initial configuration x at time ¢ and target position p’.

4.3 Waiting Transition Controllers

While most controllers employed by the planner are designed to
travel between two points, the dynamic environment sometimes re-
quires the character to wait at a specific location. It is not sufficient
for a waiting character to simply stand in place; in order to appear
natural and to traverse the environment optimally, the waiting char-
acter must use the available waiting time to prepare to execute the
next action as efficiently as possible. For example, while waiting to
jump on to a moving platform, the character must orient itself for
the jump. In fact, this “preparation time” should allow the character

n our implementation, U(x, t) tests whether the current stance foot is
supported. Since there is no stance foot in the flight phase of running, or in
a jump, these poses do not need to be supported.

Space-Time Planning with Parameterized Locomotion Controllers . 235

Fig. 3. The planner samples a set of landmarks on supporting surfaces.
Since controllers can navigate around obstacles, landmarks need not be
sampled densely. Note that landmarks are sampled on all potential support-
ing surfaces and follow these surfaces as they move.

to execute any subsequent action in the most efficient way possible
from the current location.

To achieve this behavior, we formulate the waiting controller as
a transition controller. The state space of the transition controller
contains all of the clips and parameters of both itself and the next
controller [Lee et al. 2009]. Since the only parameter of the waiting
controller is the waiting time 7, the state of the waiting controller
7, that transitions into controller 7 is given by s = (c, 0, 7). The
reward function is identical to that of 7, which causes the waiting
controller to reposition the character to create an optimal transition
into the next behavior. As will be discussed in Section 5.2, this
property of the waiting controller allows us to introduce a culling
rule that enables space-time planning to run at interactive rates.

5. SPACE-TIME PLANNING

Our method concatenates locomotion controllers to create a global
plan using a specialized space-time version of the A* search al-
gorithm. In a preprocessing stage, a set of landmarks P is sam-
pled from all potential supporting surfaces in the environment; that
is, all surfaces that may support the character at some time 7. In
our implementation, this is also followed by a retraction step to
avoid placing samples too close to edges or obstacles [Geraerts and
Overmars 2004], but a number of other sampling approaches could
be used [Kamphuis et al. 2004; van den Berg et al. 2005; Geraerts
and Overmars 2006; van den Berg and Overmars 2006]. The start
and goal landmarks p, and p, are also added to P. Each p € P is
associated with its supporting surface (which can move over time),
so that p(¢) gives the position of the landmark at time ¢. Figure 3
shows a set of example landmarks.

The planning itself is performed over space-time planning nodes
(x, p, t), where x € X is the configuration of the character, p € P
is the landmark, and ¢ is the time at which the landmark is reached.
Since each planning node is associated with the time ¢ at which
it is reached, the planner can use knowledge about how the envi-
ronment will change over time to construct a path that takes these
changes into account. The space-time graph is not generated explic-
itly. Instead, a node (x, p, t) is created when the landmark p can be
successfully reached from an existing node. To make planning effi-
cient in this high-dimensional environment, we introduce a culling
rule W(x, p, t) that rejects those nodes that can be reached at lower
cost from another path by waiting. In our experiments, we found
this culling rule to be crucial for achieving interactive performance,
providing a 2-50x speedup over conventional A*, as discussed in
Section 7.2. To handle nodes that must be revisited at a later time
because they become blocked by obstacles, we also introduce gap
markers that prevent the node from being culled when it is revisited.

[y

/—\/

] p

- -

PURESFR—

o——>e——e
0}

©

Space-Time Graph

Fig. 4. The character can travel to p, by stepping on the moving platform
node p’, but this path is not apparent without considering the motion of the
platform. In space-time planning, the world is unrolled along the time axis,
revealing paths that may not be present in a static snapshot.

Unlike previous space-time planning methods, we do not rely on a
specific discretization of time.

The optimality and completeness of the proposed algorithm fol-
lows directly from the optimality and completeness of A* search.
For A* to be optimal, nodes must be explored in order of increasing
Jscores and the fiore must give a lower bound on the true cost of
a path from the start to the goal through that node. Our algorithm
preserves these invariants. All paths that are culled are more expen-
sive than some other path leading to the same node, and therefore
cannot possibly be part of an optimal solution. Since the proposed
heuristic is also admissible and consistent, our space-time search
algorithm retains the optimality of A* search.

Although the use of controllers allows planning with sparser
samples, evaluating an edge between two nodes to determine its
cost requires the adaptation of controller parameters for navigat-
ing the region between the nodes, as discussed in Section 4.2. In
experiments, parameter adaptation took 2 ms per edge, making it
a relatively time-consuming process when each path requires hun-
dreds of planning nodes to be explored. The planner must therefore
minimize the number of trajectory evaluations.

In order to generate a range of behaviors, the planner must also
be able to produce optimal paths that satisfy different cost functions
A(x, t, w). For example, the character might prefer to traverse an
environment in minimal time, with minimal expenditure of energy,
or in a way that avoids specific areas. Our space-time planning
algorithm is able to maintain optimality for any cost function that
assigns a lower cost per second to the waiting controller than to any
other action. This assumption is necessary to ensure that we can cull
nodes that can be reached at lower cost by waiting, as discussed in
Section 5.2.

5.1 Successor Exploration

Our planning algorithm is based on A* search. In A*, explored
nodes are added to an open set and sorted by fi.oe, defined as
Sscore = @score + Mscore» Where gecore 18 the cost of reaching the node
from the start and Ao 1S an admissible heuristic that gives a lower
bound on the cost to travel from the node to the goal. The ficore Of
a node represents a lower bound on the cost of a path from the start
to the goal through that node. At each iteration, the node with the
lowest ficore is removed from the open set, and all of its successors
are explored and added to the set. Planning terminates when the
goal node is removed from the open set.

We define a planning node in the space-time search as a tuple
(x, p, 1), where x is the configuration of the character with location
at the landmark p, and ¢ is the time at which the landmark was
reached. Figure 4 shows a simple one-dimensional world and the
matching space-time graph, with the X dimension omitted for

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

23:6 J S. Levine et al.
At sgb optnlrlnzl [N t
é e ge culle: . b-optimal 'p
A l Z‘ége°€u'u”é% / ’
% P
W { p'
p -p‘ p
& I *p «

Fig.5. We cull planning nodes that can be reached at lower cost by waiting
from another node. Here, the character can reach the platform by stepping
onto it and waiting, making the later jump action redundant.

simplicity. The space-time graph itself is not constructed explicitly.
Instead, connections are considered between the node (x, p, t) and
all landmarks p’ that are within some threshold distance of p(z)
at time ¢. For each controller 7 and each candidate target p’, the
parameter adaptation algorithm from Section 4.2 is used to find
the parameters 6, = ®.(x,t, p’) and check if p’ is reachable.
If it is, a new planning node (x', p’, ') is added to the open set.
Let x4, (7) be the configuration of the character at time t after
invoking the controller 7 with parameters 6, starting from the
current node’s configuration x. The controller terminates when the
position of x, ¢ (7) is close to p’ (1 meter in our implementation),
with 7. denoting the corresponding value of 7. We then set
X' = xz9,(t)and t' =t 4 t.. The cost c. of the new edge is given
by [o° A (X, (v), T+, 7) dr. We will denote the function that
computes c., t., and x” as (¢, t., x') = g.(x, p,t, w, p').

In addition to constructing nodes for each landmark that can be
reached from the current node (x, p,), a special node (x,,, p, t,,) is
constructed to represent a wait. Unlike the controllers that travel to
other nodes, the waiting controller ,, can select any value #,, > t.
The choice of ¢, constitutes a temporal sampling problem. Intu-
itively, #,, should be chosen so that the character waits the minimum
possible time until the surrounding environment changes in a rele-
vant way, for example, a new outgoing edge from p appears, or an
existing edge becomes less expensive to traverse. In our implemen-
tation, waiting times f,, are sampled in 1-second increments, and a
sample 7,, is only accepted if it is possible to reach any successor
of (x,, p, t,,) at a lower cost than before. How this is determined is
discussed at the end of Section 5.2. Note that the 1-second sampling
increments do not commit our method to a specific discretization
of time, as nonwaiting nodes are created at whatever time the target
landmark is reached.

5.2 Culling Suboptimal Planning Nodes

A* search avoids revisiting previously explored nodes by using a
closed set. A node is added to the closed set when it is removed
from the open set, because at this point no lower-cost path can
exist through this node. In the context of the proposed space-time
planning algorithm, the closed set provides little benefit, because
the same landmark p might be visited at many different points
in time, and in many different configurations x. Without an addi-
tional culling scheme, such a search space would quickly become
intractable. Recall, however, that we assumed that the cost function
A(x, t,) assigned a lower cost to the waiting controller ,, than
to any other action. We leverage this assumption to make the search
tractable by culling paths through landmarks when another path ex-
ists that can reach that landmark at lower cost by waiting, as shown
in Figure 5.

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

(@ 1L - (b)
N P, P,
 —

o o) T oot b K,

Fig. 6. The character’s configuration x on reaching p affects the cost of
the edge from p to p’. When arriving at p from p; in (a), the character must
turn around to jump to p’. When arriving from p; in (b), the jump can be
performed much faster.

Formally, the assumption on the cost of waiting ensures that
A(xy, 1y, T,) < A(xa, 1, w) for any xy, x, and 7, t,, where 7w,
is the waiting controller and = # m,. Note that for most cost
functions, such as shortest time, least effort, etc., it is perfectly
reasonable to expect waiting to be no more “costly” per second
than any other activity. For the space-time planning algorithm, this
assumption guarantees that, regardless of the actual trajectory taken
by the waiting controller at landmark p, the cost per second over the
elapsed time would be no greater than if any other controller had
been used. Intuitively, it means that it is always less expensive to stay
in place (if possible) than to travel to another landmark and come
back. We leverage this property to avoid adding provably suboptimal
planning nodes to the open set. When a waiting node (x,,, p, t,,) is
created, we store the time #,,; at which the wait begins and the cost
of the path preceding the wait gscore(Xws, P tws). Before evaluating
anew path to landmark p at time ¢, we first check all waiting nodes
at p for which t,; + t,,;, < t, where t,,, is discussed in the next
paragraph. We compute a bound on the g Of a hypothetical path
that waits from ¢, to ¢ and, if the cost of this path is lower than
the gsore Of the new path, we do not add the new node (x, p,) to
the open set, since we know that this node can be reached at lower-
cost from (x,;, p, tys) by waiting. We will denote this culling test
W(x, p, t), where W(x, p,t) = 1 denotes that the node passed the
test, while W(x, p,t) = 0 denotes that a lower-cost waiting path
exists.

One difficulty with this approach is that the configuration x of
the character at node (x, p,) may have an impact on the cost of
a subsequent edge, that is, the cost of traveling from (x, p,) to
another landmark p’ may depend on x, which in turn depends on
how the character arrived at p, as shown in Figure 6. However,
consider that, if the character arrives at p early and waits, it can use
this waiting time to leisurely prepare to travel to p’ at the lowest
possible cost. Recall from the discussion of the waiting controller
in Section 4.3 that this is precisely the functionality that is provided
by the waiting transition controllers, which determine the optimal
way to transition into the next controller. We formalize this notion
of “preparation time” with the parameter 7,,,, which specifies the
minimum time needed for the waiting transition controller to enter
the optimal configuration p for an outgoing edge, so as to traverse at
the lowest possible cost. Note that, since the character remains near
p, this preparation time is generally very short. In our prototype,
tmin Was set to 1 second.

To compute a bound on the g Of a hypothetical waiting path
from t,, to ¢, we use the maximum possible cost of waiting per
second, A,, = max, ; A(x, t, 7,). The cost of the wait can then be
bounded by A, (¢t —t,,5), allowing us to bound the gycor Of reaching
(x, p, t) by waiting by

gscore(x’ p 1)< gscore(sta p Fus) + Ayt — tyys).

Space-Time Planning with Parameterized Locomotion Controllers . 237

\t &\ 2
obstructed I‘% é i
node revisited ¢ obstructed 'p
¥ } node reV|S|ted o
' - ./_\l
x * gap marker
ki
Clniperr{:eeg er . < inserted
T - L \
\/]
P P, Py s o
> X > X

Fig. 7. When a node becomes obstructed due to a moving obstacle, we
insert a gap marker to indicate that subsequent visits to this node should
not be culled. In this example, a gap marker inserted at p; when it becomes
obstructed allows the character to revisit it in order to reach the moving
platform.

We can then avoid adding to the open set any node (x, p, t) reached
from another node (x,, p,, t,) if itS gycore is higher than this bound.
However, since the cost of edge evaluation is high, we can use
the assumption that waiting costs no more per second than another
action to instead use a lower-bound estimate of the time ¢ at which
the node can be reached, allowing us to avoid evaluating the edge
between (x,, pp,t,) and (x, p, t), as discussed further in Section
5.4. The same culling rule can also be used when sampling waiting
times to determine if a waiting node (x, p, t,,) at a temporal sample
t,, can possibly reach any of its successors at a lower cost.

5.3 Obstructed Nodes

The culling rule described in the previous section culls a node
(x, p, t) if a wait beginning at (x,, p, t,;) exists from which the
character could arrive at (x, p,t) at lower cost. However, when
a landmark p becomes obstructed by an obstacle at time #,, with
tys < tp < t, the node (x, p, t) should not be culled, because it
cannot actually be reached by waiting from (x,, p, f,s). To solve
this problem, we introduce gap markers. A gap marker (p, 1) is
created when a waiting edge is evaluated between (x,, p, t,,s) and
(xyw, p, ty) and found to intersect an obstacle at time #,. When the
culling rule is applied to node (x, p, t), only waiting nodes starting
at time t,; for which no gap marker exists between t,, and ¢ are
considered, since nodes that begin before a gap are unable to reach
the current time by waiting, as shown in Figure 7. In the next
section, we describe a modification to the planning algorithm that
ensures that the culling test is performed only when a node (x, p, t)
is removed from the open set, which guarantees that the test is
performed on the node with the lowest fi.e Of any open node.
In Appendix B, we prove that this guarantees that all gap markers
(p, tp) with t, < t have already been explored.

5.4 Deferred Edge Evaluation

In order to handle obstructed nodes, we must perform the culling
test just on the node with the lowest f o in the open set. Since the
evaluation of an edge requires adaptation of controller parameters,
and is therefore relatively costly, we would like to only evaluate
edges that pass the culling test. We therefore add nodes to the open
set without fully evaluating their edges, and only evaluate them
once they have the lowest fi.or in the open set and pass the culling
test. To add a node to the open set without complete evaluation,
we construct an admissible lower-bound estimate for its gs.o and
the time ¢ at which it is reached from its predecessor (x,, pp, t,)
with the controller 7, denoted (c., t.) = he(pp,tp, 7y, p). The
function /. computes a lower bound on the cost of the edge ¢, and
its length 7. by using the maximum speed of the controller 7, and

its minimum cost per second, min, ; A(x, t, 77,), together with the
distance between p,(#,) and p(t,). The time and gycore bounds are
then given by = tp + 1 and gscore(ws p, t) = gscore(xpa Pp> tp)+ce~
The configuration x at the new node is set to to denote that it is
unknown.

When a node (x, p, t) has the lowest fi .o Of any open node,
we evaluate W(x, p,t). If W(x, p,t) = 0, the node is removed
from consideration. Otherwise, its ficore 1S updated to better reflect
its actual cost in one of two ways. As discussed in Section 5.5,
the heuristic value of a node can increase as additional nodes are
explored, so if other nodes were explored since (x, p, t) was last
examined, its Acore 15 recomputed and it is added back to the open
set. If its hgore 1S Up to date, the node’s gy.ore 1S computed by fully
evaluating the edge, the time ¢ is updated to reflect the actual time at
which the node is reached, and the node is again added back to the
open set. If both the /14core and ggcore are already computed, the node is
expanded and new planning nodes are created for all of its successors
with each controller. Since the sum /gore + gscore Can only increase
with each update, the A* invariant that all unexplored nodes have
a higher fi. than explored nodes is maintained. Waiting nodes
are evaluated immediately to ensure that the gap marker optimality
proof in Appendix B holds.

5.5 Computing Admissible Heuristics

The Euclidean distance heuristic that is most commonly used with
A* is not directly applicable to dynamic environments with moving
surfaces, because the maximum speed of the character cannot be
easily bounded. For example, a fast-moving platform might take the
character straight to the goal, yielding nodes whose cost is much
smaller than their Euclidean distance to the goal would imply.

We instead compute an admissible heuristic by constructing a
static graph that captures the best-case connectivity between the
landmarks, with edge lengths corresponding to the minimum pos-
sible distance between pairs of landmarks p;, p, € P. Moving
obstacles in games often exhibit periodic motion or move within
fixed domains [van den Berg and Overmars 2006], which al-
lows minimum landmark distances to be computed analytically.
More generally, landmark positions can be sampled at fixed in-
tervals between the current time and the latest expected planning
time, which is the method employed in our prototype. When the
time ¢* at which the distance between p; and p, is minimized is
known, the minimum cost of any edge between them is given by
hg(pl, p2) = min, h (py, t*, m, ps), the lowest heuristic cost with
any controller. In our prototype, the static graph is constructed very
quickly, as shown in Section 7.2.

We can obtain an admissible heuristic for a node (x, p,t) by
performing a search on the static graph, since for any edge between
two planning nodes, the static graph must contain an edge with equal
or lower cost. We can further improve the heuristic if we note that
a path will not revisit landmarks that are culled by the culling rule
in Section 5.2 until after a gap marker. We construct an improved
minimum edge cost h!(p., t, p2) that checks if (p,, t) passes the
culling test. If it does, then we simply set k. (p1, ¢, p2) = h%(p1, p2).
Otherwise, we know that p, cannot be reached earlier than 7, the
earliest time at which p, is not culled. ¢, is either the next gap
marker after ¢, or, if no such gap marker exists, the latest time at
which p, has been explored. Given (c., t.) = hg(pl, p2), we can
bound the cost of the edge from p; to p, by the minimum cost
to travel between the two landmarks c,, plus the minimum cost of
passing the remaining time ¢y — t — f.. Since we assumed earlier
that waiting has the lowest cost per second of any controller, the

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

23:8 . S. Levine et al.

1: W(z,p,t)

2: for all waits starting at (2.5, D, tws) such that tys + tmn < t do
3: blocked < false

4: for all gap markers (p, tp) such that t, > t do

5: if t, < tys then

6: blocked « true

7 end if

8: end for

9: if blocked = false then
10: if gscore (2, 0, 1) 2> Gscore (Tws, Py tws) + Daw (t — tws) then
11: return O (cull)
12: end if

13: endif
14: end for

15: return 1 (do not cull)

Fig. 8. Culling rule pseudocode. A node (x, p,t) is culled if the same
space-time location can be reached at lower cost by waiting.

total lower bound is given by

hi(l’l, t,p))=ce+(ty—1t— tg)n;itn A(x, t,).

The full heuristic, denoted h(p, t), is computed by performing a
search on the static graph, using h! as the edge cost. This static
search can be performed efficiently using the standard A* algorithm,
with an admissible heuristic constructed by precomputing the cost
to the goal from each node according to h° at the beginning of
each planning episode (using Dijkstra’s algorithm). After each edge
traversed during the static search, ¢ is either incremented by ¢, or
set to ¢ if (ps, t) does not pass the culling test.

Admissibility of the heuristic follows from the fact that the cost
of any path through landmarks p;, ps, ..., p, starting at time 7 is
equal to or greater than its cost according to /.. If none of the nodes
is culled, this follows from the fact that 42 is a lower bound on any
edge between two landmarks. If p; is the last node in the path that
is culled, then the path from p; to p; must have a cost no lower than
the minimum cost of the edges up to py, plus the cost of waiting
until the earliest time that p, is not culled, which is exactly the cost
given by h!. Since py is the last culled node, the cost under h! of
the remaining edges is equal to their cost under h?. Therefore, h!
gives a lower bound on the cost of the entire path.

6. ALGORITHM SUMMARY

Pseudocode for the culling rule is presented in Figure 8, and the
complete planning algorithm is summarized in Figure 9. At each
iteration, the node (x, p, t) with the lowest fi .o 1S removed from
the open set queue. The node is tested against the culling rule
W(x, p, t), which checks for existing waits at the landmark p that
can be used to arrive at (x, p, t) at lower cost. If the node is not
culled, its fiore 1 updated in one of two ways. If other nodes were
explored since this node was last checked, its /.o is recomputed.
Otherwise, the node’s actual g is computed by evaluating the
edge from (x,, p,, t,) to p using the associated controller 7 ,.

To evaluate an edge and determine its cost, the parameter
adaptation algorithm from Section 4.2 is used to find parameters
@, (xp, 1y, p) for controller 7, that allow it to travel from p, to
p, starting at time ?,. The cost is computed from this trajectory
by integrating the current cost function A(x, t,) with respect to
time. For example, a function that minimizes travel time would
simply set A(x, t, w) = 1, while a function that minimizes energy
might examine the animation to determine its energy expenditure
per second.

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

I: g.sc«)rc(ms»ps»ts) —0
2 ficore(Zs,Ps,ts) < h(ps,ts)
3: open «— {(2s,ps,ts)}
4: while open # () do
5: (z,p,t) < node in open set with lowest fscore
6. if W(z,p,t) =0 then
7: remove (z, p, t) from open set
8: elseif hyore (z, p,) not up to date then
9: hscore (2, P, t) — h(p,t)
10: Sscore (2,2, 1) — hscore (2, P, 1) + Gscore (@, P, 1)
11: else if gycore (2, p, t) not evaluated then
12: (Cevtmx) ng(mp»ppvtpvﬂ'p»p)
13: t ety +te
14: Gseore (T, P, 1) = Gscore (Tp, Pp, tp) + Ce
15: fscm‘c(xv b, t) — ’lNCUI‘C(x7 b, t) + gxcm‘c(xy D, t)
16: else
17: if p = py then
18: return path by using predecessor pointers from (z, p, t)
19: end if
20: remove (x, p, t) from open set
21: for all p’ s.t. p/(t) within L (threshold) units of p(t) do
22: for all non-waiting controllers 7 do
23: (ce,te) = he(p,t,m,p')
24: t—t+t.
25: Yscore (‘/)7]3/7 tl) = Jscore (1‘7 b, t) + Ce
26: hscol’c(wv p/» t/) — h(p/» t/)
27: fscorc(v’v p/7 tl) — Rgcore (‘/)» p’, t’) + gxcorc(w» P/, t/)
28: add (0, ', t') to open set
29: end for
30: end for
31: sample waiting time t,, >t
32: if character in collision at (p, tp), t < t < t,, then
33: create gap marker at (p, tp)
34: else
35: gxcore(xw»pv tw) A gscore(l‘y D, t) + 95(957]37 t, 7"'w»p)
36: hscore («'Ew » Dy tw) — h(py tw)
37: fxcore(l'vav tw) — hscore(l'w7p7 tw) + gscore(l'w7197 tw)
38: add (x4, p, tw) to open set
39: end if
40: endif

41: end while

Fig. 9. Planning algorithm pseudocode. (x,, p,, t,) is the predecessor of
(x, p, 1) and 7, is the controller used to reach (x, p,).

If the node’s ficore 1S already fully evaluated and the node passes
the culling test, all of its successors p’ are added to the open set
with an admissible lower-bound estimate of their fiq, as discussed
in Section 5.4. A waiting time ¢,, is also sampled, and the edge to
the waiting node (x,, p, t,) is evaluated immediately. If the wait
fails, a gap marker (p, t,) is inserted at the time of failure #,. The
planning algorithm is optimal within the sampled landmarks up to
the sampling resolution of waiting nodes and the capabilities of the
controllers.

7. RESULTS

We tested the presented method on a number of highly dynamic
environments that contain both moving obstacles and moving sup-
porting surfaces. The planner was provided with controllers for
jumping to different heights, running in the vicinity of a small ob-
stacle, and running around a corner. These controllers are described
in detail in Appendix A. In addition to environments where the

Space-Time Planning with Parameterized Locomotion Controllers . 23:9

(a) train yard

(b) toll booth

(c) highway

Fig. 10. The method was evaluated on three highly dynamic environments. The train yard environment has no path between the start and goal in a static
snapshot of the world, the toll booth environment demonstrates obstructed nodes on the road and dynamic obstacles, and the highway environment is used to
demonstrate various cost functions. Traversals of these environments are presented in the accompanying video.

character was given perfect knowledge of the future configuration
of obstacles, the planner was evaluated on a real-time task in which
the character had to pursue an unpredictably moving target.

7.1 Experimental Setup

The environments presented in our evaluation require the character
to constantly interact with dynamic objects. The accompanying
video contains animations for each environment discussed in this
section, and images of the environments are presented in Figure 10.
In the two “train yard” scenes, a static snapshot of the world does
not contain a path from the start to the goal, and such a path can only
be discovered with space-time planning. The two environments are
identical except for the timing of the trains, to demonstrate that
the planner is able to select appropriate waiting times in order to
time jumps between trains correctly. The “toll booth” environments
demonstrate handling of obstructed nodes on the road and the use
of moving surfaces to reach otherwise unreachable locations. Two
versions of the environment are again presented, with cars moving at
different speeds. The “highway” environment is used to demonstrate
how the planner can handle a variety of different cost functions. In
addition to the minimal time path, we show a path that minimizes
movement by penalizing nonwaiting actions, a path that penalizes
running on the road, and a path that favors walking over running
and jumping. For the walking example, the planner was provided
with a controller for running and jumping as well as a controller for
walking slowly around an obstacle.

7.2 Performance

Table I presents performance results for the method. Our single-
threaded prototype was evaluated on an Intel Core i7 3.07 GHz
with 8GB RAM. For each path, we list the total planning time,
the portion of that time that was spent generating the static graph
for heuristic computation, and the total number of edges evaluated
during the search. We also list the time necessary to compute the
path without the culling rule presented in Section 5.2, using only
the closed set formulation from the standard A* algorithm, in which
a node is skipped only if another node exists at the same position
and time (with 0.05-second tolerance) but at lower or equal cost.
The results indicate that our algorithm computes paths at interactive
rates and that the culling rule produces a speedup of 10-50x on the
larger “train yard” and “toll booth” environments, and a speedup of
2-50x on the smaller “highway” environment.

Table 1.

oo | g2 & 'qg) g ?:0*5%

2 | 2o < o3 | Eos

| BE| 28 | 52| =% | B

Scene Cost function | &= | =5 | &2 55 | &30
train yard 1 | min time 1.08 16 | 17.0 502 25.8
train yard 2 | min time 1.18 16 | 249 508 529
toll booth I | min time 1.79 78 | 14.0 934 17.3
toll booth2 | min time 1.93 78 | 144 980 47.8
highway min time 0.99 47 9.2 557 19.1
highway min motion 1.37 47 | 129 662 5.6
highway avoid road 1.31 47 | 15.6 551 2.8
highway prefer walk 2.35 47 | 22.8 | 1065 | 107.8

‘We present total planning times for paths of various lengths, the time needed to compute
the heuristic static graph, the total number of trajectories evaluated, and planning times
using the standard A* algorithm without the new proposed culling rule.

7.3 Online Replanning

In addition to the examples in the previous section, we evaluate
the method on a real-time task in which the character must pur-
sue an unpredictably moving target in a “platformer video game”
environment. For each planning episode, the planner is provided
with the target’s current position and velocity. The planner selects
the expected planning time and plans a path starting at the location
and time that the character will occupy after this time passes. Once
the planning time has elapsed, the planner provides its current best
guess for the correct path. If the search completed successfully, this
is the correct path to the target from the current time, based on the
target position as estimated at the beginning of the planning pro-
cess. Otherwise, the node with the lowest for is removed from the
open set and the path to that node is used. The expected planning
time was selected as 1.5 times the length of the previous planning
episode, in order to allow some margin of error.

In the three replanning examples in the accompanying video, the
planner found a path to the goal in the allotted time in 93% of the
planning episodes, often with ample time to spare. In 68% of
the episodes, the alloted time was less than the time needed to
reach the next node, so the planner produced a new path as early as
it could possibly be put to use. In an additional 12% of the episodes,
the planner completed within a single edge traversal but the alloted
planning time was greater, so the new plan was not implemented
until after the next edge. When approaching to within a few nodes
of the target, planning times fell to around 50 ms, fast enough to
be computed in only a few frames for agile chasing behaviors.
Only 16% of the planning episodes took over 1 second to complete.

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

23:10 o S. Levine et al.

Although the target’s position changed unpredictably, the planner
still used its knowledge of how other obstacles in the scene would
move to plan complex paths that intercepted the target using moving
platforms, as can be seen in the accompanying video.

8. DISCUSSION

We presented a method for planning animated paths for characters
in highly dynamic environments. The proposed method is able to
take into account the motion of objects in the world using a space-
time planning algorithm, and uses a novel culling rule to make
the space-time search fast enough for real-time applications. To
our knowledge, this is the first application of space-time planning
to character animation. Our planner is also the first to use precom-
puted locomotion controllers to find local paths between landmarks.
We demonstrate that such controllers can be effectively adapted to
arbitrary polygonal environments, and that they can be concate-
nated to construct long paths without loss of motion quality. Our
planning algorithm is optimal within the sampled landmarks, up to
the sampling of waiting times and the capabilities of the controllers.

While the method is efficient enough to replan in real time, it does
not guarantee that a good solution can always be found within a lim-
ited amount of time. To adapt the algorithm for widespread use in in-
teractive applications, where numerous characters might need to be
simulated, it would be necessary to develop an efficient replanning
scheme that reuses information from previous planning episodes.
This replanning problem has been addressed in the robotics com-
munity with backward planning methods [van den Berg et al. 2006;
Likhachev et al. 2005] but, as discussed in Section 1, such methods
are not appropriate for controller-driven animation. Future work
could address the topic of continuous replanning for controller-
driven animation in more detail. In less predictable environments,
space-time planning can also be performed with a short horizon,
using a static planner to select milestones.

Additionally, while the running time of the planner is independent
of the number of motion clips used by the controllers, it is not in-
dependent of the number of the controllers themselves. The culling
rule serves to remove edges for highly suboptimal controllers, but
when several controllers can reach the same node close together in
time, all edges must be evaluated. In future work, this limitation can
be addressed by intelligently selecting which controllers to use for
which edges.

Finally, optimal planning, especially in complex, changing envi-
ronments, may not always be desirable for virtual agents. To emulate
human behavior, some degree of suboptimality may be needed to
make the agent appear human. To this end, a modification of the
planning algorithm to simulate unobserved or unpredicted obsta-
cle motion, or the use of approximate, short-horizon guesses, may
create a method that is better able to emulate human behavior.

The space-time locomotion controller planning algorithm pre-
sented in this article is the first of its kind for planning animations
for virtual characters. It is able to traverse complex, highly dy-
namic environments, and generates high-quality animations from a
large body of motion capture. This technique can be used to create
characters that appear more intelligent and are able to discover intri-
cate paths through virtual environments that even a human observer
might not discern. More fundamentally, the use of precomputed con-
trollers for executing simple tasks is an approach to the planning
problem that has received little attention. This technique effectively
shifts the dimensionality problem from the number of motion clips
to the dimensionality of the controller: instead of selecting indi-
vidual clips, we instead find a good representation for the local
obstacles using one of a few fixed low-dimensional representations.

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

X1

%

(c) corner

(a) jumping (b) obstacle avoidance
Fig. 11. Each controller is parameterized by an obstacle representation
and, in the case of jumping and obstacle avoidance, a heading to the target.

In environments that consist of predictable components, such as
corners and ditches, this method allows for high-quality planning in
substantially fewer dimensions. Further research into the benefits of
such “task-centric” planning may yield useful algorithms for both
animated characters and robots.

APPENDIXES
A. CONTROLLER PARAMETERS

In this appendix, we describe the obstacle representation for each
of the controllers in our prototype (Figure 11), as well as how that
representation is fitted to sampled failure points using the algorithm
in Section 4.2.

Jumping. The jumping controller jumps over a linear, fixed-
width ditch. The obstacle is defined by the orientation of the ditch
relative to the character y,, the distance to the ditch z,, and the
height difference /1, between the two sides. An additional parameter
v, provides a continuously updated heading to the target position,
ensuring that the controller reaches the target if possible. The ditch
is fitted to a set of sampled failure points such that all points lie
on the side opposite from the start. The height of the destination is
selected to be the height of the target at the time of the last failure.

Obstacle avoidance. The obstacle avoidance controller avoids
a cylindrical obstacle with a fixed radius. The cylinder is defined
by the position of the character relative to the obstacle (x¢, zo) and
the orientation of the character relative to the obstacle’s coordinate
frame y,. y, again provides a continuously updated heading to the
target. The obstacle is fitted to the failure samples by enclosing all
points within the cylinder such that center is placed as far as possible
from the line between the start and the target while still enclosing
all samples.

Corner. The corner controller follows a line to navigate around
a corner, by first approaching the line at a right angle and then
following it to the target. The line is represented by the relative
orientation y, and the distance to the line x;. Since the line represents
free space rather than obstacle, it is fitted such that all sampled
points are at least a fixed clearance away from both the line and the
perpendicular segment between the line and the starting point.

B. GAP MARKER OPTIMALITY PROOF

We show that if the node (x, p, t) has the lowest f... Of any open
node, then all gap markers (p, t,) with 7, < ¢ have already been
explored. This allows us to cull (x, p,) if it does not pass the
culling test in Section 5.2 without loss of optimality.

Space-Time Planning with Parameterized Locomotion Controllers .

PROOE. Assume (x, p,) is culled because of a wait (x,, p, t,)
beginning at #,,;, and that an unexplored gap exists at #,, with #,,; <
t, < t. Since the gap at ¢, is unexplored, we have t,, < 1, < . By
the culling rule, we have that gscore (X, P, 1) > Zscore(Xuwss Puwss fws) +
Ayt — tys) = Zscore(Xws Py tw) + Ay (t — 1,). Since the heuristic
search on the static graph adds to the cost of each culled landmark
the cost of waiting until the earliest time 7., it is unexplored or
has a gap, given by A, (¢...r — t), as t increases, heuristic values
decrease at most A, per second. Therefore, hgore(Xy, P, ty) <
Rscore(X, Py 1) + Ay(t — t,). Adding the hgore and ggeore, We have
Jscore(Xws Ps tw) < fscore(x, p, t). If we break ties according to 7,
since t,, < t, the node (x,,, p, t,,) must be expanded before (x, p, 1),
producing a new wait (x,,, p,). By induction, we must therefore
have t,, > ¢, and therefore t,, > t,. This means that either #,,; > t,,
or the wait crosses the gap, which contradicts the assumption that
t is unexplored. [J

REFERENCES

ARIKAN, O. AND FORSYTH, D. A. 2002. Interactive motion generation from
examples. In ACM SIGGRAPH 2002 Papers. 483-490.

CHolL, M. G., LEE, J., AND SHIN, S. Y. 2003. Planning biped locomotion using
motion capture data and probabilistic roadmaps. ACM Trans. Graph. 22,
2, 182-203.

CoRos, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009. Robust task-based
control policies for physics-based characters. In ACM SIGGRAPH 2009
Papers. ACM Press.

FIORINI, P. AND SHILLER, Z. 1998. Motion planning in dynamic environments
using velocity obstacles. Int. J. Robot. Res. 17,7, 760-772.

FRAICHARD, T. 1999. Trajectory planning in a dynamic workspace: A ‘state-
time space’ approach. Adv. Robot. 13.

GERAERTS, R. AND OVERMARS, M. 2004. Clearance based path optimization
for motion planning. In Proceedings of the IEEE International Conference
on Robotics and Automation. 2386-2392.

GERAERTS, R. AND OVERMARS, M. 2006. Creating high-quality roadmaps
for motion planning in virtual environments. In Proceedings of the
IEEE/RSJ’06 International Conference on Intelligent Robots and Sys-
tems. 4355-4361.

Hsu, D., KINDEL, R., AND LATOMBE, J.-C. 2002. Randomized kinody-
namic motion planning with moving obstacles. Int. J. Robot. Res. 21, 3,
233-255.

KampPHUIS, A., MOOUEKIND, M., NIEUWENHUISEN, D., AND OVERMARS,
M. H. 2004. Automatic construction of roadmaps for path planning in
games. In Proceedings of the International Conference on Computer
Games. 285-292.

KAVRAKI, L., LATOMBE, J.-C., SVESTKA, P., AND OVERMARS, M. 1994. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA’94). 171.

KovAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. In ACM
SIGGRAPH 2002 Papers. 473-482.

LAu, M. AND KUFENER, J. J. 2005. Behavior planning for character ani-
mation. In Proceedings of the Conference of the Science Council of Asia
(SCA’05). ACM Press, 271-280.

23:11

LAu, M. AND KUFFNER, J. J. 2006. Precomputed search trees: Planning for
interactive goal-driven animation. In Proceedings of the Conference of the
Science Council of Asia (SCA’06). Eurographics Association, 299-308.

LEE, J., CHAL J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD, N. S.
2002. Interactive control of avatars animated with human motion data. In
ACM SIGGRAPH 2002 Papers.

LEE, Y., LEE, S. J., AND Popovic, Z. 2009. Compact character controllers. In
ACM SIGGRAPH Asia 2009 Papers 28, 5, 1-8.

LIKHACHEV, M., FERGUSON, D., GORDON, G., STENTZ, A., AND THRUN, S.
2005. Anytime dynamic a*: An anytime, replanning algorithm. In Pro-
ceedings of the International Conference on Autonomous Planning and
Scheduling (ICAPS’05).

Lo, W.-Y. AND ZWICKER, M. 2008. Real-Time planning for parameterized
human motion. In Proceedings of the Conference of the Science Council
of Asia (SCA’08). Eurographics Association, 29-38.

MccaNN, J. AND PoLLARD, N. 2007. Responsive characters from motion
fragments. In ACM SIGGRAPH 2007 Papers. ACM Press, 6.

SAFONOVA, A. AND HODGINS, J. K. 2007. Construction and optimal search
of interpolated motion graphs. In ACM SIGGRAPH 2007 Papers. ACM
Press, 106.

SuD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND MANOCHA, D. 2007.
Real-Time navigation of independent agents using adaptive roadmaps. In
Proceedings of the Conference on Virtual Reality Software and Technology
(VRST’07). ACM Press, 99-106.

SUNG, M., KOVAR, L., AND GLEICHER, M. 2005. Fast and accurate goal-
directed motion synthesis for crowds. In Proceedings of the Conference
of the Science Council of Asia (SCA’05). ACM Press, 291-300.

TREUILLE, A., LEE, Y., AND Popovi¢, Z. 2007. Near-Optimal character ani-
mation with continuous control. In ACM SIGGRAPH 2007 Papers. ACM
Press.

VAN DEN BERG, J., FERGUSON, D., AND KUFFNER, J. 2006. Anytime path
planning and replanning in dynamic environments. In Proceedings of the
IEEFE International Conference on Robotics and Automation (ICRA’06).
2366-2371.

VAN DEN BERG, J., NIEUWENHUISEN, D., JAILLET, L., AND OVERMARS, M. 2005.
Creating robust roadmaps for motion planning in changing environments.
In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’05). 1053—1059.

VAN DEN BERG, J. AND OVERMARS, M. 2005. Roadmap-Based motion plan-
ning in dynamic environments. /EEE Trans. Robot. 21, 5, 885-897.

VAN DEN BERG, J. AND OVERMARS, M. 2006. Path planning in repetitive
environments. In Proceedings of the International Conference on Methods
and Models in Automation and Robotics (MMAR’06). 657-662.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND LIN, M. 2008.
Interactive navigation of multiple agents in crowded environments. In
Proceedings of the Symposium on Interactive 3D Graphics (13D’08).
ACM Press, 139-147.

ZUCKER, M., KUFENER, J. J., AND BRANICKY, M. S. 2007. Multipartite RRT's
for rapid replanning in dynamic environments. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA’07).
1603-1609.

Received July 2010; revised December 2010; accepted February 2011

ACM Transactions on Graphics, Vol. 30, No. 3, Article 23, Publication date: May 2011.

