Metropolis Procedural
Modeling

Jerry Talton YulLou Steve Lesser
Jared Duke Radomir Méch Vladlen Koltun

Stanford University & Adobe Systems

Thursday, August 11, 11



Grammar-based Models




-based Models

Grammar

4

kB
e
i

"y, i

1)

S

1 O S ey
el e i1

P} ok
o

J._ =
.-h,, ;

i

<
>
©
o
D
b
S
IS
T




CFG Formulation




CFG Formulation

Alphabet:

set of terminal symbols T' and nonterminal symbols V/




CFG Formulation

Alphabet:

set of terminal symbols T' and nonterminal symbols V/

Axiom:

initial string (W




CFG Formulation

Alphabet:

set of terminal symbols T' and nonterminal symbols V/
Axiom:

initial string (W
Rewriting rules:

predecessor nonterminal = successor symbols

Thursday, August 11, 11



CFG Formulation

Alphabet:

set of terminal symbols T' and nonterminal symbols V/
Axiom:

initial string (W
Rewriting rules:

predecessor nonterminal = successor symbols
Turtle interpretation:

draw line - turn left turn right | push | pop
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CFG Example

w X
X — F[-X]|[+X]

X  FIX|+X]  F[=F[=X][+X]|[+F[-X][+X]]




CFG Example

w X
X — F[-X]|[+X]

Y




Stochastic CFGs
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Stochastic CFGs
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Stochastic CFGs
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e Assign probability to each rewriting rule in grammar GG
e Yields distribution 7(-) over space of derivations £(G)

e Gives generative model that can be sampled
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Stochastic CFG Example

25
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m(d) =1 x .5 x .25 x .25
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Parametric CFGs

w X
X — F(t)|—X|[+X]

e Terminal symbols associated with numeric parameters
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Parametric CFGs

w: X
X — F(t)|—X|[+X]
b~ N(/L,O‘Q)

e Terminal symbols associated with numeric parameters

e Each parameter ¢; sampled from a distribution @, ()
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Parametric CFGs

w X
X — F(t)|—X|[+X]
t ~ N(p,0°)

e Terminal symbols associated with numeric parameters
e Each parameter ¢; sampled from a distribution @;(-)
e Parameters control visual appearance of components
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Parametric CFGs

w: X
X — F(t)|—X|[+X]
t ~ N(:uv 02)

»=1[8.1429129.7231]

e Terminal symbols associated with numeric parameters
e Each parameter ¢; sampled from a distribution @;(-)
e Parameters control visual appearance of components
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F — F[+F|F|-F|F F — F[+F|F[—F][F]

From “The Algorithmic Beauty of Plants”




Our contribution: general method for bringing
artistic control to grammar-based models
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[Neubert et al. '07] [Teboul et al 10-]



Goal: decouple model specification
from control mechanism
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Modeling as Optimization

Bayesian Inference
- consider space of derivations § € A(G)

- define model prior 7(9)

- take in some user specification [/
. formulate likelihood function L(7|6)
. maximize p(d|1) o< L(I]0)m()




Key idea: simulate a Markov Chain to
sample from p(-|)
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Key idea: simulate a Markov Chain to

sample from p(-|-), perform maximum
a posteriori estimation
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MCMC Review

A Markov Chain is a sequence of random variables
X1, X9, ...with the Markov Property:

P(Xn — $|Xn—1 — Lpn—1y--- 7X1 — 213'1) —
P(Xn — leXn—l — xn—l)




MCMC Review

A Markov Chain is a sequence of random variables
X1, X9, ...with the Markov Property:

P(Xn — $|Xn—1 — Lpn—1y--- 7X1 — 213'1) —
P(Xn — leXn—l — xn—l)

Properly constructed, each X; ~ p(X), where
p(X) is the stationary distribution of the chain
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Metropolis-Hastings
Pick a proposal density q( X .| X,,) that can
be sampled from efficiently
At each step:

. draw X, ~ q(-|X,)

- Compute an acceptance probability

R (p(X*) 1(Xn| X.) 1)

P(Xi) ¢( X+ Xn)

. Accept X, 41 = X, orreject X,,, 1 =X,




An Opportunity

MH algorithm lets us sample efficiently
from any function we can evaluate...




A Conundrum

MH algorithm lets us sample efficiently
from any function

we can evaluate...
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Reversible Jump MCMC

Introduced by [Green '95]
. Trans-dimensional MCMC

Extends MH from parameter fitting
to model selection

Use RIMCMC when “"the number of things you
don’t know is one of the things you don’t know”
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Bayesian Inference

. define model prior 7(6)

. formulate likelihood function L(I|6)
+ maximize p(d|I) o< L(I|6)m()

RJIMCMC
. start with random sample § ~ 7(+)

. dimension-preserving diffusion moves

- dimension-altering jump moves




Model Prior




Likelihood Formulation

Take sketch/volume as input
Render/voxelize current model

Compute:

log L(I|0) = 2Zd 1(Z), 15(Z))
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Likelihood Formulation

Take sketch/volume as input
Render/voxelize current model

Compute:

log L(I|0) = 2Zd 1(Z), 15(Z))

In principle, can use any cost function
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Diffusion Moves

P 0 P P+ P




Jump Moves

Seusfautice




Jump Moves
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Jump Moves

Theoretical requirements:

Reversibility
(n,Xp) = (M, X)) <= (M, Xp) — (n,X,)
Dimension-matching

fm—>n : Xm X Z/[m,n — Xn X Z/{n,m

with /m—n deterministic, differentiable, invertible

Frnosn ([0.8,0.4,0.9]) = [0.8,0.4,0.9, 1, 0.5]




Jump Moves

j(rolmo) = a-(v) || P (sparent(s))

SETU

Qs_s/ = min s 1,
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Limitations
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Performance

e Tempered transitions [Neal '94], parallel tempering
[Geyer '91], delayed rejection [Tierney & Mira '99]

e Sequential & data-driven MCMC [Tu & Zhu '02]

e Coupling from the past [Propp & Wilson '96]
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graphics.stanford.edu/projects/mpm
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graphics.stanford.edu/projects/mpm

Questions!

Thursday, Au



