
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learn-
ing. In ICML ’04: Proceedings of the 21st International Conference on Machine
Learning. ACM, 2004.

[2] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In
ICML ’00: Proceedings of the 17th International Conference on Machine Learn-
ing, pages 663–670. Morgan Kaufmann Publishers Inc., 2000.

[3] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In
ICML ’06: Proceedings of the 23rd International Conference on Machine Learn-
ing, pages 729–736. ACM, 2006.

[4] U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear
programming. In ICML ’08: Proceedings of the 25th International Conference
on Machine Learning, pages 1032–1039. ACM, 2008.


















   



















 

 

 


















   































   






























   




























   





























   































   






























   














Gridworld transfer comparison: 64×64 gridworld with colored objects placed at
random. Component features give distance to object of specific color. Many
colors are irrelevant. Transfer performance corresponds to learning reward
on one random gridworld, and evaluating on 10 others (with random object
placement). Comparing FIRL (proposed algorithm), Abbeel & Ng [1], MMP
[3], LPAL [4]. FIRL outperforms prior methods, which cannot distinguish
relevant objects from irrelevant ones.

“Lawful” policies “Outlaw” policies
percent feature average percent feature average

mispred- expect. speed mispred- expect. speed
iction distance iction distance

Expert 0.0% 0.000 2.410 0.0% 0.000 2.375
FIRL 22.9% 0.025 2.314 24.2% 0.027 2.376
MMP 27.0% 0.111 1.068 27.2% 0.096 1.056
A&N 38.6% 0.202 1.054 39.3% 0.164 1.055
Random 42.7% 0.220 1.053 41.4% 0.184 1.053

Highway driving: “lawful” policy avoids going fast in right lane, “outlaw”
policy drives fast, but slows down near police. Features indicate presence
of police, current lane, speed, distance to cars, etc. Logical connection be-
tween speed and lanes/police cars cannot be captured by linear combina-
tions, and prior methods cannot match the expert’s speed while also match-
ing feature expectations. Videos of the learned policies can be found at:
http://graphics.stanford.edu/projects/firl/index.htm.

Overview: Iteratively construct feature set Φ and reward R, al-
ternating between an optimization phase that determines a re-
ward, and a fitting phase that determines the features.

Optimization Phase: Find reward R “close” to current features
Φ, under which examples D are part of the optimal policy. Letting
ProjΦR denote the closest reward to R that is a linear combination
of features Φ, we find R as:

min
R
R− ProjΦR2

s.t. πR(s) = a ∀ (s, a) ∈ D

Note that R can “step outside” of the current features to satisfy
the examples, if the current features Φ are insufficient.

Fitting Phase: Fit a regression tree to R, with component
features δ acting as tests at tree nodes. Indicators for leaves of
the tree are the new features Φ. Only component features that are
relevant to the structure of R are selected, and leaves correspond
to their logical conjunctions.

Markov Decision Process: M = {S,A, θ, γ,R}
S – set of states A – set of actions
γ – discount factor R – reward function
θ – state transition probabilities: θsas = P (s|s, a)

Optimal Policy: denoted π∗, maximizes E
∞

t=0 γ
tR(st, at)|π∗, θ



Example Traces: D = {(s1,1, a1,1), ..., (sn,T , an,T )}, where si,t is
the tth state in the ith trace, and ai,t is the optimal action in si,t.

Previous Work: most existing algorithms require a set of fea-
tures Φ to be provided, and find a reward function that is a linear
combination of the features [1, 2, 3, 4]. Finding features that are
relevant and sufficient is difficult. Furthermore, a linear combina-
tion is not always a good estimate for the reward.

Component Features: instead of a complete set of relevant fea-
tures, our method accepts an exhaustive list of component features
δ : S → Z. The algorithm finds a regression tree, with relevant
component features acting as tests, to represent the reward.

Goal: given Markov Decision Process (MDP) M without its re-
ward function R, as well as example traces D from its optimal
policy, find R.

Motivations: learning policies from examples, inferring goals,
specifying tasks by demonstration.

Challenge: many functions R fit the examples, but many will not
generalize to unobserved states. Selecting compact set of features
that represent R is difficult.

Solution: construct features to represent R from exhaustive list
of component features, using logical conjunctions of component
features represented as a regression tree.

1. Introduction

2. Background

3. Algorithm

4. Illustrated Example

5. Experimental Results

6. References

Feature Construction for Inverse Reinforcement Learning
Sergey Levine

Stanford University
Vladlen Koltun
Stanford University

Zoran Popović
University of Washington

root root root

Optimization
Phase

Fitting
Phase


