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The Big Picture

Growing demand for user-created 3D content:
* Spore [Maxis '08]
e LittleBigPlanet [Media Molecule '08]
* The Sims 3 [Electronic Arts '09]
* Second Life [Linden Labs '03]




Previous VWork

SketchUp ’07 iVWIRES "09
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Motivation

Professional design:
* Formalized processes [Navinchandra 91}

* Extensive previsualization [Brown ’89]

Casual design:

* Looser constraints [Gero '90]

* Serendipitous/opportunistic [ Tweedie '96]




Exploration

Suggest new, high-quality designs
to users

Collaboration

Leverage models created by
user community
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Parametric Models
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Parametric Models

[Allen et al."03]

\ \

[Weber & Penn ‘95] [Ashikhmin & Shirley ‘00]




High-Dimensional Spaces

Uniform Random Samples

Tree Space
n =91

Human Body Space
n =124
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Mapping Spaces

f:R" — [0, 1]

“Quality” of a model




Mapping Spaces

f:R" — [0, 1]

“Quality” of a model

fOL ) > fO )




Kernel Density Estimation
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Kernel Density Estimation

e Collect set of user-created models{x; }
 Center a Gaussian kernel K;(x;,X;) at each one

e Sum kernels to estimate f(x) ~ f(x)
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Kernel Estimation

Must choose size/shape carefully:
* No analytic solutions for n > 3
* [terative cross-validation expensive

e k' nearest neighbors more promising...
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k" Nearest Neighbors

e Find k™ nearest neighbors for each x;

e Use computed covariance matrix as 3;

ol




k" Nearest Neighbors
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Soft Kernels

Distance-weighted matrix [Bengio & Vincent '04]:

Ser =Y wi[(xi), — (x),][(xi), — (%),]




Soft Kernels

Distance-weighted matrix [Bengio & Vincent '04]:

Ser =Y wi[(xi), — (x),][(xi), — (%),]
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Soft Adaptive Kernels
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Kernel Degeneracies

With covariance-based estimators:

e Unless/N > n, X is ill-conditioned

* When N < n, X is singular




Kernel Degeneracies

With covariance-based estimators:
e Unless/N > n, X is ill-conditioned
* When N < n, X is singular

Need models to bootstrap
| 00-dimensional space




Shrinkage

We generalize the Shrinkage estimator of
[Schaffer & Strimmer "05]:

s — Adiag(Z) + (1 — \)Z
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Shrinkage

We generalize the Shrinkage estimator of
[Schaffer & Strimmer "05]:

s — Adiag(Z) + (1 — \)Z

* Always nonsingular, positive-definite
* Has minimum mean-squared error

* Fully automatic and nonparametric

See the for details




Sampling
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Sampling
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Local Sampling
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Results

Released 12/07

20,000+ downloads in a year

|9 initial models in the database
6,936 created trees

Average modeling time 15.1 minutes

1 5% of users “fluent” in 3D modeling
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Questions!




