Probabilistic Reasoning for Assembly-Based 3D Modeling

Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, Vladlen Koltun

Stanford University

Creating detailed 3D content is hard

Probabilistic model for presenting relevant components

The model is learned from an input shape repository

Related work: assembly-based 3D modeling

Modeling by example [Funkhouser et al. 2004]

Related work: assembly-based 3D modeling

Sketch-based retrieval of components

[Lee and Funkhouser 2008]

Related work: assembly-based 3D modeling

Model Composition from Interchangeable Components
 [Kraevoy et al. 2007]

Related work: Spore [Maxis Software 2008]

Should suggestions be agnostic to the structure of shapes being modeled?

Our probabilistic model

- Represents both semantic and geometric relationships
- Learned automatically from a shape database
- Interactive suggestions of components
- Increases relevance of presented components

Outline

1. Probabilistic model definition

- 2. Learning
- 3. Inference
- 4. Results

Our probabilistic model: a Bayesian Network

Shape attributes

Random variables $X = \{x_i\}$

Dependencies between attributes

$$P(X) = \prod_{i} P(x_i \mid parents(x_i))$$

Represent with DAG

$$P(X) = P(x_1)P(x_2 | x_1)P(x_3 | x_1)$$

Random variables E_I

Existence of component from category l

Arm(s) exist

Torso(s) exist

Random variables N_I

Number of components from category l

Torso(s)
exist

Random variables $A_{l.l}$

Adjacency between components from categories l and l

Random variables $R_{l,l}$

Symmetry relation between components from categories l and l

Random variables $S_{s,l}$

Existence of component from style cluster s of category l

Dependencies between random variables

Conditional probability tables

Dependencies between random variables

Outline

1. Probabilistic model definition

2. Learning

3. Inference

4. Results

Learning the CPTs and the graph structure

[Kalogerakis et al. 2010] (modified)

Learning the CPTs and the graph structure

Learning the CPTs and the graph structure

Structure and parameter learning

Maximize Bayesian Information Criterion

$$BIC = \log P(D \mid G, \boldsymbol{\theta}) - \frac{1}{2}v \log n$$

Structure and parameter learning

Maximize Bayesian Information Criterion

$$BIC = \log P(D \mid G, \boldsymbol{\theta}) - \frac{1}{2}v \log n$$

Likelihood term

D: training data

G: graph structure

 θ : CPT entries

Structure and parameter learning

Maximize Bayesian Information Criterion

$$BIC = \log P(D \mid G, \boldsymbol{\theta}) - \frac{1}{2} v \log n$$

Penalize model complexity

v: # of independent CPT entries

n: # of training shapes

Outline

1. Probabilistic model definition

2. Learning

3. Inference

4. Results

Inference

Inference

Inference

Inference

Outline

- 1. Probabilistic model definition
- 2. Learning
- 3. Inference
- 4. Results

Examples of shapes created by users

Evaluation

- 42 participants from the Stanford CS student body
- Each participant was asked to create 2 toys and 2 creatures
- Three conditions:
 - Dynamic ordering with probabilistic model
 - Static ordering of categories and components
 - Dynamic ordering with [Chaudhuri and Koltun 2010]

Relevance of suggested components – "Creatures" task

Relevance of suggested components – "Toy" task

Examples of shapes created by users

Summary

- Probabilistic reasoning for presenting components in assembly-based 3D modeling
- Probabilistic graphical model for encoding conditional dependencies between shape components
- Increases the relevance of suggested components

Future Work

- Better modeling of stylistic, spatial and functional relationships
- Benefits from advances in:
 - consistent shape segmentation
 - gluing and cutting components
 - editing geometry of individual components

Thank you!

Acknowledgements: Aaron Hertzmann, Sergey Levine, Suchi Saria, Jonathan Laserson, Philipp Krähenbühl, Daphne Koller, Chris Platz, Hadidjah Chamberlin, Niels Joubert

Our project web page:

http://graphics.stanford.edu/~sidch/projects/assembly/

BACKUP/OTHER SLIDES

Gaussian mixture model for style clustering

Component features:

Shape diameter

Curvature

Singular values from PCA

Average geodesic distance

Geodesic distance from other components

Number of components used per shape

Number of source models contributing to each shape

Constrained Translation

Incremental tangential motion following mouse drag "Steps over" small surface detail

Constrained Rotation

1-DOF rotation in plane of attachment (selected above) 2-DOF rotation for tilt

Constrained Scaling

Maintain point(s) of attachment

Multiple Constraints

Slide each attached slot individually
Overall motion computed from slot displacements
Motion prevented if not possible without breaking attachments

Multiple Constraints

Rotation axis computed from all current attachments
Rotation prevented if not possible without breaking attachments

Multiple Constraints

Scaling pivot computed from all current attachments
Scaling prevented if not possible without breaking attachments

Symmetry

Query Bayesian Network for $\underset{l}{\operatorname{arg max}_{l'}} P(R_{l,l'} | e)$ lis label of selected part, l' is label of another part in the assembly

Initial Adjacency

Legs snap to torso...

... but horns snap to head

Query Bayesian Network for $\underset{l}{\operatorname{arg max}_{l'}} P(A_{l,l'} | e)$ lis label of selected part, l' is label of another part in the assembly

Modeling Interface

File Edit View Head Tail Clothes Spikes an ↔ Complete Misc. Head Parts Search Text search

Modeling Area