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Creating detailed 3D content is hard
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Probabilistic model for presenting relevant components
adjacent

Arm
Cluster 1
exists

Head Tail Clothes Spikes an- >
Complete Misc. Head Parts - »

A W
Inference E/ i
b e r

) '
e

- Observed
data

w—

Torso '
Cluster 1

exists

Arm
Cluster 2
exists

Current o |
shape Probabilistic model Ranked components




The model is learned from an input shape repository
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Related work: assembly-based 3D modeling

Modeling by example [Funkhouser et al. 2004]
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Related work: assembly-based 3D modeling

- Sketch-based retrieval of components
[Shin and Igarashi 2007] & [Lee and Funkhouser 2008]




Related work: assembly-based 3D modeling

Model Composition from Interchangeable Components
[Kraevoy et al. 2007]




Related work: Spore [maxis Software 2008]
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Related work: Data-driven suggestions

Creativity support in 3D modeling [Chaudhuri and Koltun 2010]



Related work: Data-driven suggestions

Creativity support in 3D modeling [Chaudhuri and Koltun 2010]




Related work: Data-driven suggestions

Creativity support in 3D modeling [Chaudhuri and Koltun 2010]
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Related work: Data-driven suggestions

Creativity support in 3D modeling [Chaudhuri and Koltun 2010]
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Related work: Data-driven suggestions

Creativity support in 3D modeling [Chaudhuri and Koltun 2010]
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Should suggestions be aghostic to
the structure of shapes being modeled?




Our probabilistic model

Represents both semantic and geometric relationships
Learned automatically from a shape database
Interactive suggestions of components

Increases relevance of presented components



Outline

1. Probabilistic model definition
2. Learning
3. Inference

4. Results



Our probabilistic model: a Bayesian Network
Shape attributes e Random variables X = {x}

P(X) = HP(xl. |parents(xl.))

Represent with DAG

Dependencies '

between attributes

P(X) = P(x;)P(x, | x)P(x; | x,)



Random variables £,

Existence of component from category /
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Random variables N,

Number of components from category /

T RCTS
exist

=D
exist




Random variables 4, ;.
Adjacency between components from categories / and [’
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Random variables R, ;.
Symmetry relation between components from categories /and /[’
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Random variables §
Existence of component from style cluster s of category /
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Dependencies between random variables
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Conditional probability tables
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Dependencies between random variables
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2. Learning
3. Inference

4. Results



Learning the CPTs and the graph structure

[Kalogerakis et al. 2010]
(modified)



Learning the CPTs and the graph structure
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[Kalogerakis et al. 2010]
(modified)
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Learning the CPTs and the graph structure

Torso Arm
Cluster 1 Cluster 2
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[Kalogerakis et al. 2010] Tors: Torso
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Structure and parameter learning

Maximize Bayesian Information Criterion

BIC =log P(D|G,0) - %vlogn



Structure and parameter learning

Maximize Bayesian Information Criterion

BIC =|log P(D|G,0)|- %vlogn

Likelihood term
D: training data
G: graph structure
@: CPT entries



Structure and parameter learning

Maximize Bayesian Information Criterion

BIC =log P(D|G,0) —

Penalize model complexity
v: # of independent CPT entries

n: # of training shapes
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3. Inference

4. Results



Inference




Inference
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Inference
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4. Results



Examples of shapes created by users
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Evaluation

e 42 participants from the Stanford CS student body
* Each participant was asked to create 2 toys and 2 creatures

* Three conditions:
— Dynamic ordering with probabilistic model
— Static ordering of categories and components
— Dynamic ordering with [Chaudhuri and Koltun 2010]



Relevance of suggested components — “Creatures” task
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Relevance of suggested components — “Toy” task
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Examples of shapes created by users
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Summary

Probabilistic reasoning for presenting components in
assembly-based 3D modeling

Probabilistic graphical model for encoding conditional
dependencies between shape components

Increases the relevance of suggested components



Future Work

* Better modeling of stylistic, spatial and functional
relationships

e Benefits from advances in:

— consistent shape segmentation
— gluing and cutting components
— editing geometry of individual components
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BACKUP/OTHER SLIDES



Gaussian mixture model for style clustering

Component features:

Shape diameter a
Curvature os |
Singular values from PCA o
Average geodesic distance

Geodesic distance from

other components



% of created models

Number of components used per shape
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% of created models

Number of source models
contributing to each shape
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Component Assembly




Component Assembly

Slots
Edge loops
Boundary vertices
Zones



Component Assembly

Cap

[Schmidt/Singh '10]



Component Assembly

Slot frames



Component Assembly

Register Discrete
Exponential Maps
[Schmidt et al. '06, '10]
and deform proximal
regions for smooth join

(note: gluing is asymmetric, not slot-to-slot)



Component Assembly




Constrained Translation

Incremental tangential motion following mouse drag
“Steps over” small surface detail



Constrained Rotation

1-DOF rotation in plane of attachment (selected above)
2-DOF rotation for tilt



Constrained Scaling

Maintain point(s) of attachment



Multiple Constraints

m—

Slide each attached slot individually
Overall motion computed from slot displacements
Motion prevented if not possible without breaking attachments



Multiple Constraints

m—

Rotation axis computed from all current attachments
Rotation prevented if not possible without breaking attachments



Multiple Constraints

Multi-select

m—

Scaling pivot computed from all current attachments
Scaling prevented if not possible without breaking attachments



Symmetry

Two wings created, since
max, P(R;, | e) >0

Symmetry plane of torso
automatically selected for wings

Query Bayesian Network for arg max;, P(R, . | e)
l is label of selected part, /' is label of another part in the assembly



Initial Adjacency

Legs snap to torso...

... but horns snap to head

Query Bayesian Network for arg max,, P(4,, | e)
l is label of selected part, [/’ is label of another part in the assembly
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