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Chapter 1

Preliminaries from Convex

Geometry

1.1 Definitions

Let Rd denote the d-dimensional Euclidean space. A k-flat passing through the origin
is said to be a linear subspace of Rd. A general k-flat is called an affine subspace of
Rd. In both cases, the dimension of the subspace is defined to be k.

An affine combination of a set of points a1, a2, . . . , an ∈ Rd is an expression of the
form

n
∑

i=1

ciai, where

n
∑

i=1

ci = 1.

A set of points a1, a2, . . . , an ∈ Rd is said to be affinely dependent if one of the
points can be expressed as an affine combination of the others. This is the case if and
only if there exist c1, c2, . . . , cn ∈ R, not all zero, such that

n
∑

i=1

ciai = 0, where

n
∑

i=1

ci = 0.

Note the distinction between linear combinations and affine combinations: Given
two points in the plane, the set of their linear combinations covers the whole plane,
but their set of affine combinations is a single line. Similarly, three points in the plane
are linearly dependent, but affinely independent. A useful fact from linear algebra is
that any set of d + 1 or more points in R

d is linearly dependent and any set of d + 2
or more points in Rd is also affinely dependent.

A convex combination of a set A = {a1, a2, . . . , an} ⊆ Rd is an expression of the
form

n
∑

i=1

ciai, where

n
∑

i=1

ci = 1, and ci ≥ 0 for all 1 ≤ i ≤ n.

The set of all convex combinations of A is called the convex hull of A, denoted by
conv(A).
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1.2 Radon’s theorem

Theorem 1.2.1. Given A = {a1, a2, . . . , ad+2} ⊆ Rd, there exist two disjoint subsets
A1, A2 ⊂ A such that

conv(A1) ∩ conv(A2) 6= ∅.

Proof. We have d + 2 points in d-space, so they are affinely dependent. Therefore,
there exist c1, c2, . . . , cd+2 ∈ R, not all zero, such that

d+2
∑

i=1

ciai = 0 and
d+2
∑

i=1

ci = 0.

Let P = {i : ci > 0} and N = {i : ci < 0}. Since
∑d+2

i=1 ci = 0, we have P, N 6= ∅.
We claim that A1 = {ai : i ∈ P} and A2 = {ai : i ∈ N} are the desired sets.

Indeed, put S =
∑

i∈P ci = −∑i∈N ci. Consider the point

x =
∑

i∈P

ci

S
ai.

x lies in the convex hull of P since
∑

i∈P
ci

S
= 1 and ci

S
≥ 0 for all i ∈ P . Furthermore,

recall that
d+2
∑

i=1

ciai = 0 =
∑

i∈P

ciai +
∑

i∈N

ciai,

and thus
∑

i∈P

ciai = −
∑

i∈N

ciai,

which implies that

x = −
∑

i∈N

ci

S
ai.

Therefore x also lies in the convex hull of N since −∑i∈N
ci

S
= 1 and −ci

S
≥ 0 for all

i ∈ N .

1.3 Helly’s theorem

We can use Radon’s theorem to prove the celebrated result by Helly.

Theorem 1.3.1. Given a collection of n ≥ d + 1 convex sets in Rd, if the intersec-
tion of every d + 1 of these sets is nonempty, then the intersection of all the sets is
nonempty.

Proof. The proof is by induction on n. The base case of d + 1 sets is trivial. Suppose
the claim holds for collections of n−1 sets and consider a collection C1, C2, . . . , Cn of
convex sets in Rd. Let Si = {Cj : j 6= i} for 1 ≤ i ≤ n. By the induction hypothesis,
for any Si, there exists a point ai that lies in every C ∈ Si. Consider the collection
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A = {a1, a2, . . . , an}. By Radon’s theorem, A can be partitioned into disjoint subsets
A1 and A2 whose convex hulls intersect. Let x ∈ conv(A1)∩conv(A2). Consider some
set Ci and assume without loss of generality that ai ∈ A1. Note that aj ∈ C for all
C ∈ Sj, and that Ci ∈ Sj for all j 6= i. Therefore, for all aj ∈ A2, aj ∈ Ci, which
implies A2 ⊆ Ci. Thus, conv(A2) ⊆ Ci and x ∈ Ci. Since this holds for all 1 ≤ i ≤ n,
the proof is complete.

1.4 Carathéodory’s theorem

Theorem 1.4.1. Any convex combination of a set of points A = {a1, a2, . . . , an} ⊆ Rd

is a convex combination of at most d + 1 points in A.

Proof. By contradiction. Given x ∈ conv(A), suppose, without loss of generality, that
∑k

i=1 ciai, where
∑k

i=1 ci = 1 and ci ≥ 0 for all 1 ≤ i ≤ n, is a representation of x
as a convex combination of a subset of A involving the smallest possible such subset,
and that k ≥ d + 2. Thus the points a1, a2, . . . , ak are affinely dependent and there
exist d1, d2, . . . , dk ∈ R, not all zero, such that

k
∑

i=1

diai = 0 and
k
∑

i=1

di = 0.

Assume without loss of generality that dk > 0 and ck/dk ≤ ci/di for those i (1 ≤ i ≤
k−1) for which di > 0. We shall express x as a convex combination of a1, a2, . . . , ak−1,
obtaining a contradiction. For this, define the coefficients ei = ci − ck

dk

di for all
1 ≤ i ≤ k − 1.

If di ≤ 0 then ei ≥ ci ≥ 0, and if di > 0 then ei = ci − ck

dk

di ≥ ci − ci

di
di = 0.

Furthermore,

k−1
∑

i=1

ei =

k−1
∑

i=1

(

ci −
ck

dk
di

)

=

k−1
∑

i=1

ci −
ck

dk

k−1
∑

i=1

di =

k
∑

i=1

ci −
ck

dk

k
∑

i=1

di =

k
∑

i=1

ci = 1.

Thus the coefficients ei are nonnegative and sum to 1. Finally,

x =
k
∑

i=1

ciai =
k
∑

i=1

ciai −
ck

dk

k
∑

i=1

diai =
k−1
∑

i=1

(

ci −
ck

dk

di

)

ai =
k−1
∑

i=1

eiai.

We have reached a contradiction that proves the theorem.
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Chapter 2

ε-nets and VC-dimension

2.1 Defining ε-nets

A remarkably useful tool in modern computational geometry is the notion of ε-nets,
which is used to power many randomized geometric constructions, as we shall see
below. To define ε-nets, consider a set X with a probability measure µ on X. Most
often, µ will be the uniform measure on the set X, which may be finite or infinite.
Let F be a collection of subsets of X. Together, the pair (X, F ) is called a set system.
(When X is finite, a set system on X is sometimes referred to as a hypergraph.) Given
0 ≤ ε ≤ 1, an ε-net for (X, F ) is a subset of X that “hits” all the heavy sets in F ,
namely all the set in F that have measure at least ε. More formally,

Definition 2.1.1. Given a set system (X, F ) as above, a subset N ⊆ X is called an
ε-net for (X, F ) if N ∩ S 6= ∅ for all S ∈ F with µ(S) ≥ ε.

For example, given a finite set system (X, F ) with |X| = n, µ(S) = |S|
n

for any
S ∈ 2X , and r ∈ N+, a (1/r)-net for (X, F ) is a subset N that has a nonempty
intersection with all sets of F that have at least n/r elements.

We will be interested in finding small ε-nets. Specifically, for constant ε, we will
want to find ε-nets of constant size (!), namely, size that depends on ε but not on the
size of the set system. This is not always possible, as easy constructions can suggest,
but quite often it is. To describe an important class of set systems that admit small
ε-nets we need the notion of VC-dimension.

2.2 Defining VC-dimension

The Vapnik-Chervonenkis dimension, or the VC-dimension is a numerical parameter
of a set system that quantifies how “well behaved”, in a certain sense, the system is.

Given a set system (X, F ) and a subset Y ⊆ X, the restriction of F on Y is the
set F |Y = {S ∩ Y : S ∈ F}.

Definition 2.2.1. Given a set system (X, F ) as above, a subset A ⊆ X is said to be
shattered by F if each of the subsets of A arises as an intersection A ∩ S for some
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S ∈ F , that is, if F |Y = 2A. The VC-dimension dim(F ) of F is the size of the largest
subset of X that is shattered by F .

To see that the VC-dimension concept is not vacuous, consider two examples. Let
X be the Euclidean plane R

2, F1 be the set of all convex polygons in the plane, and
F2 be the set of halfplanes. The set system (X, F1) has VC-dimension ∞. Indeed,
consider an arbitrarily large finite set A ⊆ R2 in convex position; any subset A′ ∈ A
can arise as an intersection of A with a convex polygon—just take conv(A′).

On the other hand, the set system (X, F2) has the bounded VC-dimension 3. In
fact, something more general holds.

Proposition 2.2.2. Let R[x1, x2, . . . , xd]1 denote the set of all linear functions in d
variables, and let

Pd,1 =
{

{x ∈ R
d : p(x) ≥ 0} : p ∈ R[x1, x2, . . . , xd]1

}

.

The VC-dimension of the set system (Rd, Pd,1) is d + 1.

Proof. Consider a set A of d+1 points in Rd in general position. It is easy to see that
any subset of A can be separated from the rest by a halfspace. On the other hand,
given a collection B of at least d+2 points in Rd, Radon’s theorem asserts that there
exist two disjoint subsets B1, B2 ⊂ B such that

conv(B1) ∩ conv(B2) 6= ∅.

By convexity, these two subsets cannot be separated by a hyperplane, so neither B1

nor B2 can arise as an intersection of B with a halfspace.

2.3 The existence of small ε-nets

The next theorem of Haussler and Welzl is the reason we went through the trouble of
introducing ε-nets and VC-dimension. It says that for set systems with bounded VC-
dimension, small ε-nets exist, and can in fact be found by simple random sampling.

Theorem 2.3.1 (ε-net theorem). Given a set system (X, F ) with dim(F ) ≤ d, such
that d ≥ 2 and r ≥ 2 is a parameter, there exists a (1/r)-net for (X, F ) of size at
most Cdr ln r, where C is an absolute constant.

To prove this theorem we first need to establish two lemmas. The first concerns
a so-called shatter function of a set system (X, F ). This is the function

πF (m) = max
Y ⊆X,|Y |=m

∣

∣F |Y
∣

∣.

To obtain intuition concerning this definition, note that πF (|X|) is simply the size
of F . The next lemma then states that the size of a set system with bounded VC-
dimension is itself bounded.
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Lemma 2.3.2 (Shatter function lemma). Given a set system (X, F ) with dim(F ) ≤
d, and any 1 ≤ m ≤ |X|,

πF (m) ≤
d
∑

i=0

(

m

i

)

.

This lemma implies that the size of (X, F ) is O(nd), where n = |X|. In fact, a
tighter bound can be obtained using estimates for binomial coefficients:

πF (m) ≤
(em

d

)d

.

Proof. Note that for any Y ⊆ X, the VC-dimension of (Y, F |Y ) is at most d. (Any
subset of Y that is shattered by F |Y is also a subset of X that is shattered by F .)
This implies that it suffices to show that the size of (X, F ) is at most

∑d
i=0

(

n
i

)

, where
n = |X|. To this end, we use induction on d, and for a fixed d we do induction on n.

For the induction step, fix some x ∈ X and consider the set system (X \ {x}, F1),
for F1 = F |X\{x}. By the induction hypothesis, |F1| ≤

∑d
i=0

(

n−1
i

)

. Any two distinct
sets A1, A2 ∈ F for which A1∩F1 6= A2∩F1 are counted as distinct sets of F1 and are
thus considered in |F1|. The only pairs of distinct sets of F that are not thus counted
are pairs of sets A1, A2 ∈ F , such that A1 ⊆ X \ {x} and A2 = A1 ∪ {x}.

Consider the set system (X \ {x}, F2), defined as F2 = {A ∈ F1 : A ∈ F and A ∪
{x} ∈ F}. The discussion above implies |F | = |F1| + |F2|. Observe now that
dim(F2) ≤ d − 1, since if A ⊆ X \ {x} is shattered by F2 then A ∪ {x} is shat-
tered by F . By the induction hypothesis, |F2| ≤

∑d−1
i=0

(

n−1
i

)

. Therefore,

|F | ≤
d−1
∑

i=0

(

n − 1

i

)

+
d
∑

i=0

(

n − 1

i

)

= 1 +
d
∑

i=1

((

n − 1

i − 1

)

+

(

n − 1

i

))

=

(

n

0

)

+

d
∑

i=1

(

n

i

)

=

d
∑

i=0

(

n

i

)

.

We still need one more lemma before we commence the proof of the ε-net theorem.

Lemma 2.3.3. Let X =
∑n

i=1 Xi, where the Xi are independent random variables,
each attaining the value 1 with probability p and the value 0 with probability 1 − p.
Then

P

[

X ≥ 1

2
np

]

≥ 1

2

provided that np ≥ 8.

Proof. The estimate in the lemma is very weak and much stronger ones can be
obtained. This one is a consequence of Chebyshev’s inequality that states that
P [|X − E[X]| ≥ kσ] ≤ 1

k2 . In our case, E[X] = np and σ ≤ √
np. We have

P

[

X ≥ 1

2
np

]

= 1 − P

[

X <
1

2
np

]

= 1 − P

[

X − E[X] < −1

2
np

]

≤

1 − P

[

|X − E[X]| ≥ 1

2
np

]

≤ 1 − P

[

|X − E[X]| ≥
√

np

2
σ

]

≥ 1 − 4

np
≥ 1

2
.
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Proof of the ε-net theorem. First of all, note that we can assume that all sets of F
have measure at least 1/r, as the small sets do not change anything. Put s = Cdr ln r
and assume for the sake of clarity that it is an integer—the proof can be easily
modified to remove this assumption. Let N denote a random sample of s elements
from X, drawn with repetitions according to the probability distribution on X. (So
N is regarded as a multiset, since it can have repeated elements.) Our goal is to show
that N is a (1/r)-net with a positive probability—once we show that, it is easy to
make this probability arbitrarily close to 1 by increasing the constant C. So let E0

be the “bad” event that N fails to be a (1/r)-net, namely, that there exists T ∈ F
for which N ∩ T = ∅.

We bound P [E0] away from 1 by a “magic trick” that relates P [E0] to the proba-
bility of another event, which we call E1. Draw a second random sample of s elements
from X and denote the resulting sequence by M . E1 is the event that there exists a
set T ∈ F that is missed by N but is “heavily hit” by M . Specifically, put k = s/2r,
again assuming that k is an integer, and let E1 be the event that there exists T ∈ F
with N ∩ T = ∅ and |M ∩ T | ≥ k.

Now, P [E1] ≤ P [E0], since E1 required E0. We show that P [E1] ≥ 1
2
P [E0]. For

this, we first bound P [E1|N ]. If N is a (1/r)-net, then P [E1] = P [E0] = 0. Otherwise,
fix a set TN for which N ∩T = ∅ and note that P [E1|N ] ≥ P [|M∩TN | ≥ k]. Now, the
quantity |M ∩ TN | can be viewed as a sum of s Bernoulli trials, each having success
probability 1/r. Thus, by the above lemma, the probability that this sum is at least
k = s/2r = 1

2
s
r

is at least 1
2
, namely if N is not a (1/r)-net then P [E1|N ] ≥ 1

2
. In

general then, P [E1|N ] ≥ 1
2
P [E0|N ] for all N , which implies P [E1] ≥ 1

2
P [E0].

Now it’s time for the second part of the magic trick, which involves showing that
P [E1] is in fact small, strictly smaller than 1

2
. Given the above inequality, this will

imply that P [E0] is less than 1.
Take a random sample A of 2s elements from X, and then choose s elements of

A uniformly at random (without repetitions this time), denote this collection by N ,
and denote the rest of A by M . These N and M have the same distribution as above.
Let’s analyze P [E1|A].

Let A be fixed. Fix a particular T ∈ F and consider the probability that “E1 holds
for this particular T”, namely, PT = P [N ∩ T = ∅, |M ∩ T | ≥ k|A]. If |A ∩ T | < k
then PT = 0. Otherwise we use the fact that PT ≤ P [N ∩ T = ∅|A]. This is the
probability that a random sample of the s elements of N out of the 2s elements of A
avoids the at least k elements of A ∩ T . Thus

PT ≤
(

2s−k
s

)

(

2s
s

) =

(2s−k)!
(s−k)!

(2s)!
s!

=
(2s − k)(2s − k − 1) · · · (s − k + 1)

(2s)(2s − 1) · · · (s + 1)
≤

(

2s − k

2s

)s

=

(

1 − k

2s

)s

≤ e−(k/2s)s = e−k/2 = e−(Cd ln r)/r = r−Cd/4.

This estimates PT for a fixed T ∈ F . To estimate P [E1|A] in general we finally use,
for the first time in the proof, the VC-dimension of X. The shatter function lemma
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implies that the number of possible sets A ∩ T , for T ∈ F is bounded, and the event
“N ∩ T = ∅, |M ∩ T | ≥ k” depends only on A ∩ T . We combine this with the above
estimate via the union bound:

P [E1|A] ≤
d
∑

i=0

(

2s

i

)

r−Cd/4 ≤
(

2es

d

)d

r−Cd/4 =
(

2Cer1−C

4 ln r
)d

<
1

2

when d, r ≥ 2 and C is chosen to be sufficiently large. Since this holds for all A we
have P [E1] < 1

2
, which implies P [E0] < 1, concluding the proof.

2.4 ε-samples

I’d like to briefly mention a notion related to ε-nets that will also be useful.

Definition 2.4.1. Given a set system (X, F ), a subset N ⊆ X is called an ε-sample
for (X, F ) if

∣

∣

∣

∣

|N ∩ S|
|N | − µ(S)

∣

∣

∣

∣

≤ ε

for all S ∈ F .

The notion of an ε-sample is stronger than that of an ε-net, since an ε-sample
not only hits all heavy sets, but also represents them proportionally. ε-samples are
in fact what Vapnik and Chervonenkis were after when they wrote their now-famous
VC-dimension paper, and they proved that small ε-samples exist and can be found by
random sampling for set systems with constant VC-dimension. The proof is similar
to the Haussler-Welzl proof of the ε-net theorem. (Actually, the Haussler-Welzl proof
is modeled after the original of Vapnik and Chervonenkis.)

Theorem 2.4.2 (ε-sample theorem). Given a set system (X, F ) with dim(F ) ≤ d,
such that d ≥ 2 and r ≥ 2 is a parameter, there exists a (1/r)-sample for (X, F ) of
size at most Cdr2 ln r, where C is an absolute constant.

2.5 Bounding the VC-dimension

The ε-net theorem provides a great incentive to bound the VC-dimension of various
set systems, as this now implies that we can construct small ε-nets. We will soon see
algorithmic applications of this, but let’s begin with the VC-dimension bounds. We
have already seen that the set system defined by halfspaces in Rd has VC-dimension
d + 1. We now generalize this result to polynomials.

Theorem 2.5.1. Let R[x1, x2, . . . , xd]≤D denote the set of all real polynomials in d
variables of degree at most D, and let

Pd,D =
{

{x ∈ R
d : p(x) ≥ 0} : p ∈ R[x1, x2, . . . , xd]≤D

}

.

The VC-dimension of the set system (Rd, Pd,D) is at most
(

d+D
d

)

.
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Proof. The proof reduces the case of polynomials to the case of hyperplanes in a
higher-dimensional space using linearization. Let M be the set of all possible noncon-
stant monomials of degree at most D in x1, x2, . . . , xd. For example, when d = D = 2
we have M = {x1, x2, x1x2, x

2
1, x

2
2}. Note that |M | =

(

d+D
d

)

− 1, since monomials of
M correspond to placements of D identical balls in d + 1 bins. The bins are the d
coordinates, plus an “extra” one, which is used by monomials of degree strictly less
than D. There is one configuration that corresponds to a constant monomial, and
this is the one configuration that is subtracted from

(

d+D
d

)

. Denote m = |M |, and let
the coordinates in Rm be indexed by the monomials of M . The linearization we use is
the mapping ϕ : Rd → Rm, defined by ϕ(x)µ = µ(x). For example, when d = D = 2,
the map is

ϕ(x1, x2) = (x1, x2, x1x2, x
2
1, x

2
2).

Now, if A ∈ Rd is shattered by Pd,D, then ϕ(A) is shattered by half-spaces in Rm.
Indeed, consider B ⊆ A, and let p ∈ Pd,D be a polynomial that is positive over B and
negative over A\B. Denote p = a0+

∑

µ∈M aµµ. Now consider the halfspace hp in R
m,

defined as {y ∈ Rm : a0 +
∑

µ∈M aµyµ ≥ 0}. For example, if p = 2+3x2 − 5x1x2 +x2
1,

then hp = {y ∈ Rm : 2 + 3y2 − 5y3 + y4 ≥ 0}. Then hp ∩ϕ(A) = ϕ(B), and in general
ϕ(A) is shattered by halfspaces in R

m. Thus dim(Pd,D) ≤ m + 1 =
(

d+D
d

)

.

Now that we have bounded the VC-dimension of polynomials, we can extend
the result even further, to the domain of semialgebraic sets. A semialgebraic set
is a set definable by a Boolean combination of polynomial inequalities. More for-
mally, a set A ⊆ Rd is called semialgebraic if there are polynomials p1, p2, . . . , pk ∈
R[x1, x2, . . . , xd]≤D, for some D, and a Boolean formula F (X1, X2, . . . , Xk), such that

A =
{

x ∈ R
d : F (p1 ≥ 0, p2 ≥ 0, . . . , pk ≥ 0)

}

.

We can bound the VC-dimension of a set system defined by semialgebraic sets using
the following general result.

Theorem 2.5.2. Let F (X1, X2, . . . , Xk) be a set-theoretic formula involving the oper-
ations of union, intersection, and subtraction. Let (X, S) be a set system with bounded
dim(S) = d. Let

T = {F (s1, s2, . . . , sk) : s1, s2, . . . , sk ∈ S}.
Then dim(T ) = O(dk log(dk)).

Proof. Let A ⊆ X be an n-point set. By induction on the structure of F ,

F (s1, s2, . . . , sk) ∩ A = F (s1 ∩ A, s2 ∩ A, . . . , sk ∩ A).

In particular, F (s1, s2, . . . , sk)∩A depends only on the individual intersections si∩A.
Thus πT (n) ≤ πS(n)k. The shatter function lemma implies πS(n) ≤ ∑d

i=0

(

n
i

)

. If A
is shattered by T , then πT (n) = 2n. Thus

2n ≤
(

d
∑

i=0

(

n

i

)

)k

≤
(en

d

)dk

.

Using elementary calculus, this implies n = O(dk log(dk)).
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Now let Hd be the set of all hyperplanes in Rd, and let

P ∗
d,1 =

{

{h ∈ Hd : h above x} : x ∈ R
d
}

∪
{

{h ∈ Hd : h below x} : x ∈ R
d
}

.

Consider the set system (Hd, P
∗
d,1). By duality, the VC-dimension of this set system

is d + 1. Now consider the set system

Γd =

(

Hd,
{

{h ∈ Hd : h ∩ γ 6= ∅} : γ is a line segment in R
d
}

)

.

It is easy to see that Γd is contained in the set system

(

Hd,
{

(s1 ∩ s2) ∪ (s3 ∩ s4) : s1, s2, s3, s4 ∈ P ∗
d,1

}

)

.

By above theorem, the VC-dimension of Γd is O(d log d). Now let

∆d =

(

Hd,
{

{h ∈ Hd : h ∩ δ 6= ∅} : δ is a d-simplex in R
d
}

)

.

A hyperplane intersects a simplex if and only if it intersects at least one of its edges.
Thus ∆d is part of a set system obtained from P ∗

d,1 using a set theoretic formula on
O(d) variables. Therefore, its VC-dimension is O(d3 log d).
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Chapter 3

Applications of ε-nets

3.1 Arrangements and point location

A collection Γ of n hyperplanes in Rd subdivides the space into Θ(nd) relatively open
cells of dimensions ranging from 0 to d, such that each cell is a maximal connected set
of points that lie in the intersection of a fixed (possibly empty) subset of Γ and are
disjoint from all other surfaces of Γ. We refer to this subdivision as the arrangement
of Γ and denote it by A(Γ).

Our first application of ε-nets will be to the problem of point location in arrange-
ments. The problem is as follows. We wish to preprocess a collection Γ as above such
that for a query point p ∈ Rd, we can efficiently locate the cell of A(Γ) that contains
p. For concreteness, let’s say that we want the data structure to count how many
hyperplanes γ ∈ Γ satisfy γ(p) > 0. The data structure we construct illustrates the
basic technique we will subsequently use in other applications.

The data structure is a tree T , and every node v of T is associated with a ‘canon-
ical’ subset Γ(v) of hyperplanes. The root is associated with the whole set Γ. Given
a node of T , we recursively construct its subtree in T as follows. Let n = |Γ(v)|.
If n ≤ n0, for some global constant n0, this node becomes a leaf and the recursive
construction stops. Otherwise, consider the set system

S =

(

Γ(v),
{

{h ∈ Γ(v) : h ∩ δ 6= ∅} : δ is a d-simplex in R
d
}

)

.

This is a subsystem of a set system ∆d whose VC-dimension is at most O(d3 log d).
Thus the VC-dimension of S is at most O(d3 log d), which is O(1) when d is assumed
to be constant. The ε-net theorem then implies that by random sampling in O(n)
time we can construct a (1/r)-net R(v) ⊆ Γ(v) of S of size O(r log r). (We do assume
d = O(1) throughout this section.) We “decompose” A(R(v)) into simplices using
the following construction, called the “bottom-vertex simplicial decomposition”.

Bottom-vertex decomposition. Here is what we mean by a decomposition of
A(R(v)). Such decomposition is a collection D of simplices that satisfies

13



(a)
⋃

δ∈D

δ = R
d

(b)
∀δ1, δ2 ∈ D . δ1 ∩ δ2 = ∅

(c)
∀δ ∈ D, r ∈ R(v) . (δ ∩ r = ∅) ∨ (δ ⊆ r)

The bottom-vertex decomposition is defined inductively on d. When d = 1, the
decomposition is the arrangement itself. For higher d, given any h ∈ R(v), we can
consider the collection R(v)|h = {s ∩ h : s ∈ R(v)} and its arrangement A(R(v)|h)
within the hyperplane h. A(R(v)|h) is isomorphic to a hyperplane arrangement in
Rd−1 and can thus be decomposed by the inductive hypothesis. In this way we
produce a decomposition of A(R(v)|h) for all h ∈ R(v). This results in a collection of
pairwise disjoint simplices that cover all lower-dimensional cells of A(R(v)). To cover
the d-dimensional cells, use the following procedure: for a cell τ of A(R(v)), take the
lowest vertex v of τ (in the xd-direction) and a decomposition simplex δ that lies on
the boundary of τ but not entirely in the interior of any hyperplane that contains τ .
Then add (the relative interior of) conv(v, δ) to the decomposition.

It is easy to show that repeating this for all vertices v and simplices τ as above
results in a decomposition of A(R(v)). Moreover, this decomposition has O(|R(v)|d)
simplices.

Note that unbounded cell require special handling and unbounded “simplices” are
produced to cover those cells. We omit the details.

Upshot: We can cover the complement of the union of the hyperplanes R(v) with
O((r log r)d) disjoint simplices. Call this collection of simplices D. Crucial observa-
tion: R(v) is a (1/r)-net for the set system S, which means that a hyperplane of
R(v) “hits” every simplex that intersects at least n/r hyperplanes of Γ(v). Since no
hyperplane of R(v) intersects any simplex of D, a simplex of D intersects at most
n/r hyperplanes of Γ(v).

We store the decomposition D at v and create a child uδ of v for every δ ∈ D,
link δ to uδ and associate with uδ the set Γ′ ⊆ Γ(v) of hyperplanes that intersect uδ.
Among Γ(v) \ Γ′, we count the number of those hyperplanes h that satisfy h(p) > 0
for p ∈ δ, and store this number, denoted by µ(uδ), at uδ. We then recurse within
each uδ. The resulting tree T has degree O((r log r)d) and depth O(log n).

Given this data structure, a query proceeds as follows. We trace a path in T in a
top-down fashion, starting from the root. We maintain a global counter, which, at the
end of the query procedure, gives the number of hyperplanes satisfying γ(p) > 0. The
counter is initialized to 0. At each visited node v, if v is a leaf we explicitly count the
number of hyperplanes γ associated with v that satisfy γ(p) > 0, add it to the counter
and terminate. The time spent at a leaf is thus O(n0), which is constant. If v is an
internal node, we add µ(v) to the counter, go over the simplices in the decomposition
stored at v, find the unique simplex δ that contains p and recurse within uδ. The

14



time spent at each internal node is thus O((r log r)d), which is again O(1). Since the
height of T is O(log n), the query time is also O(log n).

Now let S(n) be the maximum storage required by the data structure; then S(n)
satisfies the following recurrence:

S(n) ≤
{

c0 n ≤ n0,

c1(r log r)dS
(

n
r

)

+ c2(r log r)d n > n0,

where c0, c1, c2 are appropriate constants. We claim that the solution of this recurrence
is And+ε for any ε > 0 and for an appropriate constant A that depends on ε. This
claim is true for n ≤ n0 if A ≥ c0. For n > n0 we use induction:

S(n) ≤ c1(r log r)dA
(n

r

)d+ε

+ c2(r log r)d

≤ And+ε

(

c1(log r)d

rε
+

c2(r log r)d

And+ε

)

≤ And+ε

(

c1(log r)d

rε
+

c2(r log r)d

A

)

≤ And+ε.

The last inequality holds if we choose r large enough that rε ≥ 2c1(log r)d, and choose
A ≥ 2c2(r log r)d.

Notice that there is a lot of slack in this analysis. In particular, it does not take
advantage at all of the nd+ε in the denominator of the second summand. We are
going to reclaim this slack very soon. To start with, we still need to analyze the
preprocessing time of the data structure. At every internal node with n associated
surfaces, the construction algorithm spends O(n(r log r)d) time. We claim that the
overall preprocessing time is again And+ε for any ε > 0 and an appropriate constant
A. Similarly to the above, we let T (n) be the maximum preprocessing time; then

T (n) ≤
{

c0 n ≤ n0,

c1(r log r)dT
(

n
r

)

+ c2n(r log r)d n > n0,

and, by induction for n > n0,

T (n) ≤ c1(r log r)dA
(n

r

)d+ε

+ c2n(r log r)d

≤ And+ε

(

c1(log r)d

rε
+

c2(r log r)d

And−1+ε

)

≤ And+ε

(

c1(log r)d

rε
+

c2(r log r)d

A

)

≤ And+ε,

again for r and A chosen to be sufficiently large constants. Let us summarize what
we have accomplished with a theorem.
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Theorem 3.1.1. Given a collection Γ of n hyperplanes in Rd, one can preprocess it
in time O(nd+ε) for any ε > 0, into a data structure of size O(nd+ε), so that a point
location query in A(Γ) can be answered in time O(log n).

To conclude our discussion of point location, we note that the above data struc-
ture is not the most efficient possible. Chazelle and Friedman came up with a data
structure with size and preprocessing time O(nd/ logd−1 n) that answers point location
queries in time O(log n).

3.2 Segment intersection searching

We now want to see how far we can push the methodology we have developed for
point location. Consider the following problem, called segment intersection searching.
Given a collection Γ of n hyperplanes in Rd, we want to preprocess Γ into a data struc-
ture that, given a query segment s, will efficiently count the number of hyperplanes
of Γ that intersect S, that is,

∣

∣{h ∈ Γ : h ∩ s 6= ∅}
∣

∣. Surprisingly, even though this
problem appears more involved than point location (it is in fact a generalization), we
will see that with some cleverness we can construct a data structure with size and
preprocessing time O(nd+ε) for any ε, and query time O(log n).

Denote the two end-points of s by a and b. We begin by observing that the set
of hyperplanes of Γ that intersect s is the disjoint union of two sets: The set of
hyperplanes of Γ that pass below a and above b, and the set of hyperplanes of Γ
that pass below b and above a. This implies that it is sufficient to preprocess Γ into
a data structure that, given two query points p1 and p2, will count the number of
hyperplanes h ∈ Γ that satisfy h(p1) > 0 and h(p2) < 0.

To construct this data structure we build a tree T as in the case of point location.
Recall that during the construction of T , when processing an internal node v we
created a child uδ for every decomposition simplex δ, associated with uδ the set Γ′ ⊆
Γ(v) of hyperplanes that intersect uδ, and then counted the number of hyperplanes
h ∈ Γ(v) \ Γ′ that satisfy h(p) > 0 for p ∈ δ, and stored this number µ(uδ) at uδ.
Now instead of simply storing µ(uδ) at uδ, we preprocess the set Γ(v) \ Γ′ into a
point location data structure that counts the number of hyperplanes h ∈ Γ(v) \ Γ′

that satisfy h(q) < 0 for a query point q. Denoting n = Γ(v), we have seen that
this data structure can be constructed in time O(nd+ε), having size O(nd+ε), for any
ε > 0, with O(log n) query time. We construct this data structure and store it at uδ,
repeating the process for all children uδ of v.

Let’s analyze the maximum preprocessing time T (n) of the data structure. (The
storage requirement analysis is completely analogous.) For appropriate constants
c0, c1, c2 we can write

T (n) ≤
{

c0 n ≤ n0,

c1(r log r)dT
(

n
r

)

+ c2A1n
d+ε(r log r)d n > n0.

Now, amazingly enough, even though we are now storing a second-level point location
data structure in every node, we are claiming that the overall preprocessing (and
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storage) requirements increase only by a constant. Namely, we prove that T (n) ≤
A2n

d+ε for a sufficiently large constant A2. The proof again proceeds by induction,
with the base case n ≤ n0 being trivial. For n > n0 we have

T (n) ≤ c1(r log r)dA2

(n

r

)d+ε

+ c2A1n
d+ε(r log r)d

≤ A2n
d+ε

(

c1(log r)d

rε
+

c2A1(r log r)d

A2

)

≤ A2n
d+ε,

when r is sufficiently large and A2 ≥ 2c2A1(r log r)d.
So the preprocessing time and storage requirements remain O(nd+ε) for an arbi-

trarily small ε. Let us look at how a query in this data structure is handled. Given
two query points p1 and p2, we query the main point location data structure with
the point p1 and trace a top-down path in the tree T . Again, we maintain a global
counter. However, when we are at an internal node v we do not simply add a stored
quantity to the counter. Rather, we query the second-level point location data struc-
ture stored at v with the point p2, and add the result of the query to the counter.
When we reach a leaf we go over the stored hyperplanes brute force and output the
value of the counter.

To see that the query produces the correct number of hyperplanes, note that,
along a search path, every hyperplane h ∈ Γ that satisfies h(p1) > 0 belongs to
exactly one second-level data structure that is queried. If h also satisfies h(p2) < 0
then it is counted once during that query. Overall every hyperplane h that satisfies
h(p1) > 0 and h(p2) < 0 is counted exactly once, and no other hyperplane is counted.
This proves correctness.

Now let us look at the query time. The query algorithm visits O(logn) nodes
in the main search tree. At each node, the algorithm queries a second-level tree,
which also takes O(log n) time. Overall, the query time is now O(log2 n), which is
not what we want! We want the query time to remain O(logn), and in fact this can
be accomplished with some cleverness.

The trick is to adjust the branching factor r of the main search tree. Instead of
taking r to be a large constant we are going to use r = nε′, for a sufficiently small
ε′. Here n = |Γ|, the overall number of input hyperplanes. This now means that
at every internal node v, we need an auxiliary data structure just to choose which
child the query should recurse in. This is achieved by a simple point location data
structure on the hyperplanes of the (1/r)-net. The size and construction time of the
data structure are O((r log r)d+ε) = O((nε′ log n)d+ε). Let us see how this affects the
construction time T (m):

T (m) ≤
{

c0 m ≤ n0,

c1(n
ε′ log n)dT

(

m
r

)

+ c2A1m
d+ε(nε′ log n)d + c3(n

ε′ log n)d+ε m > n0.

We argue by induction below that this solves to T (m) ≤ A2m
d+εnε for a sufficiently

large constant A2. This means that T (n) ≤ A2n
d+2ε. This holds for an arbitrarily
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small ε, so we can say that T (n) = O(nd+ε) for any ε > 0. Here is the inductive
argument:

T (m) ≤ c1(n
ε′ log n)dT

(m

r

)

+ c4A1m
d+ε(nε′ log n)d+ε

≤ c1A2(n
ε′ log n)d

(m

nε′

)d+ε

nε + c4A1m
d+ε(nε′ log n)d+ε

≤ A2m
d+εnε

(

c1(n
ε′ log n)d

nε+ε′(d+ε)
+

c4A1(n
ε′ log n)d+ε

A2nε

)

.

For ε′ small enough and n0 large enough, each of the summands in the parentheses can
be made smaller than 1/2. Indeed, taking ε′ < ε

2(d+ε)
and assuming n0 is a sufficiently

large constant, it follows that (nε′ log n)d+ε ≤ 1
c1

nε. The claim easily follows, implying

that T (m) ≤ A2m
d+εnε. This concludes the analysis of the preprocessing time and

storage requirements.
The impact of making r depend polynomially on n is felt most in the query time.

Notably, the height of the main search tree is now a constant bounded by 1/ε′. So
a query spends time O(log n) in each visited node, but the number of nodes visited
is now constant, implying that we succeeded in reducing the overall query time to
O(log n). This yields a segment intersection searching data structure with the same
asymptotic performance as the point location data structure we developed previously.

3.3 Range searching

The best thing about the methodology by which we developed the segment intersec-
tion searching data structure is that it can be extended. Once we have seen how to
build a two-level data structure without increasing the asymptotic construction and
query times, we can do the same with a three-level data structure, a four-level data
structure, or in fact have any constant number of levels while keeping the asymptotic
performance bounds. This is precisely the insight we need for an efficient range-
searching data structure.

The problem of simplex range searching is as follows. Given a set P of n points in
Rd, we want to preprocess P into a data structure that, given a query d-dimensional
simplex S can count the number of points of P that lie in S. That is, we want the
data structure to output |P ∩ S|.

To construct the data structure we take advantage of duality. A d-dimensional
simplex can be viewed as the intersection of d + 1 linear halfspaces H1, H2, . . . , Hd+1,
each of the form < ai,x >> 1 or < ai,x >< 1, where ai ∈ Rd is a vector that
specifies Hi and x ∈ Rd is a variable. This specification of hyperplane equations
excludes hyperplanes that pass through the origin, but they can either be assumed
away due to general position or handled separately.

Now, point-hyperplane duality is a simple mapping of points to hyperplanes and
hyperplanes to points. Thus a hyperplane H =

(

< a,x >= 1
)

is mapped to the point
H∗ = a, and a point a is mapped to the hyperplane a∗ =

(

< a,x >= 1
)

. Trivially,
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a point y is in the positive halfspace defined by a hyperplane H =
(

< a,x >= 1
)

(i.e., < a,y >> 1) if and only if the point H∗ is in the positive halfspace defined by
a hyperplane y∗ (i.e., < y, a >> 1).

Now consider the collection of hyperplanes P ∗ = {p∗ : p ∈ P}. The above
discussion implies that we can answer a simplex range searching query among P by
answering a (d + 1)-level point location query in A(P ∗). We have seen that we can
preprocess A(P ∗) in time O(nd+ε) into a data structure that answers such queries in
time O(log n). This implies a simplex range searching data structure with the same
performance!

Now, simplex range searching is considered a rather cumbersome problem, and
we just found a rather simple solution. This demonstrates the power of the ε-nets
machinery. The amazing thing is that this solution is the best known and is essentially
optimal if we want logarithmic query time.

A data structure of size O(nd+ε) is rather large, and sometimes we might be
willing to sacrifice query time for storage space. A separate methodology has been
developed for constructing linear-size data structures. The best data structure in
this vein is by Matousek (1993); it has size O(n) and query time O(n1−1/d). The
above logarithmic-query-time data structure and Matousek’s structure can be easily
combined to produce the following space-time trade-off:

Theorem 3.3.1. For any n ≤ m ≤ nd+ε, a simplex range-counting query can be
answered in time

O

(

n1+(ε/d)

m1/d
+ log

(m

n

)

)

using O(m) space.

Finally, we remark that the above results are in fact essentially optimal in a certain
natural model of computation. The following theorem is due to Chazelle (1989):

Theorem 3.3.2. Consider positive integers n, m, such that n ≤ m ≤ nd, and let S
be a random set of points in [0, 1]d. If only m units of storage are available, then
with high probability, the worst-case query time for a simplex range query in S is
Ω(n/(m1/d log n)) in the semigroup model of computation.

3.4 Nearest-neighbor search

The problem of nearest-neighbor search is as follows. Given a set P of n points in
Rd, we want to preprocess P into a data structure that, given a query point q, we
wish to find the point of P that is closest to q. That is, we want to find

argminp∈P

√

√

√

√

d
∑

i=1

(pi − qi)2.

By monotonicity of the square root function, it is sufficient to find

argminp∈P

d
∑

i=1

(pi − qi)
2 = argminp∈P

(

d
∑

i=1

p2
i − 2

d
∑

i=1

piqi +
d
∑

i=1

q2
i

)

.
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Now, notice that the term
∑d

i=1 q2
i is the same for all points p. Thus, to find the

point p ∈ P that minimizes the above expression, it is sufficient to find

argminp∈P

(

d
∑

i=1

p2
i − 2

d
∑

i=1

piqi

)

.

For each p ∈ P , consider the function

fp(x) =

d
∑

i=1

p2
i − 2

d
∑

i=1

pixi,

defined over x ∈ Rd. This function is a hyperplane. A nearest-neighbor query with a
point q thus seeks to find

argminp∈P fp(q).

This is equivalent to a point location query in the minimization diagram of the set
F = {fp : p ∈ P}. We now show how to construct a point location data structure for

this minimization diagram that has preprocessing time and storage space O(n⌈d

2⌉+ε)
and query time O(log n). (This minimization diagram is really the Voronoi diagram
of P .)

The data structure is a tree T , similar to the search tree we have built for point
location in arrangements. Every node v of the tree has an associated subset Γ(v) ⊆ F .
Let n = |Γ(v)|. If n ≤ n0, where n0 is a global constant, the construction simply
terminates and v becomes a leaf of T . Otherwise, for a global constant r, we construct
in time O(r log r) a (1/r)-net R ⊆ Γ(v) for the set system

S =

(

Γ(v),
{

{h ∈ Γ(v) : h ∩ δ 6= ∅} : δ is a d-simplex in R
d
}

)

.

We have now reached a stage of the construction that is crucially different from the
setting of point location in arrangements. Instead of decomposing the whole A(R),
we only decompose the region below the lower envelope.

This is accomplished as follows. We compute the minimization diagram of R. It

is a convex subdivision of Rd of complexity O
(

(r log r)⌈ d

2⌉
)

, and therefore can be

decomposed into O
(

(r log r)⌈ d

2⌉
)

simplices in Rd. One simple way to produce these

simplices is to decompose the restriction of A(R) inside every hyperplane of r, and
then project onto R

d the decomposition simplices that lie on the boundary of the
lower envelope of A(R). This can be accomplished in time O((r log r)d).

Every simplex δ of this minimization diagram decomposition lies in a cell of the
diagram that corresponds to a single hyperplane h ∈ R. The corresponding simplex
δ′ in the decomposition of the region below the lower envelope of A(R) is simply the
set of points that project onto δ and lie below r. It is easy to argue that the set of
such simplices in a decomposition as desired.

Since R is a (1/r)-net for the set system S, δ′ is intersected by a set Γ′ of at most
n/r hyperplanes of Γ(v). Crucially, for any point q ∈ δ′, the lowest hyperplane of Γ(v)
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that lies above q belongs to the set Γ′ ∪ {h}. We thus create a child uδ′ of v for every
simplex δ′ as above, associate with it the set Γ′ ∪ {h} and recurse inside all children
of v produced in this way. This completes the description of the construction.

It is easy to verify that the obvious query procedure produces the correct answer
in time O(log n).

Now let us look at the construction time. We claim that the overall preprocessing

time is at most An⌈ d

2⌉+ε for any ε > 0 and an appropriate constant A. Let T (n) be
the maximum preprocessing time; then

T (n) ≤
{

c0 n ≤ n0,

c1(r log r)⌈ d

2⌉T
(

n
r

+ 1
)

+ c2n(r log r)d n > n0,

and, by induction for n > n0,

T (n) ≤ Ac1(r log r)⌈ d

2⌉
(n

r
+ 1
)⌈ d

2⌉+ε

+ c2n(r log r)d

≤ Ac1
log⌈ d

2⌉ r (n + r)⌈ d

2⌉+ε

rε
+ c2n(r log r)d

≤ An⌈ d

2⌉+ε

(

c1 log⌈ d

2⌉ r (n + r)⌈d

2⌉+ε

rεn⌈ d

2⌉+ε
+

c2n(r log r)d

An⌈ d

2⌉+ε

)

≤ An⌈ d

2⌉+ε

(

c1 log⌈ d

2⌉ r

rε

(

1 +
r

n

)⌈ d

2⌉+ε

+
c2(r log r)d

A

)

The parenthesized expression can be made smaller than 1 by first making r a large
enough constant so that

c1 log⌈ d

2⌉ r

rε
<

1

4
,

then choosing n0 large enough so that

(

1 +
r

n

)⌈ d

2⌉+ε

≤
(

1 +
r

n0

)⌈ d

2⌉+ε

< 2,

and then choosing
A > 2c2(r log r)d.

This implies the promised preprocessing time bound for nearest-neighbor search.
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Chapter 4

Centerpoints, Planar Graphs, and

Planar Separators

4.1 Rado’s centerpoint theorem

Centerpoints are a natural generalization of medians to high dimensions. They are
important in robust statistics, as they are a more robust measure of estimating a
point set than the mean of the point set. In this brief section we will prove the exis-
tence of centerpoints and give a simple efficient algorithm for computing approximate
centerpoints. This will become useful in our discussion of planar graph separators.

Theorem 4.1.1 (Rado). For any n-point set A ⊆ Rd, there exists a point x ∈ Rd

with the property that any halfspace that contains x covers at least 1
d+1

n points of P .
(Such a point is called a centerpoint of A.)

Proof. The claim is trivial if |A| ≤ d + 1. Otherwise consider the family H of halfs-
paces that cover more than dn

d+1
points of P . We show below that H has a nonempty

intersection. Consider a point x ∈ ⋂h∈H h. By contrapositive, this point is a center-
point, since if there exists a halfspace h that contains x that covers less than 1

d+1
n

points of P , the complement of h is a halfspace in H that does not contain x.
We now show that

⋂

h∈H h 6= ∅. For any h ∈ H, consider the set A|h = A∩ h. We
prove that the family S of sets conv(A|h), for all h ∈ H, has a nonempty intersection,
which is clearly sufficient. Consider some d + 1 such sets. Each contains more than
dn

d+1
points of A, and thus their intersection contains at least one such point. By

Helly’s theorem, since every (d + 1)-tuple of sets of S intersects, the whole family S
has a nonempty intersection.

It is not known how to efficiently find centerpoints that have precisely the above
properties. The computation of a centerpoint can be reduced to a linear programming
feasibility problem with O(nd) constraints in R

d, and when d is constant this can be
performed in time O(nd), which is highly inefficient. On the other hand, we can use
the ε-sample theorem to compute an approximate centerpoint much more efficiently.

Theorem 4.1.2. For any n-point set A ⊆ Rd and any constant 0 < ε < 1
d+1

, there

exists an algorithm that computes a point x ∈ R
d with the property that any halfspace
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that contains x covers at least
(

1
d+1

− ε
)

n points of A. The algorithm runs in time

O
(

(

1
ε2 log 1

ε

)d
)

.

Proof. Take a random sample R of O
(

1
ε2 log 1

ε

)

points of A and use linear program-
ming to compute its centerpoint x. The ε-sample theorem guarantees that R is an
ε-sample for the range space (A, H), where H is the set of subsets of A that can be
cut off by hyperplanes. Consider a hyperplane that contains x. It cuts off a set s ⊆ R
of measure at least 1

d+1
. By the ε-net theorem, this hyperplane cuts off a set s′ ⊆ A

that has measure at least 1
d+1

− ε. Since this holds for all hyperplanes that contain
x, we have proved the theorem.

4.2 Drawing graphs in the plane

As we have seen in class, graphs are often visualized by drawing them in the plane—
vertices are drawn as points, and edges as curved segments (called arcs) that connect
the corresponding points. A graph together with a drawing of it in the plane is called
a topological graph.

A graph is called planar if there exists a drawing of it in which the interior of any
arc does not touch or intersect any other arc. That is, two distinct arcs are either
disjoint or touch at endpoints that they share. A planar graph together with a planar
drawing of it is called a plane graph.

It is easy to verify that paths, cycles and trees of any size are planar. Transporta-
tion networks often provide examples of planar graphs, and graph planarity became
important in computer science due to a connection with VLSI circuit design. Planar
drawings are often considered superior when visualizing graphs, as they have no edge
crossings that can be mistaken for vertices. In fact, a whole subfield of computer
science called graph drawing is devoted to the study of various kinds of drawings of
graphs.

It might not be obvious at first that there are any nonplanar graphs at all. There
are, but we’ll have to do some work to prove this, and we’ll need two preliminary
steps just to approach this issue. The first is to define the faces of a plane graph and
the second is to mention the (in)famous Jordan curve theorem.

Let us begin with faces. Define an equivalence relation on the plane as follows:
Two points a, b ∈ R

2 are equivalent if they can be connected by an arc that does not
intersect the edges of a given plane graph G. Then the set of all points that belong
to a particular equivalence class of this relation are said to be a face of G. Intuitively,
if we draw G on a white sheet of paper with a black pencil, the faces are the white
regions; alternatively, if we cut the paper along the edges of the drawing, the faces
are the resulting pieces. Note that faces are defined for plane graphs, but not for
planar graphs without a drawing: Different drawings of the same graph can produce
different sets of faces!

The second piece of mathematical equipment we’ll need to study planar graphs
is the Jordan curve theorem.1 It is a classical example of a mathematical statement

1Jordan gets all the press even though his proof of the theorem was wrong, and it took almost
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that is intuitively obvious, but exceedingly difficult to prove. (Related specimens
that arguably fall into this category are Kepler’s conjecture and the Kneser-Poulsen
conjecture.)

Theorem 4.2.1 (Jordan curve theorem). Every closed non-self-intersecting curve
γ in the plane separates the plane into exactly two regions, one bounded and one
unbounded, such that γ is the boundary of both. Alternatively, a plane drawing of any
cycle Ci, for i ≥ 3, has exactly two faces.

To see why the Jordan curve theorem is not so easy to prove recall that there are
some crazy curves out there—just think about fractals like the Koch snowflake. How
would you go about proving that such monsters have “interior” and “exterior”?

The following corollary follows from the Jordan curve theorem by routine argu-
ments.

Corollary 4.2.2. Consider a plane graph G and an edge e that is part of a cycle in
G. Then e lies on the boundary of exactly two faces of G.

4.3 Euler’s formula

The fundamental tool in the study of planar graphs is Euler’s formula, presented by
Euler in 1752.2

Theorem 4.3.1 (Euler’s formula). Let G be a connected plane graph with n vertices,
e edges, and f faces. Then

n − e + f = 2.

Note that the theorem need not hold if the graph is not connected—Just think of
a collection of isolated vertices. On the other hand, the formula remains true even
for (non-simple) graphs with multiple edges and self-loops.

Proof. The proof proceeds by induction on the number of edges. If there are none,
the graph consists of a single vertex, the drawing has one face, and the formula holds
as 1− 0 + 1 = 2. Assume that the formula holds for all plane graphs having k edges.
Consider a plane graph G = (V, E) with n vertices, f faces, and k + 1 edges. We
distinguish between two cases:

G is a tree. In this case n = k + 2, due to a tree characterization we have seen
previously, and f = 1 since any planar drawing of a tree has exactly one face.
Then the formula holds as (k + 2) − (k + 1) + 1 = 2.

G has a cycle C. Take an edge e that lies on C and consider a plane graph G′ =
(V, E \ {e}), whose vertices and edges are drawn as in G. By Corollary 4.2.2,
the edge e is adjacent to two faces of G, and these faces “merge” into one in G′.
Thus G′ has n vertices, f − 1 faces, and k edges. By the induction hypothesis,
n − k + (f − 1) = 2, hence n − (k + 1) + f = 2.

20 years until Veblen found a correct one in 1905.
2Caution: Due to Euler’s prodigious output, there are multiple “Euler’s formulae”, “Euler’s

theorems”, etc.
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This completes the proof by induction.

Euler’s formula implies that the number of faces of a plane graph does not depend
on the drawing, so even though the faces themselves are only defined for a particular
drawing, their number is fixed a priori for any planar graph! The formula has a
number of other consequences that are frequently used in theoretical computer science.
These consequences say that planar graphs have few edges, and always have at least
one low-degree vertex. As they make abundantly clear, not only are not all graphs
planar, but most graphs aren’t. (Do you understand the sense in which the theorem
below implies this?)

Theorem 4.3.2. For any simple planar graph G with n vertices and e edges:

(a) If n ≥ 3 then e ≤ 3n − 6. If e = 3n − 6 then every face of G is a 3-cycle (a
“triangle”) and G is called a triangulation.

(b) There is a vertex of G that has degree at most 5.

Proof. The proofs of the two parts are similar in their clever use of Euler’s formula:

(a) If G is not connected, we can add edges to connect G while maintaining its
planarity. Assume therefore that G is connected. Let f be the number of faces
of G. For such a face t, let α(t) be the number of edges adjacent to t and
consider the sum

∑

t α(t) that ranges over all faces t of G. As each edge is
adjacent to at most two faces, a particular edge is counted at most twice in the
above sum. Hence

∑

t

α(t) ≤ 2e.

On the other hand, each face has at least three edges on its boundary, so

∑

t

α(t) ≥ 3f.

We get 3f ≤ 2e, and, using Euler’s formula, 3(2 − n + e) ≤ 2e and

e ≤ 3n − 6.

Finally, if e = 3n − 6 then 3f = 2e and it must be that every face has exactly
three edges on its boundary.

(b) If the graph is disconnected we consider one particular connected component
of it, so assume that G is connected. If G has two vertices or less the result
is immediate, so assume that n ≥ 3. Recall that dG(x) denotes the degree of
a vertex x in G. The sum

∑

x dG(x), ranging over the vertices x of G, counts
every edge twice, so

∑

x

dG(x) = 2e.
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As we have seen, e ≤ 3n − 6, so
∑

x

dG(x) ≤ 6n − 12.

If the degree of every vertex is at least 6, we get

6n ≤ 6n − 12,

which is a contradiction. Therefore, there must be a vertex with degree at most
5.

An intuitive way to think about Theorem 4.3.2(a) is that once a graph has too
many edges, there is no more room for them in the plane and they start intersecting.
This gives a way to prove that a particular graph is not planar. Take K5, for example.
It has 5 vertices and 10 edges, and 10 > 3 · 5 − 6. Thus K5 is not planar! In fact, no
Kn is planar for n ≥ 5, since they all contain K5 as a subgraph. On the other hand,
Kn is planar for n ≤ 4, as can be demonstrated by their simple planar drawings. This
illustrates a point that might be obvious by now: proving a graph to be planar is
often easier than proving the opposite. (Just draw it!tm)

How about complete bipartite graphs? It is easy to verify that Ki,j is planar when
i ≤ 2 or j ≤ 2. The smallest remaining suspect is K3,3. Playing around with drawings
doesn’t help: There seems to be no way to draw K3,3 without intersections. Let’s try
the trick that worked for K5: The number of vertices of K3,3 is 6, its number of edges
is 9, and 9 ≤ 3 · 6 − 6. No luck. We need a stronger tool, and here it is:

Proposition 4.3.3. For any simple planar graph G with n vertices and e edges, if G
does not contain a cycle of length 3 then e ≤ 2n − 4.

Proof. We can assume that G is connected as in Theorem 4.3.2. Let f be the number
of faces of G and let α(t) be the number of edges adjacent to a face t. These edges
make up a cycle in G, and thus their number is at least 4, implying α(t) ≥ 4. Consider
the sum

∑

t α(t), over all faces t of G. Each edge is adjacent to at most two faces,
thus

4f ≤
∑

t

α(t) ≤ 2e.

Using Euler’s formula, we get 4(2 − n + e) ≤ 2e and e ≤ 2n − 4.

With this result we’re finally in business: K3,3 does not contain an odd cycle since
it is bipartite, thus every cycle in the graph has length at least 4. Since 9 > 2 · 6− 4,
K3,3 is not planar. Let’s summarize what we’ve learned.

Theorem 4.3.4. Kn is planar if and only if n ≤ 4 and Ki,j is planar if and only if
i ≤ 2 or j ≤ 2.

At this point we have laid the groundwork for one of the most striking results
concerning planar graphs, known as Kuratowski’s theorem. To state it we need the
following definition:
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Definition 4.3.5. Given a graph G = (V, E), an edge subdivision operation on an
edge {u, v} of G results in the graph (V ∪{x}, (E \{{u, v}})∪{{u, x}, {x, v}}), where
x 6∈ V is a new vertex. A graph G′ is said to be a subdivision of G if it can be obtained
from G by successive applications of edge subdivision.

Kuratowski’s theorem says that not only are K5 and K3,3 non-planar, but every
non-planar graph contains either a subdivision of K5 or a subdivision of K3,3. That
is, the graphs K5 and K3,3 characterize the whole family of non-planar graphs!

Theorem 4.3.6 (Kuratowski’s theorem). A graph is planar if and only if it does not
contain a subdivision of K5 or a subdivision of K3,3 as a subgraph.

4.4 Coloring planar graphs

You might have heard of the four-color problem. It was posed in the mid-19th century
and occupied some of the best discrete mathematicians since that time. The original
formulation is in terms of political maps. In such maps, neighboring countries are
drawn with different colors. The question is how many colors are needed. It is easy
to construct simple examples of maps that need at least four colors. The four color
problem asks whether four colors always suffice, for any political map. (We require
that every country is connected, unlike, say, the US.)

This problem is equivalent to whether every planar graph can be colored with
four colors. (To see this, construct a graph whose vertices correspond to countries
and whose edges connect neighbors through border segments.) It took over a century
until Appel and Haken found a proof that four colors always suffice, and even that
was possible only by using computers to conduct extensive case enumeration and
analysis. To this date no proof of the four color theorem is known that does not rely
on computers. On the other hand, in 1890 Heawood discovered a beautiful proof that
five colors always suffice. To prepare for his proof, let us warm up by showing that
every planar graph can be colored with 6 colors. The proof is surprisingly simple.

Theorem 4.4.1. The chromatic number of a planar graph G is at most six.

Proof. By induction on the number n of vertices of G. If n ≤ 6 the claim is trivial.
Assume every planar graph with at most k vertices can be colored with 6 colors or
less, and consider a graph G = (V, E) with k + 1 vertices. By Theorem 4.3.2(b),
there is a vertex v of G with degree at most 5. Let G′ be the induced subgraph of
G on the vertices V \ {v}. By the induction hypothesis, G′ can be colored with five
colors or less. Color the vertices V \ {v} of G with the colors that they are assigned
in the coloring of G′. Assign to v the color that is not used by its neighbors. Since
the degree of v is at most five, such a color exists. This specifies a valid coloring of
G.

We are now ready for Heawood’s five color theorem.

Theorem 4.4.2. The chromatic number of a planar graph G = (V, E) is at most
five.
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Proof. The proof proceeds by induction on the number n of vertices of G. The base
case is trivial. Assume every planar graph with at most k vertices can be colored
with 5 colors or less, and consider a graph G = (V, E) with k + 1 vertices. Let v be a
vertex of G with degree at most 5. If dG(v) < 5 we can produce a 5-coloring of G as
in the proof of Theorem 4.4.1. Assume dG(v) = 5 and let c : (V \{v}) → {1, 2, 3, 4, 5}
be a 5-coloring of the induced subgraph G′ of G on the vertices V \{v}. This coloring
exists by the induction hypothesis.

We consider a particular drawing of G in the plane and henceforth regard G as a
plane graph. Let v1, v2, v3, v4, v5 be the neighbors of v in the order they appear around
v in G. (That is, according to one of the circular orders in which the corresponding
edges emanate from v in G.) Without loss of generality, assume that c(vi) = i for
1 ≤ i ≤ 5. (Note that if some color is unused by v1, v2, v3, v4, v5, we can simply assign
that color to v.) We distinguish between two cases: Either there does not exist a
path between v1 and v3 in G that uses only vertices of colors 1 and 3, or there does.

There is no such path. In this case consider the subgraph G′′ of G that is the
union of all paths that begin at v1 and use only vertices with colors 1 and 3.
Note that neither v3 nor its neighbors belong to G′′. We produce a 5-coloring
of G as follows: All the vertices of G′′ of color 1 are assigned the color 3, all the
vertices of G′′ of color 3 are assigned the color 1, the vertex v is assigned the color
1, and all other vertices of G keep the color assigned by c. No monochromatic
edges are created by this assignment and the coloring is valid.

There is such a path. Consider a path P from v1 to v3 that uses only vertices with
colors 1 and 3. Together with the edges {v, v1} and {v, v3} this forms a cycle.
The vertices v2 and v4 lie on different sides of this cycle. (Here we use the
Jordan curve theorem.) Therefore there is no path between v2 and v4 that uses
only vertices with colors 2 and 4, and we can apply the reasoning of the previous
case.

4.5 Koebe’s Theorem

Two of the most striking results associated with planar graphs are Fáry’s theorem
and Koebe’s theorem. Fáry’s theorem states that every planar graph can be drawn
in the plane without edge crossings, such that all the arcs are straight line segments.
Koebe’s theorem says that every planar graph is in fact isomorphic to an “incidence
graph” of a collection of nonoverlapping discs in the plane. (The vertices of this graph
correspond to the discs, and two vertices are adjacent if and only if the corresponding
disks are tangent.) Fáry’s theorem is an immediate consequence of Koebe’s theo-
rem, although they were discovered independently. We will give a complete proof of
Koebe’s theorem.

Theorem 4.5.1 (Koebe (1936)). Given any planar graph G, with vertex set {v1, v2, . . . , vn},
we can find a packing of a collection of circular disks C = {C1, C2, . . . , Cn} in the plane
with the property that Ci and Cj touch iff {vi, vj} is an edge of G, for 1 ≤ i, j ≤ n.
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Proof. First observation: We can assume all faces are (combinatorial) triangles, i.e.,
the graph is maximal planar. Indeed, if this is not the case, put a vertex in every face
of G and connect it to all the vertices on the boundary of the face, obtaining a graph
G′. Suppose we can represent G′ as the theorem states. Then we simply remove the
disks corresponding to the artificial vertices in G′ from the representation and obtain
a valid representation for G.

Let V, E, F be the vertex, edge, and face sets of G. (F includes the unbounded
face.) By Euler’s formula,

|V | − |E| + |F | = 2,

and since 3|F | = 2|E| we get

|F | = 2|V | − 4 = 2n − 4.

Now, let ri be the radius of a hypothetical disk corresponding to vi and let r =
(r1, r2, . . . , rn) be the vector of these radii. We can assume without loss of generality
that

∑n
i=1 ri = 1. For a face {vi, vj, vk} of F , consider a triangle formed by three

touching disks of radii ri, rj, rk. Let σr(vi) be the sum of the angles incident to vi in
the triangles that correspond as above to the faces of G incident to vi. Without loss
of generality, let the three vertices of the unbounded face be v1, v2, v3. The following
claim is intuitively obvious, and we will not prove it formally:

Claim 4.5.2. For a Koebe representation with radius vector r to exist it is sufficient
that σr(vi) = 2π for all vertices other than v1, v2, v3.

Our goal is thus to prove that there exists some radius vector r with
∑n

i=1 ri = 1,
such that the angle vector (σr(v1), σr(v2), . . . , σr(vn)) equals, say,

x∗ =

(

2π

3
,
2π

3
,
2π

3
, 2π, 2π, . . . , 2π

)

.

We know from the above discussion on Euler’s formula that

n
∑

i=1

σr(vi) = |F |π = (2n − 4)π.

Let S ⊆ Rn define the simplex of valid radius vectors:

S =

{

r = (r1, r2, . . . , rn) : ri > 0 for all i, and
n
∑

i=1

ri = 1

}

.

Also let H be the hyperplane of potential angle vectors:

H =

{

x = (x1, x2, . . . , xn) :
n
∑

i=1

xi = (2n − 4)π

}

.

Consider the continuous mapping f : S → H , where

f(r) =
(

σr(v1), σr(v2), . . . , σr(vn)
)

.
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We have finally reached a point at which we can give the broad outline of the
proof. The above discussion implies that to prove Koebe’s theorem it is sufficient to
show that x∗ lies in the image of f . We accomplish this through the following four
steps.

Step 1. Show that f : S → H is one-to-one.

Step 2. Show that the image of f lies in the interior of a certain polytope P ∗ ⊂ H .

Step 3. Use the property that f is one-to-one to prove that f : S → P ∗ is onto.

Step 4. Prove that x∗ ∈ P ∗, which by Step 3 implies that x∗ lies in the image of f .

Step 1.

Claim 4.5.3. f : S → H is a one-to-one mapping.

Proof. Pick any r, r′ ∈ S and let I denote the set of indices i for which ri < r′i. Note
that I 6= ∅ and I 6= {1, 2, . . . , n}. Consider a triangle vivjvk determined by touching
disks of radii ri, rj, rk. If we increase ri but decrease or leave as is the radii rj , rk,
then the angle at vi will decrease. Similarly, if we increase ri and rj but decrease or
leave as is the radius rk then the sum of the angles at vi and vk will decrease. These
are simple consequences of the law of cosines. Thus,

∑

i∈I

σr(vi) >
∑

i∈I

σr′(vi), (4.1)

which yields f(r) 6= f(r′).

Step 2. Let s = (s1, s2, . . . , sn) be a boundary point of S and let I denote the set
of indices for which si = 0. Note that if r tends to s then in each triangle that has
at least one vertex from the set {vi : i ∈ I}, the sum of the angles at these vertices
tends to π. Hence

lim
r→s

∑

i∈I

σr(vi) = |F (I)|π, (4.2)

where F (I) denotes the set of faces of G with at least one vertex in {vi : i ∈ I}.
For any fixed r ∈ S and for any nonempty proper subset I ⊂ {1, 2, . . . , n}, there

exists a point s ∈ ∂S with si = 0 for i ∈ I and si > ri for i 6∈ I. If we move r towards
s along a line, then by inequality (4.1),

∑

i∈I σr(vi) will increase. Then by the limit
equation (4.2), we get

∑

i∈I

σr(vi) < |F (I)|π. (4.3)

Note that this holds for any subset I. This implies that the image of the map f lies
in the interior of the convex polytope P ∗ determined by the relations

n
∑

i=1

xi = (2n − 4)π, and
∑

i∈I

xi < |F (I)|π for all ∅ ⊂ I ⊂ {1, 2, . . . , n}.
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Step 3.

Claim 4.5.4. Let g : A → B be a continuous one-to-one map, where A and B are
topological balls in Rd. If all limit points of f(x), as x tends to ∂A, lie on ∂B, then
g : A → B is onto.

The claim is elementary topology and we do not prove it. In our case, f is a
continuous one-to-one map from the interior of S to the interior of P ∗, and by the
limit equation (4.2), all limit points of f(r), as r tends to ∂S, lie on ∂P ∗. Thus the
claim implies that f : S → P ∗ is a surjective mapping.

Step 4. It now remains to show that x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) belongs to P ∗, namely

that it satisfies all the inequalities in the definition of P ∗. Let I be a subset as above.
If |I| ≥ n − 2, then all faces of G have at least one vertex in {vi : i ∈ I}, implying
|F (I)| = 2n − 4. In this case,

∑

i∈I

xi ≤ 2π(n − 3) +
4π

3
< (2n − 4)π = |F (I)|π,

as required. To handle the remaining subsets I we have the following claim:

Claim 4.5.5. For any subset I ⊂ {1, 2, . . . , n} with 1 ≤ |I| ≤ n − 3, G has more
than 2|I| faces that have at least one vertex belonging to U = {vi : i ∈ I}. (Call these
faces F (U).)

Proof. Let F ′ be the set of faces all of whose vertices belong to U ′ = V \U . These faces
do not form a perfect triangulation of the vertex set U ′. (Otherwise they would cover
“the whole plane”.) Since for perfect triangulations we have seen that f = 2n− 4, in
our case

|F ′| < 2|U ′| − 4

⇒ |F | − |F (U)| < 2(|V | − |U |) − 4

⇒ 2n − 4 − |F (U)| < 2n − 2|U | − 4

⇒ |F (U)| > 2|U | = 2|I|

The claim implies that for any subset I ⊂ {1, 2, . . . , n} with 1 ≤ |I| ≤ n − 3,

∑

i∈I

x∗
i ≤ 2π|I| < |F (I)|π.

This finally implies that x∗ belongs to P ∗ and thus lies in the image of f , which
concludes the proof of Koebe’s theorem.

32



4.6 Existence of Planar Separators

We will now use Koebe’s Theorem to prove a theorem in the spirit of Lipton and Tar-
jan (1979). This theorem, and particularly its extensions, has important applications
in the design of divide-and-conquer algorithms.

Theorem 4.6.1. Let G be a planar graph with n vertices. Then the vertex set of G
can be partitioned into three sets A, B, C, such that |A|, |B| ≤ 3

4
n, |C| < 2

√
n, and

no vertex of A is adjacent to any vertex of B.

In other words, there exists a small set B whose removal disconnects the graph.
This set is called a separator of G.

Proof. Consider a Koebe representation of the graph G that assigns to the vertices
of G the points P = {p1, p2, . . . , pn} in the plane. A circle-preserving (or conformal)
map is a function that maps circles to circles. For example, translations, rotations,
and dilations of the plane are circle-preserving maps from R2 to R2. It can be shown
that a stereographic projection from R

2 to S
2, or from S

2 to R
2 is a circle-preserving

map.
We will apply a circle-preserving map Φ to the Koebe representation of G that

will produce a packing of circular caps on S2 that correspond to vertices of G, such
that two caps touch iff the corresponding vertices of G are adjacent. We will take
particular care to ensure that the origin is a centerpoint of Φ(P ). We will then show
that in this case a random plane through the origin produces a separator.

Step 1: Mapping to a circle packing on a sphere. Let us begin by describing
a sphere-preserving map with the required properties. Let Π be a stereographic
projection of R2 onto S2, and let c be a centerpoint of Π(P ). Let Uc be a rotation
in R3 for which c′ = Uc(c) = (0, 0, ‖c‖). Let Q be the point set Uc ◦ Π(P ). Let
Dα = Π ◦ (αI) ◦ Π−1 be the map from S2 to itself that first projects the sphere onto
the plane, then dilates the plane, and then projects the plane back onto the sphere.
We show below that if α =

√

(1 − ‖c‖)/(1 + ‖c‖) then the origin is a centerpoint of
Dα(Q). Thus Φ := Dα◦Uc◦Π is a sphere-preserving map with the required properties.

A circle on S2 is the intersection of S2 with a plane. Let Γc′ be the set of circles on
S

2 whose hyperplanes contain c′. We now show that for any circle h ∈ Γc′, Dα(h) is a
great circle on S2. First consider the circle h0 ∈ Γc′ whose hyperplane is orthogonal
to the z-axis. By similarity of triangles, the radius of Π−1(h0) equals

√

1 − ‖c‖2

1 − ‖c‖ =

√

1 + ‖c‖
1 − ‖c‖ .

Thus Dα maps h0 to the equator of S2. Now let h be any circle on S2 that contains
c′. This circle intersects h0 at two antipodal points on h0. As above, we can show
that Dα maps these two points to two antipodal points on the equator of S2. Since
Dα(h) contains these two points, it also contains the origin.
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This means that any hyperplane that contains the centerpoint c is mapped by Dα

to a hyperplane that contains the origin. Therefore any hyperplane that contains the
origin has at least 1

4
n points of Φ(P ) on both sides, which implies that the origin is

a centerpoint of Φ(P ).

Step 2: A random plane yields a good separator. Let C = {C1, C2, . . . , Cn}
be a set of spherical caps on S2, such that Ci corresponds to the point pi of P . For
any plane Π through the origin, we can consider the set C(Π) ⊆ C of caps that are hit
by Π, and sets A(Π), B(Π) ⊆ C \C(Π) of caps that lie above (resp., below) Π. Since
the origin is a centerpoint of Φ(P ), the size of each of A(Π) and B(Π) is at most 3

4
n.

We show below that there exists a plane that contains the origin and intersects less
than 2

√
n caps, which implies the theorem.

By the radius of a spherical cap we mean the radius of the planar disk that supports
it. Let ri denote the radius of Ci. The locus of points antipodal to the great circles
that intersect Ci forms a circular band Bi on S2 of width 2ri, where by the width of a
band we mean the width of the slab that supports it. Consider a random hyperplane
through the origin. It intersects S2 at a random great circle. The expected number
of caps Ci hit by this great circle is the same as the expected number of belts Bi hit
by a random point on S2, which is simply the total area of the belts divided by the
area of the sphere.

The area of Bi is 4πri. This implies that the above expectation is

∑n
i=1 Area(Bi)

4π
=

n
∑

i=1

ri.

Clearly, the area of Ci is at least πr2
i . The area of the whole sphere S2 is 4π. The

caps C1, C2, . . . , Cn form a packing, which implies

n
∑

i=1

πr2
i <

n
∑

i=1

Area(Ci) ≤ 4π

and
n
∑

i=1

r2
i < 4.

Recall Jensen’s Inequality: If f is convex then “the function of a convex com-
bination of xi’s is at most the convex combination of the f(xi)’s.” A special case
is

f

(

1

n

n
∑

i=1

xi

)

≤ 1

n

n
∑

i=1

f(xi).

In our case, Jensen’s inequality implies

4 >
n
∑

i=1

r2
i = n

(

1

n

n
∑

i=1

r2
i

)

≥ n

(

1

n

n
∑

i=1

ri

)2

=
1

n

(

n
∑

i=1

ri

)2

,
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which in turn leads to
n
∑

i=1

ri < 2
√

n.

This concludes the proof of the theorem.

This proof implies that trying a number of random planes will produce a separator
with probability arbitrarily close to 1. Given a Koebe representation of G, the only
algorithmically non-trivial step in the above proof is finding a centerpoint c of the
set Π(P ). However, the proof works just as well with an approximate centerpoint,
resulting in a separator of size at most 2

√
n that produces two vertex sets A, B, such

that |A|, |B| ≤ (3
4

+ ε)n and no vertex of A is adjacent to any vertex of B.
Thus a separator for a planar graph can be produced in linear time given a Koebe

representation of the graph. Actually, having a Koebe representation is not a very
realistic requirement for general planar graphs, as no polynomial-time algorithm for
constructing such a representation is known. The real power of geometric separators is
not in their applications to general planar graphs, but in the construction of separators
of systems of sparsely-overlapping spheres.

(Note that the original Lipton-Tarjan paper described separators of size at most
2
√

2n that produce parts of size at most 2
3
n, and gave a linear-time algorithm for

computing them. Their proof is limited to planar graphs.)

Definition 4.6.2. A k-ply system in Rd is a set of n balls in Rd such that no point
in R

d lies in the interior of more than k balls.

So a Koebe representation is a 1-ply system in R2. The above separator construc-
tion can be easily extended to provide the following result.

Theorem 4.6.3. Suppose Γ is a k-ply system of n balls in Rd. Then there is a
sphere S that intersects a set ΓO(S) of balls, with a set ΓI(S) ⊂ Γ lying inside S, a
set ΓE(S) ⊂ Γ lying outside S, and

|ΓO(S)| = O(k1/dn1−1/d),

and

|ΓI(S)|, |ΓE(S)| ≤ d + 1

d + 2
n.

Furthermore, for any constant 0 < ε < 1/(d + 2) we can compute a sphere S such
that |ΓI(S)|, |ΓE(S)| ≤

(

d+1
d+2

+ ε
)

n and |ΓO(S)| = O(k1/dn1−1/d) with probability at
least 1/2 in time O(nd).

k-ply systems are prevalent. For example, the k-nearest neighbor graph in R
d

gives rise to an O(k)-ply system. The above separator theorem has been applied
to finite-element mesh processing and the solution of sparse linear systems, among
others.
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Chapter 5

Well-separated Pair

Decompositions and Their

Applications

5.1 WSPD Definition and Applications

A well-separated pair decomposition is a data structure on point sets in Rd. It has
linear size and can be constructed by a simple and fast algorithm. In light of its
simplicity, it has a truly amazing array of powerful applications. It is like a “magic
bullet” that generates simple and elegant solutions to a whole battery of problems.

A WSPD of a point set P is a collection of pairs of subsets
{

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
}

such that Ai, Bi ⊆ P , and the following two properties hold:

(a) Every pair of points is represented in exactly one pair {Ai, Bi} (i.e, for all
distinct p, q ∈ P , there is a unique i for which p ∈ Ai, q ∈ Bi). (Note that the
pairs {Ai, Bi} are unordered.)

(b) For every 1 ≤ i ≤ m, Ai and Bi can be respectively enclosed by two balls of
diameter D, such that the distance between the balls is at least sD, where s is
a global strictly positive parameter.

The second condition is called the separation condition and s the separation param-
eter. A well-separated decomposition with separation parameter s can be concisely
referred to as an s-WSPD.

Every point set P has an obvious s-WSPD for any s > 0: Just take the collection
of all pairs {{p}, {q}} for p, q ∈ P . The amazing thing, however, first observed by
Callahan and Kosaraju, is that every point set has an s-WSPD with a linear number
of pairs for any constant s.

Theorem 5.1.1. Given a set P of n points in R
d, where d = O(1), an s-WSPD with

O(sdn) pairs can be constructed in time O(n log n + sdn).

Before we show how to construct WSPDs with the bounds given in the theorem,
let us see some of the applications of this data structure.
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5.1.1 Closest pair

Let us see how to find the closest pair of points in P in time O(n logn) using a WSPD.
This is of course not the fastest known algorithm, but is quite instructive.

Construct an s-WSPD for any s > 1. Consider the closest pair of points p, q ∈ P ,
and let {A, B} be the pair in the WSPD such that p ∈ A and q ∈ B. We claim that
A = {p} and B = {q}, i.e., that A and B are in fact singletons. Indeed, suppose
A also contains some point p′ 6= p. By the separation criterion, the points of A and
of B can be respectively enclosed in two balls of diameter D, such that the distance
between the balls is at least sD. Thus ‖p−p′‖ ≤ D and ‖p−q‖ ≥ sD > D ≥ ‖p−p′‖,
which is a contradiction to p, q being the closest pair.

This means that the closest pair is a singleton pair in the WSPD. We can thus
go over the WSPD and among all such pairs take the one with the smallest distance.
This is guaranteed to be the closest pair.

5.1.2 All nearest neighbors

Instead of just finding the closest pair in P , let us use the WSPD to output all nearest
neighbor pairs, i.e. the pairs p, q ∈ P such that q is the nearest neighbor of p in P .
Note that this relationship is asymmetric, so the number of nearest neighbor pairs is
between n/2 and n. We can find them all in time O(n log n) using a WSPD.

Construct an s-WSPD for s > 1. By a similar argument to the one we used
for the closest pair, if q is the nearest neighbor of p in P , the s-WSPD contains a
pair of the form {{p}, Q}, where Q ⊆ P and q ∈ Q. We can thus go over the data
structure, and for each pair one of the members of which is a singleton {p}, iterate
over the other member Q, pick the point q ∈ Q closest to p, and associate it with p
if the point currently associated with p is farther away than q. This produces all the
nearest neighbor pairs.

5.1.3 Spanners

A t-spanner for a weighted graph G is a graph S on the same vertex set such that
the graph distance between any two vertices in S is at least their distance in G and
at most t times that distance. More precisely,

dG(x, y) ≤ dS(x, y) ≤ t · dG(x, y).

A spanner provides an approximation for a shortest path metric. This is particularly
interesting when the spanner has much fewer edges than the original graph. Suppose
the graph G represents the Euclidean metric on a set P of n points in Rd. We shall
see that G can be approximated arbitrarily well by a spanner with a linear number
of edges. Intuitively, a linear number of distances suffice to approximately encode all
the distances between n points in Rd.

Construct an s-WSPD for P with a parameter s that will be specified below. The
spanner S for the Euclidean metric on P is constructed as follows: For every pair
{A, B} of the WSPD, take an arbitrary p ∈ A, q ∈ B, and add the edge {p, q} to S
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with weight ‖p− q‖. This produces a graph S with a linear number of edges in time
O(n log n). Let us show that

‖x − y‖ ≤ dS(x, y) ≤ t‖x − y‖

for all x, y ∈ P .
The inequality ‖x−y‖ ≤ dS(x, y) is obvious by the triangle inequality: if there is a

path from x to y in S, its weight is the sum of Euclidean distances along a continuous
path from x to y in Rd, and this can never be less than ‖x − y‖. We now need to
demonstrate a path from x to y in S the weight of which is at most t‖x − y‖. Let
us construct such a path recursively. Consider the pair {A, B} of the WSPD such
that x ∈ A and y ∈ B. There is an edge of {p, q} in S such that p ∈ A and q ∈ B.
Recursively construct a path between x and p in S and a path between q and y in S,
and connect them by the edge {p, q}.

This can be turned into a formal argument using induction when s > 1. The
induction is on the set of the O(n2) interpoint distances in P . The base case is
distance between the closest pair x, y, and we have seen that the pair {{x}, {y}} is
included in the WSPD, which implies that dS(x, y) = ‖x − y‖. For any other pair
x, y, the inductive hypothesis implies that dS(x, p) ≤ t‖x−p‖ and dS(q, y) ≤ t‖q−y‖.
Thus

dS(x, y) ≤ dS(x, p) + dS(p, q) + dS(q, y) ≤ t‖x − p‖ + ‖p − q‖ + t‖q − y‖.

By the separation criterion, there exists a value D such that ‖x − p‖, ‖q − y‖ ≤ D
and ‖p − q‖ ≥ sD. This implies

‖x − p‖, ‖q − y‖ ≤ ‖p − q‖
s

,

leading to

dS(x, y) ≤ 2t‖p − q‖
s

+ ‖p − q‖ ≤ 2t + s

s
‖p − q‖.

Note that

‖x − y‖ ≥ ‖p − q‖ − ‖x − p‖ − ‖y − p‖ ≥ s − 2

s
‖p − q‖.

When

s ≥ 4t

t − 1

it holds that 2t+s
s

≤ ts−2
s

and dS(x, y) ≤ t‖p−q‖, as required. Thus we can produce a
t-spanner of linear size for P , for t arbitrarily close to 1, by constructing a 4t

t−1
-WSPD.

5.1.4 Euclidean minimum spanning trees

Given a set P of n points in Rd, we want to connect them into a tree by a collection
of line segments with minimal total weight. This is the Euclidean MST problem. The
best algorithms for constructing the Euclidean MST exactly require close to quadratic
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time when d is large. (In the plane the Euclidean MST is a subgraph of the Delaunay
triangulation and thus can be constructed in time O(n logn).) We will now see how
to approximate the MST arbitrarily well in time O(n logn) by constructing a WSPD.

Actually, our construction is a direct application of the spanner construction we
have seen above. Suppose we want to construct a t-approximate MST of the set P .
That is, we want to connect P into a tree whose weight is at most t times the weight
of the MST of P . To this end we simply construct a t-spanner S of P and construct
its minimum spanning tree T in time O(n logn) using any of the standard graph MST
algorithms. Let us verify that T is a t-approximate MST of P .

Let M be the exact MST of P . For every edge {u, v} of M , let πu,v be the shortest
path connecting u and v in S. The weight of πu,v is at most t‖u− v‖, and the weight
of the subgraph S ′ of S obtained as the union of all such paths πu,v is at most t times
the weight of M . Clearly, S ′ is connected and thus the MST of S has weight at most
that of S ′ and thus at most t times the weight of M .

5.1.5 Diameter

We can also approximate arbitrarily well the diameter of a point set using WSPD.
Suppose we want to find two points in P whose distance is at least (1 − ε)diam(P ).
Construct an s-WSPD for P with s ≥ 2

ε
. (This bound can be tightened.) Consider

an arbitrary pair of points from each pair in the WSPD. Let {p, q} be the farthest
pair among those considered. We claim that ‖p − q‖ ≥ (1 − ε)diam(P ). Indeed, let
x, y ∈ P be the pair that defines the diameter. There is a pair {A, B} in the WSPD
such that x ∈ A and y ∈ B. Let p ∈ A and q ∈ B be the representative pair that
we considered for {A, B}. By the separation criterion, there is a value D for which
‖p − q‖ ≥ sD and diam(P ) = ‖x − y‖ ≤ (s + 2)D. Thus ‖p − q‖ ≥ s

s+2
diam(P ). It

is easy to check that s
s+2

≥ 1 − ε for s ≥ 2
ε
. This concludes the proof.

5.2 Constructing WSPDs

In this section we will prove Theorem 5.1.1 by describing an algorithm that constructs
an s-WSPD of a set P of n points in R

d with O(sdn) pairs in time O(n log n + sdn),
such that every point of P is present in O(sd) pairs. In order to construct the WSPD,
we will first preprocess P into a compressed quadtree of linear size in time O(n log n).
Given the compressed quadtree, a very simple algorithm will construct the WSPD,
although some cleverness will be needed to prove the bound on its size.

5.2.1 Introducing quadtrees

Recall the notion of a quadtree Q for P in Rd. It is a space decomposition, con-
structed recursively as follows. The construction starts from a bounding cube of P .
At every stage, the recursion terminates if there is at most one point in the cube.
Otherwise the current cube is subdivided into 2d equal cubes with half the side-length
and the recursion continues inside each of them. The quadtree is stored as a tree,
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corresponding to the computation tree of the above recursive process. Each node of
the tree stores the associated cube. The leaves also store the point of P contained
in the associated cube, if any. To save space, we do not construct leaves for empty
cubes, so the number of children of an internal node may vary between 1 and 2d.

In general the size of Q is not bounded in terms of n. For the sake of general
education, let’s show that the size of Q can be bounded in terms of n and the spread
of P , where the spread is defined as

Φ(P ) =
maxp,q∈P ‖p − q‖

minp,q∈P,p 6=q ‖p − q‖ .

Namely, Φ(P ) is the ratio between the diameter and the closest point distance.

Lemma 5.2.1. The depth of Q is O(log Φ(P )) and the size and construction time of
Q are O(n logΦ(P )).

Proof. Assume without loss of generality that the bounding cube of P that the con-
struction of Q starts with is the unit hypercube [0, 1]d, and that diam(P ) = 1. Let
lg denote the binary logarithm. Let the level of a node of Q be its distance from the
root. Note that the side length of a node at level i is 1/2i and the diameter of the
associated cube is

√
d/2i. An internal node of Q contains at least two points of P

whose distance is at least 1/Φ(P ). Thus, if m is the maximal level of an internal node
of Q,

1

Φ(P )
≤

√
d

2m

2m ≤
√

dΦ(P )

m = O(log Φ(P ))

This implies the lemma.

Well, that was somewhat of a diversion. The matter remains that the size of a
quadtree cannot be bounded in terms of n alone. Thinking about it for a moment,
we can notice that this can only be due to a profusion of internal nodes with a single
child. Indeed, the number of leaves is n and the number of nodes of degree at least
2 is therefore at most n − 1. (Otherwise the sum of the degrees in the tree Q would
be more than twice the number of edges.) The trouble must be that there are long
degree-2 paths in Q. To address this, we define the compressed quadtree T , which
is simply Q with each such path shrunk to a single edge. By the above discussion,
the size of T is O(n) and it can be constructed in time O(n log Φ(P )). In the next
subsection we shall see how the construction time can be reduced to O(n log n), which
is what we want in order to use compressed quadtrees to build WSPDs.

5.2.2 Constructing compressed quadtrees

In order to construct a compressed quadtree in linear time we need an efficient algo-
rithm that approximates the smallest ball that contains k points of P .
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Lemma 5.2.2. Let ropt(k) be the radius of the smallest ball Bopt(k) that contains k
points of P . A ball B that contains k points of P and has radius at most 2ropt(k) can

be constructed in time O
(

n (n/k)d
)

.

Proof. For every coordinate xi, compute m = O(n/k) xi-orthogonal hyperplanes,
such that every slab between two consecutive hyperplanes contains at most k/(d+1)
points. This can be done recursively in time O(n log(n/k)) using linear-time median
selection.

Consider the non-uniform grid G formed by these hyperplanes. We claim that
Bopt(k) contains at least one point of G. Indeed, assume that Bopt(k) does not contain
a grid point and consider its center c. Clearly, Bopt(k) is contained in the union of
the d slabs of G that contain c. Therefore, the number of points in Bopt(k) is at most
dk/(d + 1), a contradiction.

This implies that there exists a ball centered at a point of G of radius at most
2ropt(k) that contains at least k points of P . We can find such a ball by spending

linear time at each point of G, resulting in overall running time O
(

n (n/k)d
)

.

To construct a compressed quadtree T of P , find a ball B as that contains n/(2A)
points of P and has radius r, such that r ≤ 2ropt(n/(2A)), where A is a constant
specified below. Lemma 5.2.2 implies that this can be accomplished in time O(n).

As above, assume without loss of generality that P is contained in the unit hy-
percube [0, 1]d and has diameter at least 1/2. (But do not assume anything about
the spread.) Let l = 2⌊lg r⌋. Since r < 1, lg r is a negative number and ⌊lg r⌋ is the
greatest negative integer not greater than lg r. Consider the uniform grid Gl with
side length l on the unit hypercube. Every cell of Gl is a valid potential cell of the
compressed quadtree.

Note that l > r/2 and the diameter of B is less than 4l. Therefore B is covered
by 5d cells of Gl. This implies that one of the cells of Gl contains at least n/(5d2A)
points of P . Consider such a cell c. Let A be the minimal number of balls of radius
l/3 needed to cover c. Clearly, A is a constant. If the cell c contains n/2 or more
points of P then at least one of these A balls covering c contains at least n/(2A)
points. Since l/3 ≤ r/3 ≤ 2

3
ropt(n/(2A)), we have found a ball of radius strictly

less than ropt(n/(2A)) that contains at least n/(2A) points of P . This contradiction
implies that the cell c contains between n/(5d2A) and n/2 points of P .

Our algorithm for constructing the compressed quadtree T now proceeds as fol-
lows. We implicitly construct the grid Gl by determining for every point p =
(p1, p2, . . . , pd) of P the values ⌊pi/l⌋. The point (

⌊

p1

l

⌋

,
⌊

p2

l

⌋

, . . . ,
⌊

pd

l

⌋

) is the “lower-
most” corner of the grid cell that contains p. Using hashing, we can find the heaviest
cell c of Gl and the subset of P that lies inside c in linear time. Let Pin and Pout

be the subsets of P lying inside and outside c, respectively. Construct compressed
quadtrees Tin and Tout for these point sets. As mentioned above, c is a valid potential
quadtree cell of T . We thus simply hang Tin off the proper node of Tout. This can
be done in linear time. The resulting tree is the compressed quadtree T . By a stan-
dard divide-and-conquer argument, the size of T is O(n) and the construction time
is O(n log n).
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5.2.3 Constructing WSPDs

Given a compressed quadtree T for P , we construct an s-WSPD using the following
simple recursive procedure. The procedure ConstWSPD({u, v}) takes as input a pair
of nodes u and v of T and outputs a set of pairs of nodes {s, t} of T , such that the
corresponding pairs of subsets of P satisfy the separation condition. (We can assume
that a node of T links to the list of points that lie inside the corresponding quadtree
cube, so the subset of P that corresponds to a node of T can be easily recovered.) To
construct an s-WSPD of P we execute ConstWSPD({r, r}) for the root r of T .

Here is the procedure ConstWSPD({u, v}). Assume without loss of generality that
the cube associated with u is at least as large as the cube associated with v. (Other-
wise swap u and v.) If these cubes are s-separated, add the pair {u, v} to the WSPD
and terminate. Otherwise, if the cubes are not s-separated, call ConstWSPD({w, v})
for all children w of u. Two cubes of side lengths l1 and l2 are said to be well-separated
if the distance between their centers is at least (s + 1)

√
dmax(l1, l2). (This ensures

that the point sets inside the cubes are s-separated.) Let us prove that this algorithm
constructs an s-WSPD as described in Theorem 5.1.1, namely that the s-WSPD has
O(sdn) pairs and is constructed in time O(n log n + sdn).

Consider a pair {u, v} of the WSPD, and assume without loss of generality that
ConstWSPD({u, v}) was called within ConstWSPD({u, p(v)}). This implies u ≤ p(v).
(We define the ≤ and ≥ relations between cubes in terms of their side lengths.) The
fact that ConstWSPD({u, p(v)}) was invoked implies that a pair ConstWSPD({p(u), a(v)})
has been considered and the parent p(u) of u was split when compared to some ances-
tor a(v) of v. This implies that p(u) ≥ a(v) ≥ p(v). To summarize, p(u) ≥ p(v) ≥ u.
We charge the pair {u, v} to p(v).

Let us prove that each node v′ is charged O(sd) times in this way. This will imply
that the overall number of pairs generated by the algorithm is O(sd). Consider the
set of nodes u that participate in pairs {u, v} as above.

Crucially, each of these cells are disjoint, since if a cell u is in the set, none of its
descendants are. Furthermore,

Since p(u) ≥ v′ ≥ u, either p(u) is at the same level as v′, or u is at the same level
as v′, or there is a cell at the level of v′ that is part of a compressed path from p(u)
to u. In any of these cases, there is a set of pairwise disjoint cells u′ at the level of v′,
such that a single such node u′ corresponds to at most 4d pairs {u, v} that charge v′:
at most 2d possibilities for u as a child of u′ (or u′ itself) and at most 2d possibilities
for v as a child of v′.

Since the pairs {u, v′} are not well-separated, neither are the pairs {u′, v′}. Thus
the cubes u′ all lie within a cube with side length (4s+9)

√
dl(v′) centered at v′. Their

number is at most
(

(4s + 9)
√

d
)d

= O(sd). This proves the claim.
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Chapter 6

Euclidean Traveling Salesperson

6.1 Background

Given a weighted graph G, the TSP problem is to find a Hamiltonian cycle of minimal
cost. (A Hamiltonian cycle is one that visits each vertex exactly once.) Clearly, the
TSP problem is NP-hard simply because the Hamiltonian cycle problem is. More
remarkable, though, is that the problem is hard to approximate within an arbitrarily
large factor. Specifically, let f(n) be any polynomial-time computable function of n.
We claim that TSP cannot be approximated in polynomial time within a factor of
f(n) unless P = NP . Indeed, given a graph G′ that we want to decide Hamiltonian

Cycle for, construct a complete weighted graph G on the same vertex set, such that
edges that are present in G′ have weight 1 in G, and all the others have weight
n · f(n) + 1. If G′ has a Hamiltonian cycle, there is a TSP tour in G of cost n.
Otherwise the cheapest TSP tour in G has cost at least n · f(n) + 1. An f(n)-
approximation algorithm for TSP has to distinguish between these two cases, which
implies the inapproximability result.

In general the above reduction produces a graph G that violates the triangle
inequality and is thus not a metric. Can TSP be approximated on metrics? The
answer is yes. Given a metric G, a simple 2-approximation is as follows.

(a) Construct an MST T for G. (Kruskal.)

(b) Double every edge of T to obtain a Euclidean graph.

(c) Find an Eulerian tour R on this graph. (Simple greedy algorithm.)

(d) Output the shortcut tour R′ of R. That is, R′ visits the vertices of G in the
order of their first appearance in R.

The tour output by the algorithm is a Hamiltonian tour and has weight at most
2 · OPT , where OPT is the weight of the minimal TSP tour of G. Indeed, the MST
produced at step (a) has weight at most OPT, since a TSP tour is a spanning tree
of G, whereat an MST is a minimal such tree. The graph produced at step (b) has
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overall weight at most 2 · OPT , and so does the tour R from step (c). The triangle
inequality then ensures that the weight of R′ is not greater than the weight of R.

In step (b) we doubled the edges of T to produce an Eulerian graph. We can
reduce the approximation factor to 3

2
by noting that instead of this doubling we can

compute a minimum weight matching on the odd-degree vertices of T (within G) and
add this matching to T . This does produce an Eulerian graph. What can we say
about its weight? Consider the set V ′ of odd-degree vertices of T . Given an optimal
TSP tour on G, we can produce a TSP tour on V ′ of weight at most OPT by simple
shortcutting. Observe that there is a perfect matching on V ′ of weight at most half of
the weight of this TSP tour, and thus at most 1

2
OPT . This implies that the weight of

the TSP tour produced by this modified algorithm is at most 3
2
OPT . This algorithm

is due to Christofides (1976).
Can we do better for Metric TSP? This is an open problem. However, it is known

that the problem is MAX-SNP complete (Arora et al., 1992), so no PTAS for it
exists. How about interesting special classes of metrics, like the Euclidean metric?
Even in this case, Trevisan (1997) proved that if the points are in a Euclidean space
of dimension Ω(log n) the problem becomes MAX-SNP complete. We are thus left to
consider Euclidean TSP in low-dimensional. When the dimension is constant, Arora
(1998) showed that a PTAS does indeed exist. Specifically, given a set of points P in
R

d, for d = O(1) and any constant ε, an algorithm exists that produces a TSP tour
of cost at most (1 + ε)OPT in time n(log n)1/ε. The rest of this section is devoted to
deriving this algorithm.

6.2 The algorithm

We describe the algorithm for d = 2. The construction and analysis we describe work
for any constant d, with some simple modifications.

Snapping onto grid. The first ingredient of the algorithm is to rescale the points
and snap them onto a grid. Clearly, the problem is scale- and translation-invariant.
We rescale P so that its smallest bounding square has side length n2, and translate
P so that the bottom left bounding square corner coincides with the origin. We then
snap each point of P to its closest point on the unit grid.

We claim that the weight of the optimal TSP tour on the snapped point set is at
most (1 + ε)OPT , and therefore it is sufficient to approximate TSP on the snapped
point set. Indeed, assume n > 1/ε. (If this does not hold to begin with, we can
replace n by n/ε; since 1/ε = O(1) this does not disrupt the asymptotic bounds.)
Note that OPT ≥ 2n2. On the other hand, each point v ∈ P is moved by at most√

2/2 by the snapping, and thus the length of each edge of the optimal tour increases
by at most

√
2. Since the tour has n edges, the length increase is at most

√
2n, which

is at most OPT/(
√

2n) ≤ εOPT .
Thus a (1 + ε)-approximate tour on the snapped points has cost at most (1 +

ε)2OPT . We still need to show that we can reconstruct a tour on the original point
set given a tour on the snapped point set, without increasing the cost by much.
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Notice that a number of points of P could have been snapped onto the same grid
point. Given a tour T on the grid points, we produce a tour on P by simply adding
a detour (back and forth) between every point of P and the grid point onto which
it was snapped. The total length of the added detours is

√
2n. We then produce a

TSP tour of P by shortcutting the above network onto P . Clearly, the length of the
produced tour is at most cost(T ) +

√
2n ≤ ((1 + ε)2 + ε)OPT . Since we can adjust

ε appropriately, we assume that the point set P we are dealing with is a set of grid
points as above.

Portal placement on a randomly-shifted quadtree. Let l = n2 and let L = 2l
be twice the side length of the bounding square considered in the previous section.
We enclose P in a randomly-shifted square B of side length L as follows. Choose
independently uniformly at random two integers a, b ∈ [−l, 0]. Let the point (a, b) be
the bottom left corner of B. Assume without loss of generality that n is a power of 2,
which implies that so is L. We subdivide B into a quadtree Q. The level of a square
of Q is the distance of the corresponding tree node from the root. (So the whole B
has level 0, while the leaves have level log L.) The 2i horizontal and 2i vertical lines
that divide i-level squares into (i + 1)-level squares are also said to have level i. The
following is a simple but important estimate. Consider a line l that intersects the
bounding square of P . The probability that l has level i is precisely

2i

l
=

2i+1

L
.

We place special points called portals on each grid line. An i-level line has 2i+1m
equally spaced portals, where m = O((log n)/ε). (Specifically, m = (8 log n)/ε will
suffice.) We also use the corners of each square as portals. Each i-level line has 2i+1

(i + 1)-level square incident to it. Therefore each side of an i-level square has m + 2
portals on it—m in its interior and 2 at the endpoints. By the same reasoning, each
square has 4m + 4 portals on its boundary.

A portal-respecting tour is one that crosses the grid lines only at portals. A portal-
respecting tour is k-light if it crosses each side of each quadtree square at most k times.
The optimal portal-respecting tour does not have more than two incoming edges at
any portal. Indeed, the existence of more than 2 incoming edges implies that the
tour has to enter and exit the portal to the same side of the line. We can then
shortcut the tour on that side. This implies that the optimum portal-respecting tour
is (m + 2)-light.

Dynamic programming. We find the optimal k-light portal-respecting tour using
dynamic programming. For every square s of Q, we consider the possible interfaces
for s. Each interface is an ordered sequence of at most 4k portals on the boundary
of s. Clearly, an interface completely characterizes the interaction between the inside
and the outside of s along a k-light portal-respecting tour. The number of possible
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interfaces is at most

4k
∑

i=0

(

4m + 4

i

)

i! ≤ (4k)!

(

e(4m + 4)

4k

)4k

= mO(k).

The dynamic programming fills out a table that has an entry for each

quadtree square × interface

combination. The entry for an interface I at a quadtree square s corresponds to the
cost of the minimal k-light portal-respecting tour of the points of P that lie within
s, such that the tour uses the interface I. The size of the table is O(n4)mO(k) and
the amount of time spent for filling out every entry is mO(k). The table is filled out
in a bottom-top order. For an interface I at a square s we enumerate all possible
combinations of interfaces for the children of s. For each combination, we check
whether its parts are consistent among themselves and also with I. If so, we compute
its cost. The minimal cost thus computed is stored at the table entry for s × I.

Since m = O((logn)/ε) and k ≤ m + 2,

mO(k) =

(

log n

ε

)O( log n

ε )
,

which is only a quasi-polynomial, but not a truly polynomial bound. This problem is
resolved below by showing that considering O(1/ε)-light tours is in fact sufficient for
getting an ε-approximation of the optimal tour. The factor mO(k) is then bounded by

(

log n

ε

)O(1
ε)

and the overall running time of the dynamic programming is O(n4(log n)O(1/ε)). In
fact, it is easy to see that we do not need to subdivide B into all O(n4) unit squares,
but that it is sufficient to only construct the quadtree every leaf of which contains a
single point. Due to the polynomial spread of P , the size of the quadtree is O(n log n)
and the overall running time is then bounded by O(n(log n)O(1/ε)).

Bounding the approximation factor. Let us first see that when m = O(logn/ε),
the optimal portal-respecting tour of P approximates the optimal tour of P by a factor
of (1 + ε). Note that in this preliminary analysis we do not place any restrictions
on the k-lightness of the tour, so it may enter and leave each square 8m + 8 times.
Denote the cost of the optimal tour for specific values of a, b by OPTa,b.

The following lemma bounds the increase in the cost of a single edge when it is
made portal-respecting. The global bound will then follow by linearity of expectation.
For two nodes u, v ∈ R2 let the portal-respecting distance between u and v, denoted
da,b(u, v) be the shortest distance between them when all intermediate grid lines have
to be crossed at portals.
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Lemma 6.2.1.

E[da,b(u, v) − ‖u − v‖] ≤ 2 log L

m
‖u − v‖.

Proof. The straight line path from u to v crosses the grid at most 2‖u− v‖ times. To
get a portal-respecting path, we move each crossing to the nearest portal on the grid
line, which involves a detour whose length is at most the interportal distance on that
line. If the line has level i, the interportal distance is L/(2i+1m). The probability
that the line has level i is 2i+1/L. The expected length of the detour is thus

log L−1
∑

i=0

L

2i+1m
· 2i+1

L
=

log L

M
.

Summing over all the 2‖u − v‖ lines crossed by the path from u to v, we get

E[da,b(u, v) − ‖u − v‖] ≤ 2 log L

m
‖u − v‖.

By linearity of expectation, the lemma implies

E[OPTa,b − OPT ] ≤ 2 log L

m
OPT.

Therefore, with probability at least 1/2,

OPTa,b ≤
(

1 +
4 log L

m

)

OPT =

(

1 +
8 log n

m

)

OPT = (1 + ε)OPT.

Bounding the approximation factor of (1/ε)-light tours. As remarked above,
the preceding analysis suffices to get a quasi-polynomial running time. To get a
polynomial running time we prove that we can (1 + ε)-approximate OPT not just by
a portal-respecting tour, but by a (1/ε)-light portal-respecting tour. To this end, we
show that we can make any portal-respecting tour k-light while increasing its length
by a factor of at most 24/(k − 5). Choosing k = 24/ε + 5 then yields the result. The
proof makes extensive use of the following Patching Lemma.

Lemma 6.2.2. Let S be any line segment of length s and let π be a closed path that
crosses S at least three times. Then we can break the path in all but two of these
places, and add to it line segments lying on S of total length at most 6s such that π
changes into a closed path π′ that crosses S at most twice.

Proof. Let M1, . . . , Mt be the points on which π crosses S. Break π at those points,
thus causing it to fall apart into t paths P1, . . . , Pt. In what follows, we will need two
copies of each Mi, one on each side of S. Let M ′

i and M ′′
i be these copies.

Let 2j be the largest even number less than t. Let J be the multiset of line
segments consisting of the following: (i) A minimum cost salesman tour through
M1, . . . , Mt, and (ii) A minimum cost perfect matching among M1, . . . , M2j . Note
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that the line segments of J lie on S and their total length is at most 3s. We take two
copies J ′ and J ′′ of J and add them to π. We think of J ′ as lying on the left of S and
of J ′′ as lying on the right.

If t = 2j + 1 we add an edge between M ′
2j+1 and M ′′

2j+1. If t = 2j + 2 we add
an edge between M ′

2j+1 and M ′′
2j+1 and an edge between M ′

2j+2 and M ′′
2j+2. Together

with the paths P1, . . . , Pt, these added segments define a connected Eulerian graph,
in which the degree of the vertices M ′

i and M ′′
i is 4. An Eulerian tour of this graph

is a closed tour with the desired properties.

We will also use the rather obvious property that if t(π, l) is the number of times
a tour π crosses a grid line l, then

∑

l vertical

t(π, l) +
∑

l horizontal

t(π, l) ≤ 2cost(π).

We transform a tour into a k-light one as follows. For every vertical grid line l we
consider the sides of quadtree cells incident to l in a bottom-top fashion, from sides
of level log L − 1 to sides of level i + 1, where i is the level of l. For each considered
side, if it is crossed by more than s = k − 4 then we apply the Patching Lemma to
reduce the number of crossings to at most 2. Note that l is touched by 2j sides of
j-level squares, each of length L/2j, for j ≥ i + 1.

Let Xl,j(b) be a random variable denoting the number of overloaded j-level seg-
ments encountered by this procedure applied to a vertical line l that has level i. We
claim that for every b,

∑

j≥i+1

Xl,j(b) ≤
t(π, l)

s − 1
.

The reason is that the tour π crosses l only t(π, l) times, and each application of the
Patching Lemma replaces at least s + 1 crossings with at most 2, thus eliminating at
least s − 1 crossings every time. The same argument implies that

∑

j≥0

Xl,j(b) ≤
t(π, l)

s − 1
.

Using the Patching Lemma and the fact that a j-level side has length L/2j , the
cost of the above transformation applied to l is at most

∑

j≥i+1

Xl,j(b) ·
6L

2j
.

Let Yl be the random variable that equals the cost of the transformation applied to
l. (The randomness is over the choices of a, which affect the level of l.) Then for any
shift b we have
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E[Yl] =
∑

i≥0

2i+1

L
·
∑

j≥i+1

Xl,j(b) ·
6L

2j

= 6
∑

i≥0

∑

j≥i+1

Xl,j(b)

2j−(i+1)

≤ 6
∑

j≥1

2Xl,j(b)

≤ 12t(π, l)

s − 1
.

In this way we fix all the vertical lines and then apply the same process to fix all
the horizontal lines. Linearity of expectations implies

E

[

∑

l

Yl

]

=
∑

l

12t(π, l)

s − 1
≤ 24cost(π)

s − 1
=

24

k − 1
cost(π).

There is only one problem left. After we apply the patching procedures to the hor-
izontal lines we create new intersections of the tour with vertical lines, seemingly
ruining the work we have previously done fixing the vertical lines. However, this
is easily taken care of as follows. Notice that the created crossings of vertical lines
are all at vertices of the grid. At every such vertex we can reduce the number of
created crossings to 4 by applying the patching lemma on each side of the horizontal
line. Since the crossings are all contained in a line segment of length 0, this does not
increase the length of the tour. It also does not introduce new horizontal crossings.
Thus each side of a quadtree square is crossed at most s + 4 = k times and the tour
is k-light. We have thus proved that it suffices to consider k-light portal-respecting
tours. This immediately yields an algorithm with running time O(n(log n)O(1/ε)) for
ε-approximating Euclidean TSP in the plane.
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Chapter 7

Approximating the Extent of Point

Sets

In this section we will mainly see algorithms that estimate the “extent” of a point set
in Rd. Specifically, we will look at the problems of computing the diameter, width,
k-flat fitting, smallest bounding box, and smallest enclosing ball. The most important
thing to get from this section, though, is not necessarily the specific algorithms we
consider, but the general techniques we use to derive them. Extent estimation prob-
lems are a particularly instructive class of problems to demonstrate these techniques
on, which is our reason for concentrating on them.

Our general methodology for designing a geometric approximation algorithm is
to use one or both of the following approaches. The first is to construct a sketch of
the input, such that finding a solution for the sketch in sufficient. In many cases, the
sketch size is very small, much smaller than the size of the original input, so that we
can use a much less efficient algorithm, such as a naive exact one, on the sketch. For
other problems, the sketch possesses certain desirable geometric properties, like small
spread, say. To construct the sketch we will often use a less precise approximation
algorithm, such as one with a constant approximation factor, as a bootstrap. And,
as alluded to above, we will still need a (possibly inefficient) algorithm for solving the
problem on the sketch.

The second approach is to construct a sketch of the solution space, such that an
approximate solution lies in the sketch. For example, Arora’s approximation algo-
rithm for Euclidean TSP can be seen as a combination of both approaches. First we
snap the input to a grid, and this snapped set functions as a well-structured sketch
of the input. Then we show that light portal-respecting tours form an appropriate
sketch of all possible TSP tours. Finally, we use simple dynamic programming to find
the shortest light portal-respecting tour of the sketch.

7.1 Diameter

To warm up and demonstrate the various ideas used throughout this section consider
the problem of estimating the diameter of a point set P in R

d, i.e., the distance
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between the farthest pair of points in P .

Constant-factor approximations. Clearly, the problem can be solved exactly in
time O(n2) by enumerating all pairs of points. There are also two simple constant-
factor approximation algorithms that run in linear time.

Proposition 7.1.1. The diameter of a set P of n points in Rd can be approximated
within a factor of 2 in time O(n).

Proof. Take an arbitrary point p ∈ P and compute in time O(n) the farthest point
q ∈ P from p. We have

diam(P ) = max
s,t∈P

‖s − t‖ ≥ ‖p − q‖.

On the other hand, P is contained in a ball B of radius ‖p − q‖ centered at p . Any
two points in B have distance at most 2‖p − q‖, therefore

diam(P ) ≤ 2‖p − q‖.

Hence, 2‖p − q‖ approximates the diameter of P as desired.

Proposition 7.1.2. The diameter of a set P of n points in Rd can be approximated
within a factor of

√
d in time O(n).1

Proof. Compute in O(n) time the smallest axis-parallel bounding box B of P . Assume
without loss of generality that the longest edge of B is x1-parallel, let l be the length of
this edge, and consider the two points p, q ∈ P whose x1-coordinates are, respectively,
maximal and minimal. We have

diam(P ) = max
s,t∈P

‖s − t‖ ≥ ‖p − q‖.

On the other hand, the maximal distance of any two points in B is at most the length
of a diagonal of B, which is at most

√
dl. Therefore

diam(P ) ≤
√

dl =
√

d
(

p1 − q1

)

≤
√

d‖p − q‖.

Hence,
√

d‖p − q‖ approximates the diameter of P as desired.

Before we proceed to describe a PTAS for the diameter, let us observe that for
0 < ε < 1,

1 − ε <
1

1 + ε
< 1 − ε

2
.

We will thus use the term ε-approximation to refer interchangeably to an approxi-
mation from below with factor 1 − ε and an approximation from below with factor

1
1+ε

.

1We provide this algorithm because it gives a better approximation in the plane and in 3-space,

and because the underlying idea is quite instructive.
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First PTAS. The above constant-factor approximations can be used to bootstrap
a PTAS for the diameter. It constructs a concise sketch of the input and uses an exact
brute force algorithm on this sketch. Let D′ be a 2-approximation for the diameter
found using Proposition 7.1.1. Consider a uniform grid G in Rd with step εD′, and
round every point of P to the nearest vertex in G. Let P ′ be the set of grid points
obtained in this fashion. P ′ can be computed in time O(n) using the floor function,
and hashing to eliminate duplicates.

Each point of P is moved by at most
√

d
2

εD′. Thus

diam(P ′) ≥ diam(P ) −
√

dεD′.

Let p′, q′ be the two points that define diam(P ′) and let p, q be corresponding points
of P . We have

‖p − q‖ ≥ ‖p′ − q′‖ −
√

dεD′ ≥ diam(P ) − 2
√

dεD′ ≥ (1 − 4
√

dε)diam(P ).

Thus finding the points that define the diameter of P ′ and computing the distance
between the corresponding points of P gives us an O(ε)-approximation for the di-
ameter of P . Since we can choose ε appropriately, this yields an ε-approximation
algorithm for the problem.

How quickly can we compute diam(P ′)? The crucial observation is that the size
of P ′ is actually constant. Indeed, the points of P lie in a ball of radius 2D′, which
is contained in a box of side length 4D′. The side length of each grid cell of G
is εD′, therefore O(ε−d) grid cells contain the whole point set P . There are thus
O(ε−d) points of P ′. In fact, we can reduce the size to O(ε−(d−1)) by keeping only the
topmost and bottommost point in every column of G, along a particular orientation.
The diameter of P ′ can then be computed using the naive exact algorithm in time
O(ε−2(d−1)). This yields a PTAS for the diameter with running time O(n + ε−2(d−1)).

Second PTAS. Our second PTAS for the diameter constructs a small sketch of
the space of solutions and tries each solution in the sketch. Specifically, the sketch is
on the space of possible directions of the diameter vector.

Proposition 7.1.3. There exists a set V of O(1/ε(d−1)/2) unit vectors in Rd, such
that for any x ∈ Rd,

max
v∈V

〈v, x〉 ≥ (1 − ε)‖x‖.

Proof. Let C be the cube [−1, 1]d and let F be one of the 2d facets of C. Cover F with
a uniform grid with step

√
ε. Iterated over all facets F , this produces O(1/ε(d−1)/2)

vectors. Project them onto the unit sphere to obtain the set V . We prove below that
V covers the space of orientations as specified in the proposition.

Let x ∈ Rd be any vector. We need to prove that there exists v ∈ V for which
〈v, x〉 ≥ (1 − ε)‖x‖. Let us show that there exists v′ ∈ V such that cos ∠(v, x) =
1 − O(ε). It is sufficient to scale x to obtain a vector x′ that lies on a facet F of the
cube C, and prove the existence of a vector v′ on the grid constructed on F , such that
cos ∠(v′, x′) = 1−O(ε). Indeed, there is a grid point within distance

√
d − 1

√
ε/2 of
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x′. Let v′ be such a grid point. Consider the triangle Ox′v′, where O is the origin.
We wish to bound α, the angle in this triangle at O, and can use the law of cosines:

cos α =
‖O − x′‖2 + ‖O, v′‖2 − ‖x′ − v′‖2

2‖O − x′‖‖O − v′‖

=
‖O − x′‖2 + ‖O − v′‖2

2‖O − x′‖‖O − v′‖ − ‖x′ − v′‖2

2‖O − x′‖‖O − v′‖

≥ 1 − (d − 1)ε/4

2
= 1 − O(ε).

By adjusting the step of the grids appropriately we can assume cos α ≥ 1 − ε. Thus

〈v, x〉 = cos(α)‖v‖‖x‖ ≥ (1 − ε)‖x‖.

Let p, q ∈ P be the pair that maximizes ‖p − q‖. By proposition 7.1.3,

(1 − ε)diam(P ) = (1 − ε)‖p − q‖ ≤ max
v∈V

〈v, p − q〉

≤ max
v∈V

(

〈v, p〉 − 〈v, q〉
)

≤ max
v∈V

(

max
s∈P

〈v, s〉 − min
s∈P

〈v, s〉
)

.

It is thus sufficient to find, for every direction v ∈ V , the two extreme points in the
projection of P onto v. This can be accomplished in time O(n/ε(d−1)/2).

Third PTAS. After using the first algorithm above to create a set P ′ of O(ε−(d−1))
grid points, instead of naively computing the diameter of P ′ in quadratic time, we
can use the second PTAS to approximate it. This yields an algorithm with running
time O(n + ε−3(d−1)/2).

7.2 Width

The width of a set P of n points in Rd is the width of the smallest hyperplane slab
that encloses P . In this section we devise a similar series of algorithms for the width
problem as we did for the diameter. First let us reformulate the problem. It is
equivalent to finding the unit vector x ∈ R

d such that the extent of the projection of
P onto x is minimized. This extent is

max
s∈P

〈x, s〉 − min
s∈P

〈x, s〉.

If x is not necessarily a unit vector, the extent becomes

(

max
s∈P

〈x, s〉 − min
s∈P

〈x, s〉
)

/‖x‖
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and the width problem reduces to finding

argminx∈Rd

(

max
s∈P

〈x, s〉 − min
s∈P

〈x, s〉
)

/‖x‖.

Alternatively, the problem is

minimize (z − y)/‖x‖
subject to ∀s ∈ P. y ≤ 〈x, s〉 ≤ z

x ∈ R
d, y, z ∈ R.

Since the width is invariant to the scaling of x along a particular direction, we can
look only at vectors x for which

max
s∈P

〈x, s〉 − min
s∈P

〈x, s〉 = 1.

This changes the above problem into

maximize ‖x‖
subject to ∀s ∈ P. y ≤ 〈x, s〉 ≤ y + 1

x ∈ R
d, y ∈ R.

Clearly, the constraints are linear and define a convex polytope in Rd+1. The objective
function is optimized at a vertex of the polytope. The optimum can therefore be found
in time O(n⌈d/2⌉). This gives an exact algorithm for the problem.

First PTAS. To obtain a PTAS for the width we again snap P onto a grid and
run the exact algorithm on the snapped point set. To construct an appropriate grid
we need to do some work.

Proposition 7.2.1. There exists an algorithm that in time O(n) computes a box B
that contains P , such that a translated copy of cB is contained in conv(P ), for a
global constant c = 1/dO(d).

Proof. We construct B by induction. For d = 1 the optimal bounding interval can be
computed in time O(n). For general d we compute B = Bd as follows. Use Proposition
7.1.1 to find two points p, q ∈ P , such that ‖p− q‖ ≥ diam(P )/2. Project P onto the
hyperplane orthogonal to p−q to obtain a point set P ′ in Rd−1. Compute a bounding
Bd−1 of P ′ by induction. Bd is the smallest enclosing box of P with base Bd−1,
translated appropriately. We prove by induction that Vol(Bd) ≤ 2dd!Vol(conv(P )).

By the induction hypothesis, Vol(Bd−1) ≥ 2d−1(d − 1)!Vol(conv(P ′)). Assume
without loss of generality that the vector p− q is parallel to the xd-axis, let U and L
denote the upper and lower hulls of conv(P ), and consider a function f : Rd−1 → R,
defined as f(x) = U(x)−L(x). Clearly, the volume of conv(P ) is equal to the volume
of the (convex) body enclosed between the hyperplane xd = 0 and the graph of f .
This body, in turn, encloses a pyramid of height ‖p−q‖ over the base conv(P ′). Thus

Vol(conv(P )) ≥ Vol(conv(P ′))‖p − q‖
d

≥ Vol(conv(P ′)) · diam(P )

2d
.
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Therefore,

Vol(Bd) ≤ Vol(Bd−1)diam(P ) ≤ 2d−1(d−1)!Vol(conv(P ′))diam(P ) ≤ 2dd!Vol(conv(P )).

In particular, since the volume of the smallest bounding box of P is at least Vol(conv(P )),
the box B = Bd (2dd!)-approximates the volume of the smallest bounding box.

We are left to show that a translate of cB fits inside conv(P ). Clearly, our setting
is invariant to a translation, rotation and scaling of the ambient space. We thus apply
a transformation that maps B onto the unit cube C.

Note that the volume of any hyperplane slice of conv(P ) is at most the volume
of such a slice of C, which is at most the volume of a (d − 1)-sphere of radius

√
d/2,

which is less than dd/2. Clearly, the volume of conv(P ) is bounded from above by the
product of the width of P and the volume of the largest hyperplane slice of conv(P ).
This implies

width(P ) ≥ Vol(conv(P ))

dd/2
.

Consider the relationship between the width of P and the radius r(P ) of the largest
ball inscribed in conv(P ). It can be shown that this ratio is maximized by regular
simplices, for which it is 2

√
d for odd d and 2(d + 1)/

√
d + 2 for even d. This implies

that
width(P )

r(P )
≤ 2

√
d + 1.

Thus

r(P ) ≥ width(P )√
d + 1

≥ Vol(conv(P ))√
d + 1 · dd/2

≥ 1√
d + 1 · 2dd!dd/2

.

The largest ball inscribed in conv(P ) contains a cube of side length 2r(P )/
√

d =
1/dO(d). Going back to our original setting before the mapping of B to C, this
implies that a translate of cB is contained in conv(P ), for c = 1/dO(d).

After all this work the PTAS for width is rather easy. Compute a box B as in
Proposition 7.2.1 and consider the grid G whose cells are translates of cεB, where c is
the constant from Proposition 7.2.1. Replace a point p of P by all the vertices of the
cell of G that contains p. This results in a set P ′ of O(ε−d) grid points. Again, the
size of P ′ can be reduced to O(ε−(d−1)). P ′ can be translated to fit inside P ⊕ cεB,
which in turn can be translated to fit inside P ⊕εconv(P ). Thus if P can be enclosed
in a slab S, P ′ can be enclosed in a translate of the slab S ⊕ εS. Hence

width(P ) ≤ width(P ′) ≤ (1 + 2ε)width(P ).

It therefore suffices to compute the width of P ′, which we can do in time O(ε−(d−1)⌈d/2⌉).
The overall running time of our PTAS is O(n + ε−(d−1)⌈d/2⌉).

Remark. The point set P ′ is a set of O(ε−(d−1)) points that provides an outer
ε-approximation to the convex hull of P . Namely,

conv(P ) ⊆ conv(P ′) ⊆ conv(P ) ⊕ εconv(P ).
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The surprising existence of such a concise approximation of the convex hull can be
used in many applications. Essentially, we can approximate any “smallest enclosing
shape” of conv(P ) by computing such a shape for P ′. This includes the smallest
enclosing slab (i.e., the width problem), ball, cylinder, bounding box, etc. We still
need some algorithm, however inefficient, to run on P ′. For example, the smallest
bounding box of a set of n points in R3 can be computed exactly in time O(n3); the
smallest enclosing ball of a set of n points can be computed in time O(n⌈d/2⌉) using
the farthest-point Voronoi diagram; and so on.

Second PTAS. Our second PTAS produces a sketch of the possible orientations
of the normal to the slab that defines the width. In fact, the sketch is the same as in
the second PTAS for the diameter, namely the set V from Proposition 7.1.3. That
proposition implies that the optimum of the program

maximize 〈v, x〉
subject to ∀s ∈ P. y ≤ 〈x, s〉 ≤ y + 1

x ∈ R
d, y ∈ R, v ∈ V

is at least (1 − ε)width(P ). This program can be solved by |V | linear programming
computations, which can be performed in overall time O(n/ε(d−1)/2).

Third PTAS. As in the case of the diameter, we can combine the two approx-
imation schemes, first producing a sketch of the input and then using the second
algorithm on the sketch. This gives running time O(n + ε−3(d−1)/2).

7.3 Coresets

The input sketches that were produced for the above approximations of the diameter
and width were all collections of grid points. A somewhat more elegant approach is
to simply pick a small subset of the input and use it as the desired sketch. In this
case the sketch is called a coreset. We will now see that it is possible to compute a
small coreset by modifying the above construction.

First coreset construction. The modification is as follows: Construct a grid as
in the first PTAS for the width. Instead of snapping P to the grid or picking all the
vertices of grid cells that enclose points of P , simply pick one point of P from each
nonempty grid cell. This yields a set P ′ of O(ε−d) points. Given a unit vector x, let

widthx(P ) = max
s∈P

〈x, s〉 − min
s∈P

〈x, s〉

be called the directional width of P with respect to x. We claim that P ′ ε-approximates
the directional width of P in all directions, namely, that

∀x ∈ S
d−1. (1 − ε)widthx(P ) ≤ widthx(P

′) ≤ widthx(P ).
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Indeed, for some direction x ∈ Sd−1, consider the points u and v that define widthx(P ),
i.e., u = argmaxs∈P 〈x, s〉 and v = argmins∈P 〈x, s〉. Then there exist points s, t ∈ P ′,
such that s and u (resp., t and v) lie in the same grid cell. Recall that each grid cell
is a translate of cεB. Since widthx(cB) ≤ widthx(P ), we obtain

widthx(P
′) ≥ 〈x, s〉 − 〈x, t〉 =

(

〈x, u〉 − 〈x, v〉
)

−
(

〈x, u〉 − 〈x, s〉
)

−
(

〈x, t〉 − 〈x, v〉
)

≥ (1 − 2ε)widthx(P ).

This proves the claim. (As usual, a 2ε-approximation is sufficient since we can adjust
ε appropriately.) The set P ′ ⊆ P is a coreset of size O(ε−d). We can reduce the size to
O(ε−(d−1)) by keeping only the topmost and bottommost point in every column of G,
along a particular orientation. The resulting coreset is easily seen to still approximate
the directional width as above.

Second coreset construction. We can improve the size of the coreset in the
following way. As above, we can find in time O(n) a box B such that cB ⊆ conv(P ) ⊆
B. We can apply a projective transformation that ensures that c[−1, 1]d ⊆ conv(P ) ⊆
[−1, 1]d.

Let S be a sphere or radius
√

d + 1 around the origin. Set δ =
√

εc/2. Construct
a set V of O(1/ε(d−1)/2) points on S, such that for every x ∈ S, there exists y ∈ V for
which ‖x− y‖ ≤ δ. This can be achieved for example by placing an appropriate grid
on every facet of the hypercube [−(

√
d + 1),

√
d + 1]d and projecting the grid points

onto S. For v ∈ V , let φ(v) be the nearest neighbor of v in P . Let P ′ be this set
of nearest neighbors, for all v ∈ V . P ′ can be computed in time O(n/ε(d−1)/2) and
we claim that it is a coreset with the desired properties. To prove this we need the
following technical lemma.

Lemma 7.3.1. Let B be a ball of radius r centered at (L, 0, . . . , 0) ∈ Rd, where
L ≥ 2r. Let p be a point in B, and let B′ the the ball centered at p and touching the
origin. Then

∀x ∈ B′. x1 ≥ −r2

L
.

Proof. It is sufficient to lower bound x1 for x = (L− r, r, 0, . . . , 0). The radius of the
ball B′ in this case is

√

(L − r)2 + r2, and the x1-minimal point of B′ is

(L − r) −
√

(L − r)2 + r2 =
(L − r)2 − ((L − r)2 + r2)

(L − r) +
√

(L − r)2 + r2
≥ −r2

2(L − r)
≥ −r2

L
.

Fix a direction u ∈ Rd−1. Let σ ∈ P ′ be the point that maximizes 〈u, p〉 over
p ∈ P ′. Let x ∈ S be the point on S that is hit by the ray emanating from σ in
direction u. We know that there exists y ∈ V such that ‖x− y‖ ≤ δ. For the sake of
exposition rotate and translate the coordinate system so that σ is the origin and u is
the x1-direction. Let L = ‖x‖ and r = δ. The point y lies in an r-ball around x, and
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L ≥ 1 ≥ 2δ ≥ 2r. The point φ(y) lies in the closed ball centered at y and touching
the origin σ. By Lemma 7.3.1,

max
p∈P ′

〈u, p〉 ≥ 〈u, φ(y)〉 ≥ 〈u, σ〉 − r2

L
≥ max

p∈P
〈u, p〉 − δ2 = max

p∈P
〈u, p〉 − εc

2
.

Applying the same analysis for the direction −u implies that

widthu(P
′) = max

s∈P ′

〈u, s〉 − min
s∈P ′

〈u, s〉 ≥ widthu(P ) − 2
εc

2
≥ (1 − ε)widthu(P ),

since widthu(P ) ≥ c for any u. This concludes the proof that P ′ is a coreset as
desired.

We now combine the two coreset constructions, using the first to produce in time
O(n) a coreset P ′ of size O(ε−(d−1)), and then running the second on P ′ to produce
a final coreset of size O(ε−(d−1)/2) in time O(ε−3(d−1)/2). The overall running time is
O(n + ε−3(d−1)/2).

Applications of small coresets. A small coreset P ′ of P allows us to approximate
extent measures of P like width, diameter, volume of minimal bounding box, etc. For
example, let d be a unit vector parallel to s− t, where s, t ∈ P are the diametral pair
of P . It holds that

diam(P ′) ≥ widthd(P
′) ≥ (1 − ε)widthd(P ) = (1 − ε)diam(P ).

Thus we can approximate the diameter of P by computing the diameter of P ′.
As another example, let B′ be the smallest bounding box of the coreset P ′, defined

by directions s, t, w. Since the width of P along each of s, t, w is at most 1/(1 −
ε) ≤ 1 + 2ε times the corresponding width of P ′, where we assume ε < 1/2, the
box B = (1 + 4ε)B′, appropriately translated, is a bounding box of P of volume
(1 + O(ε))Vol(B′). This gives an algorithm for finding an ε-approximate minimal
bounding box.
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