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Computer Science Department

Stanford University
philkr@cs.stanford.edu

Vladlen Koltun
Computer Science Department

Stanford University
vladlen@cs.stanford.edu

This document provides detailed derivations for the mean field approximation and our learning al-
gorithm.

1 Mean Field Approximation

Let’s recall the general fully connected CRF model,

E(x) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj). (1)

Throughout this supplement, the indices i and j range from 1 to N . The pairwise edge potential
ψp(xi, xj) is defined as a linear combination of Gaussian kernels k(m)(fi, fj):

ψp(xi, xj) = µ(xi, xj)

K∑
m=1

w(m)k(m)(fi, fj). (2)

The Gibbs distribution is given by

P (X) =
1

Z
P̃ (X) =

1

Z
exp

∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj)

 (3)

where the partition function is defined as Z =
∑

x P̃ (x).

Let’s define an approximate distribution Q(X) =
∏
iQi(Xi) as a product of independent marginals

Qi(Xi) over each variable in the CRF. For notational clarity we use Qi(Xi) to denote the marginal
over variable Xi, rather than the more commonly used Q(Xi).

The mean field approximation models a distribution Q(X) that minimizes the KL-divergence
D(Q‖P ) [1]:

D(Q‖P ) =
∑
x

Q(x) log

(
P (x)

Q(x)

)
=
∑
x

Q(x) logP (x)−
∑
x

Q(x) logQ(x)

= EU∼Q[logP (U)]−EU∼Q[logQ(U)]

= EU∼Q[log P̃ (U)]−EU∼Q[logZ]−
∑
i

EUi∼Q[logQ(Ui)]

= −EU∼Q[E(U)]−
∑
i

EUi∼Qi
[logQi(Ui)]− logZ (4)
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EU∼Q refers to the expected value under the distribution Q. We use the fact that the Shanon en-
tropy EU∼Q[logQ(U)] =

∑
iEUi∼Qi

[logQi(Ui)] decomposes when Q(X) =
∏
iQi(Xi), due to

linearity of expectation.

The marginal Qi(xi) that minimizes the KL-divergence is found by analytically minimizing a La-
grangian that consists of all terms in D(Q‖P ) plus Lagrange multipliers assuring the marginals
Qi(Xi) are probability distributions. Detailed derivations and a proof of convergence can be found
in Chapter 11.5 of Koller and Friedman [1]. For brevity of exposition we will only present the final
update equation:

Qi(xi) =
1

Zi
exp

−ψu(xi)−∑
j 6=i

EUj∼Qj
[ψp(xi, Uj)]

 (5)

Substituting the definition of the pairwise potential (Eq. 2) into the mean field update in Equation 5
yields the following formulation of the update equation, which is used in the paper.

Qi(xi = l) =
1

Zi
exp

−ψu(xi)−∑
j 6=i

EUj∼Qj

[
µ(l, Uj)

K∑
m=1

w(m)k(m)(fi, fj)

]
=

1

Zi
exp

−ψu(xi)−
K∑
m=1

w(m)
∑
j 6=i

EUj∼Qj

[
µ(l, Uj)k

(m)(fi, fj)
]

=
1

Zi
exp

−ψu(xi)−
K∑
m=1

w(m)
∑
j 6=i

∑
l′∈L

Qj(l
′)µ(l, l′)k(m)(fi, fj)


=

1

Zi
exp

−ψu(xi)−∑
l′∈L

µ(l, l′)

K∑
m=1

w(m)
∑
j 6=i

k(m)(fi, fj)Qj(l
′)

 (6)

We make use of linearity of expectation and rearrange terms such that the message passing is the
innermost step, and the compatibility transform is the outermost.

2 Mean-field Learning

To efficiently learn the symmetric label compatibility function for our model we use maximum
likelihood estimation (MLE). The objective of MLE is to find a set of parameters that maximizes
the log-likelihood of the model given training images I and their ground truth segmentations T (n):

`(µ : T (n), I(n)) = logP (X = T (n)|I(n), µ)
= −E(T (n)|I(n), µ)− logZ(I(n), µ) (7)

The global partition function Z couples all parameters and variables, making it intractable to ana-
lytically maximize `. However, it can be shown that the partition function is convex and hence the
log-likelihood function is concave [1]. MLE can thus be performed with gradient-based optimization
techniques. We now consider the gradient of `:

∂

∂µa,b
`(µ : T (n), I(n)) = ∂

∂µb,a
`(µ : T (n), I(n))

= − ∂

∂µa,b
E(T (n)|I(n), µ)− ∂

∂µa,b
logZ(I(n), µ)

= −
∑
m

1

2

∑
i6=j

k(m)(T (n)
i , T (n)

j )
∂

∂µa,b
µ(T (n)

i , T (n)
j )− 1

Z

∂

∂µa,b
Z(I(n), µ)

(8)

For values (T (n)
i , T (n)

j ) 6= (a, b) or (T (n)
i , T (n)

j ) 6= (b, a) the first term evaluates to 0. We can re-

place ∂
∂µa,b

µ(T (n)
i , T (n)

j ) = 1
a=T (n)

i
1
b=T (n)

j
+1

b=T (n)
i

1
a=T (n)

j
, where 1[·] is the indicator function.
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The second expression yields a very similar result

1

Z

∂

∂µa,b
Z(I(n), µ) = 1

Z

∑
X

∂

∂µa,b
P̃ (X|I(n), µ)

=
1

Z

∑
X

∂

∂µa,b
exp(−E(X|I(n), µ))

= −
∑
X

1

Z
exp(−E(X|I(n), µ)) ∂

∂µa,b
E(X|I(n), µ)

= −
∑
X

P (X)
∑
m

w(m) 1

2

∑
i 6=j

k(m)(T (n)
i , T (n)

j )
(
1
a=T (n)

i
1
b=T (n)

j
+

1
b=T (n)

i
1
a=T (n)

j

)
= −

∑
X

P (X)
∑
m

w(m) 1

2

∑
i 6=j

k(m)(T (n)
i , T (n)

j )1
a=T (n)

i
1
b=T (n)

j
+

∑
j 6=i

k(m)(T (n)
j , T (n)

i )1
a=T (n)

j
1
b=T (n)

i


= −

∑
X

P (X)
∑
m

w(m)
∑
i6=j

k(m)(T (n)
i , T (n)

j )1
a=T (n)

i
1
b=T (n)

j
(9)

We make use of the CRF symmetry ψp(xi, xj) = ψp(xj , xi), such that
∑
i<j ψp(xi, xj) =

1
2

∑
i 6=j ψp(xi, xj).

This expression is intractable for exact computation. We therefore approximate P using the mean-
field approximation Q presented in the previous section:

1

Z

∂

∂µa,b
Z(I(n), µ)

≈
∑
X

Q(X)
∑
m

w(m)
∑
i 6=j

k(m)(T (n)
i , T (n)

j )1a=Xi1b=Xj

=
∑
m

w(m)
∑
i 6=j

k(m)(T (n)
i , T (n)

j )
∑
X

Q(X/{Xi, Xj})1a=XiQi(Xi)1b=XjQj(Xj)

=
∑
m

w(m)
∑
i 6=j

k(m)(T (n)
i , T (n)

j )Qi(a)Qj(b) (10)

Due to the definition of Q, the marginalization
∑

X/{Xi,Xj}Q(X/{Xi, Xj}) = 1 and
1a=Xi

Qi(Xi) equals 0 for a 6= Xi, thus
∑
Xi

1a=Xi
Qi(Xi) = Qi(a).

Rearranging the terms of Equation 10 and substituting them into Equation 8 produces the final
gradient

∂

∂µ(a, b)
`n(µ : I(n), T (n)) ≈

∑
m

w(m)

−∑
i

T (n)
i (a)

∑
j 6=i

k(m)(fi, fj)T (n)
j (b)

+
∑
i

Qi(a)
∑
j 6=i

k(m)(fi, fj)Qi(b)

 (11)

where T (n)(a) is a binary image in which the ith variable T (n)
i (a) is defined to be 1T (n)

i =a
.
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3 Computing the KL-divergence

This section briefly outlines how the KL-divergence D(Q‖P ) can be estimated up to a constant
logZ using high-dimensional filtering. The KL-divergence can be used to analyze the convergence
of the mean field approximation.

In Equation 4, logZ is a constant depending only on the image I and the CRF parameters. The
partition function is independent of the actual assignment x and can thus be ignored when evaluate
the convergence rate. The Shannon entropy

∑
iEUi∼Qi [logQi(Ui)] consist of only local terms,

which can be computed efficiently given Q.

The computationally expensive part is evaluating the expected value of the Gibbs Energy E(X)

EU∼Q[E(U)] = EU∼Q

∑
i

ψu(Ui) +
∑
i<j

ψp(Ui, Uj)


=
∑
i

EUi∼Qi [ψu(Ui)] +
∑
i<j

EUi∼Qi,Uj∼Qj [ψp(Ui, Uj)] (12)

The first expression can be evaluated in linear time by summing up all expected values of the unary
potentials ψu. The second expression in its current form requires a summation over all pairs of
variables, which is again computationally intractable. We can however formulate the second term as
a filtering operation:

∑
i<j

EUi∼Qi,Uj∼Qj
[ψp(Ui, Uj)] =

1

2

∑
i

EUi∼Qi

∑
j 6=i

EUj∼Qj
[ψp(Ui, Uj)]


=

1

2

K∑
m=1

w(m)
∑
i

EUi∼Qi

∑
j 6=i

k(m)(fi, fj)EUj∼Qj
[µ(Ui, Uj)]


where EUj∼Qj [µ(Ui, Uj)] is the compatibility transformation and∑
j 6=i k

(m)(fi, fj)EUj∼Qj [µ(Ui, Uj)] can be evaluated using high-dimensional filtering.
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