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This document provides detailed derivations for the mean field approximation and our learning al-
gorithm.

1 Mean Field Approximation

Let’s recall the general fully connected CRF model,
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Throughout this supplement, the indices ¢ and j range from 1 to IN. The pairwise edge potential
¥ (24, ;) is defined as a linear combination of Gaussian kernels k(™) (f;, f; )
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The Gibbs distribution is given by

P(X) = %P(X) = %exp Zwu(xi) + Y (i, ) 3)
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where the partition function is defined as Z = 3°, P(x).

Let’s define an approximate distribution Q(X) = ], @:(X;) as a product of independent marginals
Q:(X;) over each variable in the CRF. For notational clarity we use @Q;(X;) to denote the marginal
over variable X, rather than the more commonly used Q(X).

The mean field approximation models a distribution Q(X) that minimizes the KL-divergence
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Ey.~q refers to the expected value under the distribution ). We use the fact that the Shanon en-

tropy Eu~q[log Q(U)] = 3. Ey,~q, [log Q;(U;)] decomposes when Q(X) = [, Q:(X;), due to
linearity of expectation.

The marginal Q;(z;) that minimizes the KL-divergence is found by analytically minimizing a La-
grangian that consists of all terms in D(Q||P) plus Lagrange multipliers assuring the marginals
Q:(X;) are probability distributions. Detailed derivations and a proof of convergence can be found
in Chapter 11.5 of Koller and Friedman [1]. For brevity of exposition we will only present the final
update equation:

1
Qi) = - exp ¢ —vulwi) = Y Bu,ng, [Up(@i, Uj)] )
¢ j#i

Substituting the definition of the pairwise potential (Eq. 2) into the mean field update in Equation 5
yields the following formulation of the update equation, which is used in the paper.
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We make use of linearity of expectation and rearrange terms such that the message passing is the
innermost step, and the compatibility transform is the outermost.
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2 Mean-field Learning

To efficiently learn the symmetric label compatibility function for our model we use maximum
likelihood estimation (MLE). The objective of MLE is to find a set of parameters that maximizes
the log-likelihood of the model given training images Z and their ground truth segmentations 7 ("):
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The global partition function Z couples all parameters and variables, making it intractable to ana-
lytically maximize ¢. However, it can be shown that the partition function is convex and hence the

log-likelihood function is concave [ | ]. MLE can thus be performed with gradient-based optimization
techniques. We now consider the gradient of ¢
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For values (7™, 7;(71 ) # (a b) or (T, 7;.(")) # (b, a) the first term evaluates to 0. We can re-
place » M(a];(n)’ 7;(n)) =T 1b=7;<n) + 1b=TL-(") 1a=,rj(n) , where 1| is the indicator function.



The second expression yields a very similar result
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We make use of the CRF symmetry ¢, (z;,2;) = p(2;,2:), such that 33, p(zi,z;) =
% Zi;«éj Up(Ti, ;).

This expression is intractable for exact computation. We therefore approximate P using the mean-
field approximation () presented in the previous section:
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Due to the definition of @, the marginalization } x (v, yQ(X/{X;, X;}) = 1 and

La=x,Qi(X;) equals O for a # X;, thus D5 1,=x,Q:i(Xi) = Qi(a).

Rearranging the terms of Equation 10 and substituting them into Equation 8 produces the final
gradient
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where 7 (™) (a) is a binary image in which the ith variable ’7;(") (a) is defined tobe 1 n)_,



3 Computing the KL-divergence

This section briefly outlines how the KL-divergence D(Q||P) can be estimated up to a constant
log Z using high-dimensional filtering. The KL-divergence can be used to analyze the convergence
of the mean field approximation.

In Equation 4, log Z is a constant depending only on the image Z and the CRF parameters. The
partition function is independent of the actual assignment x and can thus be ignored when evaluate
the convergence rate. The Shannon entropy . Ey,q,[log Q;(U;)| consist of only local terms,
which can be computed efficiently given Q).

The computationally expensive part is evaluating the expected value of the Gibbs Energy E(X)

Eug[B(U)] = Bung | D vu(Ui) + 3 (Ui, Uj)
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The first expression can be evaluated in linear time by summing up all expected values of the unary
potentials v,,. The second expression in its current form requires a summation over all pairs of
variables, which is again computationally intractable. We can however formulate the second term as
a filtering operation:
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where Eu,~q,[1(Us, Uj)] is the compatibility transformation and
D i k™ (£;,£,)Eu,~0, [1(U;, U;)] can be evaluated using high-dimensional filtering.
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