Feature Construction for Inverse Reinforcement

Learning
Sergey Levine Zoran Popovié¢
Stanford University University of Washington
svlevine@cs.stanford.edu zoran@cs.washington.edu
Vladlen Koltun

Stanford University
vladlen@cs.stanford.edu

Abstract

The goal of inverse reinforcement learning is to find a reward function for a
Markov decision process, given example traces from its optimal policy. Current
IRL techniques generally rely on user-supplied features that form a concise basis
for the reward. We present an algorithm that instead constructs reward features
from a large collection of component features, by building logical conjunctions of
those component features that are relevant to the example policy. Given example
traces, the algorithm returns a reward function as well as the constructed features.
The reward function can be used to recover a full, deterministic, stationary pol-
icy, and the features can be used to transplant the reward function into any novel
environment on which the component features are well defined.

1 Introduction

Inverse reinforcement learning aims to find a reward function for a Markov decision process, given
only example traces from its optimal policy. IRL solves the general problem of apprenticeship
learning, in which the goal is to learn the policy from which the examples were taken. The MDP
formalism provides a compact method for specifying a task in terms of a reward function, and IRL
further simplifies task specification by requiring only a demonstration of the task being performed.
However, current IRL methods generally require not just expert demonstrations, but also a set of
features or basis functions that concisely capture the structure of the reward function [1, 7, 9, 10].

Incorporating feature construction into IRL has been recognized as an important problem for some
time [1]. It is often easier to enumerate all potentially relevant component features (“components”)
than to manually specify a set of features that is both complete and fully relevant. For example,
when emulating a human driver, it is easier to list all known aspects of the environment than to con-
struct a complete and fully relevant reward basis. The difficulty of performing IRL given only such
components is that many of them may have important logical relationships that make it impossible
to represent the reward function as their linear combination, while enumerating all possible relation-
ships is intractable. In our example, some of the components, like the color of the road, may be
irrelevant. Others, like the car’s speed and the presence of police, might have an important logical
relationship for a driver who prefers to speed.

We present an IRL algorithm that constructs reward features out of a large collection of compo-
nent features, many of which may be irrelevant for the expert’s policy. The Feature construction
for Inverse Reinforcement Learning (FIRL) algorithm constructs features as logical conjunctions
of the components that are most relevant for the observed examples, thus capturing their logical
relationships. At the same time, it finds a reward function for which the optimal policy matches

the examples. The reward function can be used to recover a deterministic, stationary policy for the
expert, and the features can be used to transplant the reward to any novel environment on which the
component features are well defined. In this way, the features act as a portable explanation for the
expert’s policy, enabling the expert’s behavior to be predicted in unfamiliar surroundings.

2 Algorithm Overview

We define a Markov decision process as M = {S,A,0,~, R}, where S is a state space, A is a
set of actions, 6, is the probability of a transition from s € S to s’ € S under action a € A,
~v € [0,1) is a discount factor, and R(s, a) is a reward function. The optimal policy 7* is the policy
that maximizes the expected discounted sum of rewards E [.-, v R(s:, a;)|7*, 6]. FIRL takes as
input M\ R, as well as a set of traces from 7*, denoted by D = {(s1,1,01,1), .. (Sn, 7> an. 1)},
where s; ; is the ¢ state in the i trace. FIRL also accepts a set of component features of the form
0 : § — Z, which are used to construct a set of relevant features for representing R.

The algorithm iteratively constructs both the features and the reward function. Each iteration consists
of an optimization step and a fitting step. The algorithm begins with an empty feature set ®(°). The
optimization step of the i iteration computes a reward function R(*) using the current set of features
®(—1 and the following fitting step determines a new set of features ®(%).

The objective of the optimization step is to find a reward function R(*) that best fits the last feature
hypothesis ®(*~1) while remaining consistent with the examples D. This appears similar to the ob-
jective of standard IRL methods. However, prior IRL algorithms generally minimize some measure
of deviation from the examples, subject to the constraints of the provided features [1, 7, 8, 9, 10]. In
contrast, the FIRL optimization step aims to discover regions where the current features are insuffi-
cient, and must be able to step outside of the constraints of these features. To this end, the reward
function R(¥) is found by solving a quadratic program, with constraints that keep R(*) consistent
with D, and an objective that penalizes the deviation of R(*) from its projection onto the linear basis
formed by the features ®(—1).

The fitting step analyzes the reward function R(") to generate a new feature hypothesis ®(*) that
better captures the variation in the reward function. Intuitively, the regions where R(*) is poorly rep-
resented by ®(“~1) correspond to features that must be refined further, while regions where different
features take on similar rewards are indicative of redundant features that should be merged. The
hypothesis is constructed by building a regression tree on S for R(?), with the components acting as
tests at each node. Each leaf ¢ contains some subset of S, denoted ¢,. The new features are the set
of indicator functions for membership in ¢,. A simple explanation of the reward function is often
more likely to be the correct one [7], so we prefer the smallest tree that produces a sufficiently rich
feature set to represent a reward function consistent with the examples. To obtain such a tree, we
stop subdividing a node ¢ when setting the reward for all states in ¢, to their average induces an
optimal policy consistent with the examples.

The constructed features are iteratively improved through the interaction between the optimization
and fitting steps. Since the optimization is constrained to be consistent with D, if the current set of
features is insufficient to represent a consistent reward function, R(Y) will not be well-represented
by the features ®(*~1). This intra-feature reward variance is detected in the fitting step, and the
features that were insufficiently refined are subdivided further, while redundant features that have
little variance between them are merged.

3 Optimization Step

During the i optimization step, we compute a reward function R(*) using the examples D and the
current feature set ®(“~1), This reward function is chosen so that the optimal policy under the reward
is consistent with the examples D and so that it minimizes the sum of squared errors between R(?)
and its projection onto the linear basis of features ®(~1). Formally, let Tr_.¢ be a |®¢~1)| by |S]|
matrix for which Tr (¢, s) = |#| "' if s € ¢, and 0 otherwise, and let Tp_. i be a |S| by ||
matrix for which Ty g (s, ¢) = 1if s € ¢, and 0 otherwise. Thus, To_. gTr—.¢ R is a vector where

the reward in each state is the average over all rewards in the feature that state belongs to. Letting
7 denote the optimal policy under R, the reward optimization problem can be expressed as:

mI%HHR — To—.rTr—aR|

st. 7fi(s)=a V(s,a) € D (1)

Unfortunately, the constraint (1) is not convex, making it difficult to solve the optimization effi-
ciently. We can equivalently express it in terms of the value function corresponding to R as

V(S) = R(Saa’) +ersas’v(5/) V(S,CL) eD
V(s) = max R(s,a) + ’yz Osas V (8) VseS)

These constraints are also not convex, but we can construct a convex relaxation by using a pseudo-
value function that bounds the value function from above, replacing (2) with the linear constraint

V(s) > R(s,a) +7 Y Osas V(s Vs ¢ D

In the special case that the MDP transition probabilities 6 are deterministic, these con-
straints are equivalent to the original constraint (1). We prove this by considering the
true value function V* obtained by value iteration, initialized with the pseudo-value func-
tion V. Let V' be the result obtained by performing one step of value iteration. Note
that V'(s) < V(s) for all s € S: since V(s) > R(s,a) +7v) , OsasrV(s"), we must have
V(s) > maxg [R(s,a) + 7>, 0sas'V(s')] = V'(s). Since the MDP is deterministic and the ex-
ample set D consists of traces from the optimal policy, we have a unique next state for each state-
action pair. Let (s;¢,a;:) € D be the " state-action pair from the i expert trace. Since the
constraints ensure that V (s; ;) = maxg [R(S;¢, a) + YV (si141)], we have V'(s;,) = V(s;¢) for
all 4, ¢, and since V'(s) for s ¢ D can only decrease, we know that the optimal actions in all s; ;
must remain the same. Therefore, for each example state s; ;, a; ; remains the optimal action under
the true value function V'*, and the convex relaxation is equivalent to the original constraint (1).

In the case that § is not deterministic, not all successors of an example state s; ; are always observed,
and their values under the pseudo-value function may not be sufficiently constrained. However,
empirical tests presented in Figure 2(b) suggest that the constraint (1) is rarely violated under the
convex relaxation, even in highly non-deterministic MDPs.

In practice, we prefer a reward function under which the examples are not just part of an optimal
policy, but are part of the unique optimal policy [7]. To prevent rewards under which example actions
“tie” for the optimal choice, we require that a; ; be better than all other actions in state s; ; by some
margin €, which we accomplish by adding ¢ to all inequality constraints for state s, ;. The precise
value of ¢ is not important, since changing it only scales the reward function by a constant.

All of the constraints in the final optimization are sparse, but the matrix Ty, pTr— in the origi-
nal objective can be arbitrarily dense (if, for instance, there is only one feature which contains all
states). Since both Ty, g and Tr_,¢ are sparse, and in fact only contain |S||.4| non-zero entries,
we can make the optimization fully sparse by introducing a new set of variables R defined as
Ry = Tr_.3 R, yielding the sparse objective | R — Ty g Ra||>.

Recall that the fitting step must determine not only which features must be refined further, but
also which features can be merged. We therefore add a second term to the objective to dis-
courage nearby features from taking on different values when it is unnecessary. To that end,
we construct a sparse matrix N, where each row k of IV corresponds to a pair of features ¢y,
and ¢y, (for a total of K rows). We define N as Ni g, = —Nig,, = APk, Pr,), so that
[NRo|i, = (Rog,, — Rogy,) A(Pk,, Pk,). The loss factor A(¢y, , ¢x,) indicates how much we be-
lieve a priori that the features ¢y, and ¢y, should be merged, and is discussed further in Section 4.
Since the purpose of the added term is to allow superfluous features to be merged because they take
on similar values, we prefer for a feature to be very similar to one of its neighbors, rather than to
have minimal distance to all of them. We therefore use a linear rather than quadratic penalty. Since
we would like to make nearby features similar so long as it does not adversely impact the primary
objective, we give this adjacency penalty a low weight. In our implementation, this weight was set to

wy = 1075, Normalizing the two objectives by the number of entries, we get the following sparse
quadratic program:

. 1 2 WN
ARy AR TemnBelt GVl
st. Re=Tr_eR
V(S) = R(Sa (1) + WZ esas’v(s/) v (3, a) D
V(S) > R(S,CL) + ’}/Z osas’v(sl) +¢€ Vs e D, (S, CL) ¢ D
V(s) > R(s,0) +7) OsasV(s) Vs¢ D

S

This program can be solved efficiently with any quadratic programming solver. It contains on the
order of |S||.A| variables and constraints, and the constraint matrix is sparse with O(|S||.A|x,) non-
zero entries, where 11, is the average sparsity of 6,, — that is, the average number of states s’ that
have a non-zero probability of being reached from s using action a. In our implementation, we use
the cvx Matlab package [6] to solve this optimization efficiently.

4 Fitting Step

Once the reward function R for the current feature set ®(—1) is computed, we formulate a new
feature hypothesis ®(?) that is better able to represent this reward function. The objective of this
step is to construct a set of features that gives greater resolution in regions where the old features are
too coarse, and lower resolution in regions where the old features are unnecessarily fine. We obtain
®() by building a regression tree for R(*) over the state-space S, using the standard intra-cluster
variance splitting criterion [3]. The tree is rooted at the node ¢(, and each node of the tree is defined
ast; = {d;,;,t;—,tj+}. t;— and t; are the left and right subtrees, ¢, C S is the set of states
belonging to node j (initialized as ¢y = S), and §; is the component feature that acts as the splitting
test at node j. States s € ¢; for which 0;(s) = 0 are assigned to the left subtree, and states for which
d,(s) = 1 are assigned to the right subtree. In our implementation, all component features are binary,
though the generalization to multivariate components and non-binary trees is straightforward. The
new set of features consists of indicators for each of the leaf clusters ¢, (where ¢, is a leaf node), and
can be equivalently expressed as a conjunction of components: letting jg, ..., jn, £ be the sequence
of nodes on the path from the root to ¢,, and defining ro, ..., 7, so that g is 1if 5, , =¢;, , and 0
otherwise, s € ¢ if and only if d;, (s) = 7, forall k € {0, ..., n}.

As discussed in Section 2, we prefer the smallest tree that produces a rich enough feature set to
represent a reward function consistent with the examples D. We therefore terminate the splitting
procedure at node ¢, when we detect that further splitting of the node is unnecessary to maintain
consistency with the example set. This is done by constructing a new reward function R for
which RO (s,a) = [¢e| 71 Y ey, R7(s,0) if s € ¢y, and R (s,a) = R (s, a) otherwise. The
optimal policy under R is determined with value iteration and, if the policy is consistent with the
examples D, t, becomes a leaf and R is updated to be equal to RO, Although value iteration
ordinarily can take many iterations, since the changes we are considering often make small, local
changes to the optimal policy compared to the current reward function R(*), we can often converge
in only a few iterations by starting with the value function V() for the current reward R(*). We
therefore store this value function and update it along with R().

In addition to this stopping criterion, we can also employ the loss factor A(¢y, , Pk,) to encourage
the next optimization step to assign similar values to nearby features, allowing them to be merged
in subsequent iterations. Recall that A(¢y,, ¢x,) is a linear penalty on the difference between the
average rewards of states in ¢, and ¢y,, and can be used to drive the rewards in these features
closer together so that they can be merged in a subsequent iteration. Features found deeper in
the tree exhibit greater complexity, since they are formed by a conjunction of a larger number of
components. These complex features are more likely to be the result of overfitting, and can be
merged to form smaller trees. To encourage such mergers, we set A(¢y, , ¢r,) to be proportional

Gridworld Total | LPAL | MMP | Abbeel & Ng FIRL | Optimization Fitting
size states (sec) (sec) (sec) | (sec total) (sec each) | (sec each)
16x16 256 0.29 0.24 27.05 8.34 0.39 0.11
32x32 1024 0.66 0.42 74.66 29.00 1.01 0.73
64 x 64 4096 2.22 1.26 272.10 165.29 4.26 5.80
128x 128 | 16384 | 19.33 7.58 876.18 1208.47 24.44 48.44
256 X256 | 65536 | 52.60 | 81.26 1339.87 | 10389.59 170.14 428.49

Table 1: Performance comparison of FIRL, LPAL, MMP, and Abbeel & Ng on gridworlds of varying
size. FIRL ran for 15 iterations. Individual iterations were comparable in length to prior methods.

to the depth of the deepest common ancestor of ¢, and ¢g,. The loss factor is therefore set to
APk, , Oky) = Do(k1, ka2)/Dy, where D, gives the depth of the deepest common ancestor of two
nodes, and D is the total depth of the tree.

Finally, we found that limiting the depth of the tree and iteratively increasing that limit reduced
overfitting and produced features that more accurately described the true reward function, since the
optimization and fitting steps could communicate more frequently before committing to a set of
complex features. We therefore begin with a depth limit of one, and increase the limit by one on
each successive iteration. We experimented with a variety of other depth limiting schemes and found
that this simple iterative deepening procedure produced the best results.

5 Experiments

5.1 Gridworld

In the first experiment, we compare FIRL with the MMP algorithm [9], the LPAL algorithm [10],
and the algorithm of Abbeel & Ng [1] on a gridworld modeled after the one used by Abbeel & Ng.
The purpose of this experiment is to determine how well FIRL performs on a standard IRL example,
without knowledge of the relevant features. A gridworld consists of an NxN grid of states, with
five actions possible in each state, corresponding to movement in each of the compass directions and
standing in place. In the deterministic gridworld, each action deterministically moves the agent into
the corresponding state. In the non-deterministic world, each action has a 30% chance of causing a
transition to another random neighboring state. The world is partitioned into 64 equal-sized regions,
and all the cells in a single region are assigned the same randomly selected reward. The expert’s
policy is the optimal policy under this reward. The example set D is generated by randomly sampling
states and following the expert’s policy for 100 steps.

Since the prior algorithms do not perform feature construction, they were tested either with indica-
tors for each of the 64 regions (referred to as “perfect” features), or with indicators for each state
(the “primitive” features). FIRL was instead provided with 2N component features corresponding
to splits on the = and y axes, so that 5 ;(sz,) = 1if ¢ > 4, and 0, (s,) = 1if y > i. By
composing such splits, it is possible to represent any rectangular partitioning of the state space.

We first compare the running times of the algorithms (using perfect features for prior methods) on
gridworlds of varying sizes, shown in Table 1. Performance was tested on an Intel Core i7 2.66
GHz computer. Each trial was repeated 10 times on random gridworlds, with average running times
presented. For FIRL, running time is given for 15 iterations, and is also broken down into the
average length of each optimization and fitting step. Although FIRL is often slower than methods
that do not perform feature construction, the results suggest that it scales gracefully with the size of
the problem. The optimization time scales almost linearly, while the tree construction scales worse
than linearly but better than quadratically. The latter can likely be improved for large problems by
using heuristics to minimize evaluations of the expensive stopping test.

In the second experiment, shown in Figure 1, we evaluate accuracy on 64 x 64 gridworlds with
varying numbers of examples, again repeating each trial 10 times. We measured the percentage of
states in which each algorithm failed to predict the expert’s optimal action (“percent misprediction™),
as well as the Euclidean distance between the expectations of the perfect features under the learned
policy and the expert’s policy (normalized by (1 —) as suggested by Abbeel & Ng [1]). For the
mixed policies produced by Abbeel & Ng, we computed the metrics for each policy and mixed them
using the policy weights A [1]. For the non-deterministic policies of LPAL, percent misprediction is

deterministic deterministic non-deterministic non-deterministic
0.2 0.

60% “ 60% % AGN prim.
c 2 c = A8N perf.
S S S S .
B oo c o B 0% c 015 LPAL prin
— o — o LPAL perf.
3 = B = MMP prim
O 409 © O 40% 5] ?
oy G s S MMP perf.
2 30 2 L Q oa FIRL
E i é E ° é
- ot
S 200 ® S 20% o
o 5 o o 5 o005
I~ I~
2 2
Q 10 @© Q 0% ©
L L
0% 0 0% ———————————— L ——
2 4 8 16 32 64 128256 512 2 4 8 16 32 64 128256 512 2 4 8 16 32 64 128256512 2 4 8 16 32 64 128 256 512
examples examples examples examples

Figure 1: Accuracy comparison between FIRL, LPAL, MMP, and Abbeel & Ng, the latter provided
with either perfect or primitive features. Shaded regions show standard error. Although FIRL was
not provided the perfect features, it achieved similar accuracy to prior methods that were.

the mean probability of taking an incorrect action in each state. Results for prior methods are shown
with both the perfect and primitive features. FIRL again ran for 15 iterations, and generally achieved
comparable accuracy to prior algorithms, even when they were provided with perfect features.

5.2 Transfer Between Environments

While the gridworld experiments demonstrate that FIRL performs comparably to existing methods
on this standard example, even without knowing the correct features, they do not evaluate the two
key advantages of FIRL: its ability to construct features from primitive components, and its ability
to generalize learned rewards to different environments. To evaluate reward transfer and see how
the method performs with more realistic component features, we populated a world with objects.
This environment also consists of an Nx NV grid of states, with the same actions as the gridworld.
Objects are randomly placed with 5% probability in each state, and each object has 1 of C' “inner”
and “outer” colors, selected uniformly at random. The algorithm was provided with components of
the form “is the nearest X at most n units away,” where X is a wall or an object with a specific
inner or outer color, giving a total of (2C + 1) N component features. The expert received a reward
of —2 for being within 3 units of an object with inner color 1, otherwise a reward of —1 for being
within 2 units of a wall, otherwise a reward of 1 for being within 1 unit of an object with inner color
2, and 0 otherwise. All other colors acted as distractors, allowing us to evaluate the robustness of
feature construction to irrelevant components. For each trial, the learned reward tree was used to test
accuracy on 10 more random environments, by specifying a reward for each state according to the
regression tree. We will refer to these experiments as “transfer.” Each trial was repeated 10 times.

In Figure 2(a), we evaluate how FIRL performs . T

. ; N . convergence analysis constraint violation
with varying numbers of iterations on both the 803 100
training and transfer environments, as well as
on the gridworld from the previous section. The
results indicate that FIRL converged to a sta-
ble hypothesis more quickly than in the grid-
world, since the square regions in the gridworld
required many more partitions than the object-
relative features. However, the required number FRL growo
of iterations was low on both environments. % 4 6 5 10121416182 2 o4 o8 o8 1

iterations B

Figure 2(a): FIRL con- Figure 2(b): Constraint
verged after a small num- violation was low in non-
ber of iterations. deterministic MDPs.

N
g 3
X R

@
S
B

8
s
percent violation

N
3
*

FIRL with objects
FIRL transfer

percent misprediction
N
5

3
5

In Figure 2(b), we evaluate how often the non-
convex constraints discussed in Section 3 are
violated under our convex approximation. We
measure the percent of examples that are vio-
lated with varying amounts of non-determinism, by varying the probability 3 with which an action
moves the agent to the desired state. 3 = 1 is deterministic, and 3 = 0.2 gives a uniform distribution
over neighboring states. The results suggest that the constraint is rarely violated under the convex
relaxation, even in highly non-deterministic MDPs, and the number of violations decreases sharply
as the MDP becomes more deterministic.

We compared FIRL’s accuracy on the transfer task with Abbeel & Ng and MMP. LPAL was not
used in the comparison because it does not return a reward function, and therefore cannot transfer

deterministic deterministic non-deterministic non-deterministic
e S | - 2 L S R —

60% 60%

D =
P

50%

40%

30%
AN

20% MMP
FIRL
AN transfer
MMP transfer
FIRL transfer

30%

20%

percent misprediction
feature expgctation dist

percent misprediction
feature exp;ctation dist

10% 10%

2 8 14 20 2 8 14 20 ﬂ2 8 14 20 2 8 14 20
colors colors colors colors

Figure 3: Comparison of FIRL and Abbeel & Ng on training environments and randomly generated
transfer environments, with increasing numbers of component features. FIRL maintained higher
transfer accuracy in the presence of distractors by constructing features out of relevant components.

its policy to new environments. Since prior methods do not perform feature construction, they were
provided with all of the component features. The experiments used 64 x 64 environments and 64
examples. The number of colors C was varied from 2 to 20 to test how well the algorithms handle
irrelevant “distractors.” FIRL ran for 10 iterations on each trial. The results in Figure 3 indicate
that accuracy on the training environment remained largely stable, while transfer accuracy gradu-
ally decreased with more colors due to the ambiguity caused by large numbers of distractors. Prior
algorithms were more affected by distractors on the training environments, and their inability to con-
struct features prevented them from capturing a portable “explanation” of the expert’s reward. They
therefore could not transfer the learned policy to other environments with comparable accuracy.
In contrast to the gridworld experiments, the expert’s reward function in these environments was
encoded in terms of logical relationships between the component features, which standard IRL al-
gorithms cannot capture. In the next section, we examine another environment that also exemplifies
the need for feature construction.

5.3 Highway Driving Behaviors

To demonstrate FIRL'’s ability to learn meaningful behaviors, we implemented a driving simulator
inspired by the environments in [1] and [10]. The task is to navigate a car on a three-lane highway.
All other vehicles are moving at speed 1. The agent can drive at speeds 1 through 4, and can move
one lane left or one lane right. The other vehicles can be cars or motorcycles, and can be either
civilian or police, for a total of 4 possibilities. The component features take the form “is a vehicle
of type X at most n car-lengths in front/behind me,” where X can be either all vehicles, cars,
motorcycles, police, or civilian, and 7 is in the range from 0 to 5 car-lengths. There are equivalent
features for checking for cars in front or behind in the lanes to the left and to the right of the agent’s,
as well as a feature for each of the four speeds and each lane the agent can occupy.

The rich feature set of this driving simulator enables interesting behaviors to be demonstrated. For
this experiment, we implemented expert policies for two behaviors: a “lawful” driver and an “out-
law” driver. The lawful driver prefers to drive fast, but does not exceed speed 2 in the right lane, or
speed 3 in the middle lane. The outlaw driver also prefers to drive fast, but slows down to speed 2
or below when within 2 car-lengths of a police vehicle (to avoid arrest).

In Table 2, we compare the policies learned from traces of the two experts by FIRL, MMP, and
Abbeel & Ng’s algorithm. As before, prior methods were provided with all of the component fea-
tures. All algorithms were trained on 30 traces on a stretch of highway 100 car-lengths long, and
tested on 10 novel highways. As can be seen in the supplemental videos, the policy learned by FIRL
closely matched that of the expert, maintaining a high speed whenever possible but not driving fast in
the wrong lane or near police vehicles. The policies learned by Abbeel & Ng’s algorithm and MMP
drove at the minimum speed when trained on either the lawful or outlaw expert traces. Because
prior methods only represented the reward as a linear combination of the provided features, they
were unable to determine the logical connection between speed and the other features. The policies
learned by these methods found the nearest “optimal” position with respect to their learned feature
weights, accepting the cost of violating the speed expectation in exchange for best matching the
expectation of all other (largely irrelevant) features. FIRL, on the other hand, correctly established

“Lawful” policies “Outlaw” policies

percent mis- | feature expect- | average | percent mis- | feature expect- | average
prediction | ation distance speed prediction | ation distance speed

Expert 0.0% 0.000 | 2.410 0.0% 0.000 | 2.375
FIRL 22.9% 0.025 | 2.314 24.2% 0.027 | 2.376
MMP 27.0% 0.111 | 1.068 27.2% 0.096 | 1.056
A&N 38.6% 0.202 | 1.054 39.3% 0.164 | 1.055
Random | 42.7% 0.220 | 1.053 41.4% 0.184 | 1.053

Table 2: Comparison of FIRL, MMP and Abbeel & Ng on the highway environment (left). The
policies learned by FIRL closely match the expert’s average speed, while those of other methods do
not. The difference between the policies is particularly apparent in the supplemental videos, which
can be found at http://graphics.stanford.edu/projects/firl/index.htm

the logical connection between speed and police vehicles or lanes, and drove fast when appropriate,
as indicated by the average speed in Table 2. As a baseline, the table also shows the performance of
a random policy generated by picking weights for the component features uniformly at random.

6 Discussion and Future Work

This paper presents an IRL algorithm that constructs reward features, represented as a regression
tree, out of a large collection of component features. By combining relevant components into logical
conjunctions, the FIRL algorithm is able to discover logical precedence relationships that would not
otherwise be apparent. The learned regression tree concisely captures the structure of the reward
function and acts as a portable “explanation” of the observed behavior in terms of the provided
components, allowing the learned reward function to be transplanted onto different environments.

Feature construction for IRL may be a valuable tool for analyzing the motivations of an agent (such
as a human or an animal) from observed behavior. Research indicates that animals learn optimal
policies for a pattern of rewards [4], suggesting that it may be possible to learn such behavior with
IRL. While it can be difficult to manually construct a complete list of relevant reward features for
such an agent, it is comparatively easier to list all aspects of the environment that a human or animal
is aware of. With FIRL, such a list can be used to form hypotheses about reward features, possibly
leading to increased understanding of the agent’s motivations. In fact, models that perform a variant
of IRL have been shown to correspond well to goal inference in humans [2].

While FIRL achieves good performance on discrete MDPs, in its present form it is unable to handle
continuous state spaces, since the optimization constraints require an enumeration of all states in S.
Approximate linear programming has been used to solve MDPs with continuous state spaces [5], and
a similar approach could be used to construct a tractable set of constraints for the optimization step,
making it possible to perform feature construction on continuous or extremely large state spaces.

Although we found that FIRL converged to a stable hypothesis quickly, it is difficult to provide an
accurate convergence test. Theoretical analysis of convergence is complicated by the fact that regres-
sion trees provide few guarantees. The conventional training error metric is not a good measure of
convergence, because the optimization constraints keep training error consistently low. Instead, we
can use cross-validation, or heuristics such as leaf count and tree depth, to estimate convergence. In
practice, we found this unnecessary, as FIRL consistently converged in very few iterations. Defining
a practical convergence test and analyzing convergence is an interesting avenue for future work.

FIRL may also benefit from future work on the fitting step. A more intelligent hypothesis pro-
posal scheme, perhaps with a Bayesian approach, could more readily incorporate priors on poten-
tial features to penalize excessively deep trees or prevent improbable conjunctions of components.
Furthermore, while regression trees provide a principled method for constructing logical conjunc-
tions of component features, if the desired features are not readily expressible as conjunctions of
simple components, other regression methods may be used in the fitting step. For example, the al-
gorithm could be modified to perform feature adaptation by using the fitting step to adapt a set of
continuously-parameterized features to best fit the reward function.

Acknowledgments. We thank Andrew Y. Ng, Emanuel Todorov, and Sameer Agarwal for helpful
feedback and discussion. This work was supported in part by NSF grant CCF-0641402.

References

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In /CML
’04: Proceedings of the 21st International Conference on Machine Learning. ACM, 2004.

[2] C.L.Baker,J. B. Tenenbaum, and R. R. Saxe. Goal inference as inverse planning. In Proceed-
ings of the 29th Annual Conference of the Cognitive Science Society, 2007.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984.

[4] P. Dayan and B. W. Balleine. Reward, motivation, and reinforcement learning. Neuron,
36(2):285-298, 2002.

[5] D. P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. Operations Research, 51(6):850-865, 2003.

[6] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming (web
page and software), 2008. http://stanford.edu/~boyd/cvx.

[7] A.Y.Ngand S. J. Russell. Algorithms for inverse reinforcement learning. In /CML ’00: Pro-
ceedings of the 17th International Conference on Machine Learning, pages 663—-670. Morgan
Kaufmann Publishers Inc., 2000.

[8] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In IJCAI’07: Pro-
ceedings of the 20th International Joint Conference on Artifical Intelligence, pages 2586-2591.
Morgan Kaufmann Publishers Inc., 2007.

[9] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In /CML
’06: Proceedings of the 23rd International Conference on Machine Learning, pages 729-736.
ACM, 2006.

[10] U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear programming.
In ICML °08: Proceedings of the 25th International Conference on Machine Learning, pages
1032-1039. ACM, 2008.

