Nonlinear Inverse Reinforcement Learning with
Gaussian Processes

Sergey Levine Zoran Popovié¢
Stanford University University of Washington
svlevine@cs.stanford.edu zoran@cs.washington.edu
Vladlen Koltun

Stanford University
vladlen@cs.stanford.edu

Abstract

We present a probabilistic algorithm for nonlinear inverse reinforcement learn-
ing. The goal of inverse reinforcement learning is to learn the reward function in a
Markov decision process from expert demonstrations. While most prior inverse re-
inforcement learning algorithms represent the reward as a linear combination of a
set of features, we use Gaussian processes to learn the reward as a nonlinear func-
tion, while also determining the relevance of each feature to the expert’s policy.
Our probabilistic algorithm allows complex behaviors to be captured from subop-
timal stochastic demonstrations, while automatically balancing the simplicity of
the learned reward structure against its consistency with the observed actions.

1 Introduction

Inverse reinforcement learning (IRL) methods learn a reward function in a Markov decision process
(MDP) from expert demonstrations, allowing the expert’s policy to be generalized to unobserved
situations [7]. Each task is consistent with many reward functions, but not all rewards provide a
compact, portable representation of the task, so the central challenge in IRL is to find a reward with
meaningful structure [7]. Many prior methods impose structure by describing the reward as a linear
combination of hand selected features [1, 12]. In this paper, we extend the Gaussian process model
to learn highly nonlinear reward functions that still compactly capture the demonstrated behavior.

GP regression requires input-output pairs [11], and was previously used for value function approx-
imation [10, 4, 2]. Our Gaussian Process Inverse Reinforcement Learning (GPIRL) algorithm only
observes the expert’s actions, not the rewards, so we extend the GP model to account for the stochas-
tic relationship between actions and underlying rewards. This allows GPIRL to balance the simplic-
ity of the learned reward function against its consistency with the expert’s actions, without assuming
the expert to be optimal. The learned GP kernel hyperparameters capture the structure of the reward,
including the relevance of each feature. Once learned, the GP can recover the reward for the current
state space, and can predict the reward for any unseen state space within the domain of the features.

Previous IRL algorithms generally learn the reward as a linear combination of features, either by
finding a reward under which the expert’s policy has a higher value than all other policies by a margin
[7, 1, 12, 15], or else by maximizing the probability of the reward under a model of near-optimal
expert behavior [6, 9, 17, 3]. While several margin-based methods learn nonlinear reward functions
through feature construction [13, 14, 5], such methods assume optimal expert behavior. To the best
of our knowledge, GPIRL is the first method to combine probabilistic reasoning about stochastic
expert behavior with the ability to learn the reward as a nonlinear function of features, allowing it to
outperform prior methods on tasks with inherently nonlinear rewards and suboptimal examples.



2 Inverse Reinforcement Learning Preliminaries

A Markov decision process is defined as a tuple M = {S, A, T,~,r}, where S is the state space, A
is the set of actions, 7. is the probability of a transition from s € S to s’ € S under action a € A,
v € [0,1) is the discount factor, and r is the reward function. The optimal policy 7* maximizes
the expected discounted sum of rewards E [Y_,°  v'r,, |7*]. In inverse reinforcement learning, the
algorithm is presented with M\ r, as well as expert demonstrations, denoted D = {(i,...,(n }»
where (; is a path ¢; = {(si,0,@i,0); ---, (S, 7, a;, ) }. The algorithm is also presented with features
of the form f : S — R that can be used to represent the unknown reward r.

IRL aims to find a reward function r under which the optimal policy matches the expert’s demon-
strations. To this end, we could assume that the examples D are drawn from the optimal policy
7*. However, real human demonstrations are rarely optimal. One approach to learning from a sub-
optimal expert is to use a probabilistic model of the expert’s behavior. We employ the maximum
entropy IRL (MaxEnt) model [17], which is closely related to linearly-solvable MDPs [3], and has
been used extensively to learn from human demonstrations [16, 17]. Under this model, the prob-
ability of taking a path ( is proportional to the exponential of the rewards encountered along that
path. This model is convenient for IRL, because its likelihood is differentiable [17], and a complete
stochastic policy uniquely determines the reward function [3]. Intuitively, such a stochastic policy is
more deterministic when the stakes are high, and more random when all choices have similar value.

Under this policy, the probability of an action a in state s can be shown to be proportional to the
exponential of the expected total reward after taking the action, denoted P(a|s) o exp(Q%,), where
Q" =r + v7 V*. The value function V" is computed with a “soft” version of the familiar Bellman
backup operator: V% =log )" exp Q¥,. The probability of a in state s is therefore normalized by
exp V¥, giving P(a|s) = exp(Q%, — V¥). Detailed derivations of these equations can be found in
prior work [16]. The complete log likelihood of the data under r can be written as

log P(DIr) = 3 log Plaslsi) = 33 ( e — V) 1)
t 7 t

i

While we can maximize Equation 1 directly to obtain r, such a reward is unlikely to exhibit mean-
ingful structure, and would not be portable to novel state spaces. Prior methods address this problem
by representing r as a linear combination of a set of provided features [17]. However, if r is not lin-
ear in the features, such methods are not sufficiently expressive. In the next section, we describe
how Gaussian processes can be used to learn r as a general nonlinear function of the features.

3 The Gaussian Process Inverse Reinforcement Learning Algorithm

GPIRL represents the reward as a nonlinear function of feature values. This function is modeled as a
Gaussian process, and its structure is determined by its kernel function. The Bayesian GP framework
provides a principled method for learning the hyperparameters of this kernel, thereby learning the
structure of the unknown reward. Since the reward is not known, we use Equation 1 to specify a
distribution over GP outputs, and learn both the output values and the kernel function.

In GP regression, we use noisy observations y of the true underlying outputs u. GPIRL directly
learns the true outputs u, which represent the rewards associated with feature coordinates X,. These
coordinates may simply be the feature values of all states or, as discussed in Section 5, a subset of
all states. The rewards at states that are not included in this subset are inferred by the GP. We also
learn the kernel hyperparameters 6 in order to recover the structure of the reward. The most likely
values of u and 6 are found by maximizing their probability under the expert demonstrations D:

P(u,0|D,X,) x P(D,u,0|X,) = /P(D|r) P(r|u,0,X,)dr| P(u,0|X,) 2)
——

r

IRL term GP posterior GP probability

The log of P(D|r) is given by Equation 1, the GP posterior P(r|u, 6,X,,) is the probability of a
reward function under the current values of u and 0, and P(u, 8|X,,) is the prior probability of a



particular assignment to u and 8. The log of P(u, 8|X,) is the GP log marginal likelihood, which
favors simple kernel functions and values of u that conform to the current kernel matrix [11]:

1 1
log P(u,0|X,) = —§uTKl_171uu ~5 log | Ky ul — g log 27 + log P(6) 3)

The last term log P(6) is a hyperparameter prior, which is discussed in Section 4. The entries of the
covariance matrix K, ,, are given by the kernel function. In order to determine the relevance of each
feature, we use the automatic relevance detection (ARD) kernel, with hyperparameters 8 = {3, A }:

k(xi,x;) = Bexp (—;(Xi —x5) T A(xi — Xj))

The hyperparameter [ is the overall variance, and the diagonal matrix A specifies the weight on each
feature. When A is learned, less relevant features receive low weights, and more relevant features
receive high weights. States distinguished by highly-weighted features can take on different reward
values, while those that have similar values for all highly-weighted features take on similar rewards.

The GP posterior P(r|u, 8, Xy) is a Gaussian distribution with mean KT K},

K.r— KIHK;{IK&U. K, v is the covariance of the rewards at all states with the inducing point
values u, located respectively at X, and X,, [11]. Due to the complexity of P(D|r), the integral in
Equation 2 cannot be computed in closed form. Instead, we can consider this problem as analogous
to sparse approximation for GP regression [8], where a small set of inducing points u acts as the
support for the full set of training points r. In this context, the Gaussian posterior distribution over
r is called the training conditional. One approximation is to assume that the training conditional is
deterministic — that is, has variance zero [8]. This approximation is particularly appropriate in our
case, because if the learned GP is used to predict a reward for a novel state space, the most likely
reward would have the same form as the mean of the training conditional. Under this approximation,
the integral disappears, and r is set to KIuK;}uu. The resulting log likelihood is simply

u and covariance

log P(D,u,8|Xy) = log P(Dlr = K K yu) + log P(u, 0| X,) €

IRL log likelihood GP log likelihood

Once the likelihood is optimized, the reward r = KEUK;7{1u can be used to recover the expert’s
policy on the entire state space. The GP can also predict the reward function for any novel state
space in the domain of the features. The most likely reward for a novel state space is the mean
posterior KEuK_lu, where K, ,, is the covariance of the new states and the inducing points. In
our implementation, the likelihood is optimized with the L-BFGS method, with derivatives provided
in the supplement. When the hyperparameters are learned, the likelihood is generally not convex.
While this is not unusual for GP methods, it does mean that the method can suffer from local optima.
In the supplement, we also describe a simple restart procedure we used to mitigate this problem.

4 Regularization and Hyperparameter Priors

In GP regression, a noise term is often added to the diagonal of the kernel matrix to account for noisy
observations. Since GPIRL learns the noiseless underlying outputs u, there is no cause to add a noise
term, which means that the kernel matrix K, ,, can become singular. Intuitively, this indicates that
two or more inducing points are deterministically covarying, and therefore redundant. To ensure
that no inducing point is redundant, we assume that their positions in feature space Xy, rather than
their values, are corrupted by white noise with variance 0. The expected squared difference in the
k feature values between two points x; and x; is then given by (z;, — ijk)Q + 202, and the new,
regularized kernel function is given by

k(x;,x;) = Bexp (—;(xi — Xj)TA(XZ' - %) — 1i¢j02tr(A)> (5)



The regularization ensures that k(x;,x;) < k(x;,X;) so long as at least one feature is relevant —
that is, tr(A) > 0. While the regularized kernel prevents singular covariance matrices when many
features become irrelevant, the log likelihood can still increase to infinity as A — 0 or 8 — 0: in
both cases, —% log \Ku$u| — 00 and, so long as u — 0, all other terms remain finite.

To prevent such degeneracies, we use a hyperparameter prior that discourages kernels under which
two inducing points become deterministically covarying. As two points u; and u; become de-
terministically related, the magnitude of their partial correlation [Kljlu]l] becomes infinity. We can

therefore prevent degeneracies with a prior term of the form —% >°, ; KLl 127 = —3tr(Kg%), which
discourages large partial correlations between inducing points. Such a prior is dependent on Xj,.
However, unlike in GP regression, X,, and u are parameters of the algorithm rather than data, and

since the inducing point positions are fixed in advance, it is possible to condition the prior on Xy,.

To encourage sparse feature weights A, we also use a sparsity-inducing penalty ¢(A ), resulting in
the prior log P(0|X,) = —%tr(Kfu) — ¢(A). A variety of penalties are suitable, but we obtained
the best results with ¢(A) = >, log(A;; +1). Although we can also optimize for the noise variance

o2, we did not observe that this significantly altered the results, and instead fixed 202 to 1072,

S Inducing Points and Large State Spaces

A straightforward choice for the inducing points X, is the feature values of all states in the state
space S. Unfortunately, the kernel matrix Ky, ,, is constructed and inverted at each iteration of the
optimization in order to compute the gradient. This is a costly procedure: constructing the matrix
has running time O(dx|X,|?) and inverting it is O(|Xy|?), where dx is the number of features. To
make GPIRL tractable on large state spaces, we can instead choose X, to be a small subset of S,
so that only the construction of K, ,, depends on |S|, and this dependence is linear. In principle, the
minimum size of Xy, corresponds to the complexity of the reward function. For example, if the true
reward has two constant regions, it can be represented by just two properly placed inducing points.
In practice, X, must cover the space of feature values well enough to represent an unknown reward
function, but we can nonetheless use many fewer points than there are states in S.

In our implementation, we chose X, to contain the feature values of all states visited in the example
paths, as well as additional random states added to raise | X,,| to a desired size. While this heuristic
worked well in our experiments, we can also view the choice of Xy, as analogous to the choice of
the active set in sparse GP approximation. A number of methods have been proposed for selecting
these sets [8], and applying such methods to GPIRL is a promising avenue for future work.

6 Alternative Kernels

The particular choice of kernel function influences the structure of the learned reward. The stationary
kernel in Equation 5 favors rewards that are smooth with respect to feature values. Other kernels can
be used to learn other types of structure. For example, a reward function might have wide regions
with uniform values, punctuated by regions of high-frequency variation, as is the case for piecewise
constant rewards. A stationary kernel would have difficulty representing such structure. Instead, we
can warp each coordinate x;, of x; by a function wy(z;) to give high resolution to one region, and
low resolution everywhere else. One such function is a sigmoid centered at my, and scaled by ¢j:

1
1+ exp (—%)

wy(Tik) =

k

Replacing x; by w(x;) in Equation 5, we get a regularized warped kernel of the form

k(xi, x;) = Bexp <—; D A [(wi(@in) = wi(an))® + Liggo® (wf () + wZ(%k)ﬂ)
k

The second term in the sum is the contribution of the noise to the expected distance. Assuming o2 is
small, this value can be approximated to first order by setting wy (z;) = Juy

= gz, T Sk, Where s is an



additional parameter that increases the noise in the tails of the sigmoid to prevent degeneracies. The
parameters m, £, and s are added to @ and jointly optimized with u and the other hyperparameters,
using unit variance Gaussian priors for £ and s and gamma priors for m. Note that this procedure
is not equivalent to merely fitting a sigmoid to the reward function, since the reward can still vary
nonlinearly in the high resolution regions around each sigmoid center my. The accompanying sup-
plement includes details about the priors placed on the warp parameters in our implementation, a
complete derivation of wy, and the derivatives of the warped kernel function.

During the optimization, as the sigmoid scales £ become small, the derivatives with respect to the
sigmoid centers m fall to zero. If the centers have not yet converged to the correct values, the
optimization will end in a local optimum. It is therefore more important to address local optima
when using the warped kernel. As mentioned in Section 3, we mitigate the effects of local optima
with a small number of random restarts. Details of the particular random restart technique we used
can also be found in the supplement.

We presented just one example of how an alternative kernel allows us to learn a reward with a
particular structure. Many kernels have been proposed for GPs [11], and this variety of kernel
functions can be used to apply GPIRL to new domains and to extend its generality and flexibility.

7 Experiments

We compared GPIRL with prior methods on several IRL tasks, using examples sampled from the
stochastic MaxEnt policy (see Section 2) as well as human demonstrations. Examples drawn from
the stochastic policy can intuitively be viewed as noisy samples of an underlying optimal policy,
while the human demonstrations contain the stochasticity inherent in human behavior. GPIRL was
compared with the MaxEnt IRL algorithm [17] and FIRL [5], as well as a variant of MaxEnt with
a sparsity-inducing Laplace prior, which we refer to as MaxEnt/Lp. We evaluated a variety of other
margin-based methods, including Abbeel and Ng’s projection algorithm, MMP, MWAL, MMPBoost
and LEARCH [1, 12, 15, 13, 14]. Since GPIRL, FIRL, and MaxEnt consistently produced better
results, the other algorithms are not shown here, but are included in the supplementary result tables.

We compare the algorithms using the “expected value difference” score, which is a measure of how
suboptimal the learned policy is under the true reward. To compute this score, we find the optimal
deterministic policy under each learned reward, measure its expected sum of discounted rewards un-
der the true reward function, and subtract this quantity from the expected sum of discounted rewards
under the true policy. While we could also evaluate the optimal stochastic policies, this would un-
fairly penalize margin-based methods, which are unaware of the MaxEnt model. To determine how
well each algorithm captured the structure of the reward function, we evaluated the learned reward
on the environment on which it was learned, and on 4 additional random environments (denoted
“transfer”’). Algorithms that do not express the reward function in terms of the correct features are
expected to perform poorly on the transfer environments, even if they perform well on the training
environment. Methods that correctly identify relevant features should perform well on both. For
each environment, we evaluated the algorithms with both discrete and continuous-valued features.
In the latter case, GPIRL used the warped kernel in Section 6 and FIRL, which requires discrete
features, was not tested. Each test was repeated 8 times with different random environments.

7.1 Objectworld Experiments

The objectworld is an IV x IV grid of states with five actions per state, corresponding to steps in
each direction and staying in place. Each action has a 30% chance of moving in a different random
direction. Randomly placed objects populate the objectworld, and each is assigned one of C' inner
and outer colors. Object placement is randomized in the transfer environments, while N and C
remain the same. There are 2C' continuous features, each giving the Euclidean distance to the nearest
object with a specific inner or outer color. In the discrete feature case, there are 2C' N binary features,
each one an indicator for a corresponding continuous feature being less than d € {1,..., N}. The
true reward is positive in states that are both within 3 cells of outer color 1 and 2 cells of outer
color 2, negative within 3 cells of outer color 1, and zero otherwise. Inner colors and all other outer
colors are distractors. The algorithms were provided example paths of length 8, and the number of
examples and colors was varied to determine their ability to handle limited data and distractors.



discrete features discrete features transfer continuous features continuous features transfer
30 30 30
GPIRL — GPIRL
MaxEnt MaxEnt
MaxEnt/Lp MaxEnt/Lp
FIRL

30

GPIRL
MaxEnt
MaxEnt/Lp

\/“‘-\——

GPIRL
MaxEnt
MaxEnt/Lp
FIRL

25 25 25

20 20 20

expected vaI:e difference
expected vaI;Je difference
expected val;e difference
expected valaue difference

4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
examples examples examples examples

Figure 1: Results for 32 x 32 objectworlds with C' = 2 and varying numbers of examples. Shading
shows standard error. GPIRL learned accurate rewards that generalized well to new state spaces.

discrete features discrete features transfer continuous features continuous features transfer
30 30 30 30
GPIRL — GPIRL
MaxEnt MaxEnt
MaxEnt/Lp MaxEnt/Lp

FIRL

GPIRL
MaxEnt
MaxEnt/Lp

PIRL
MaxEnt
MaxEntLp
FIRL

25 25 25

20

N

e —— g ——

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
colors colors colors colors

20 20

expected vaI:e difference
expected vaI;Je difference
expected val;e difference
expected valaue difference

Figure 2: Objectworld evaluation with 32 examples and varying numbers of colors C'. GPIRL was
able to perform well even as the number of distractor features increased.

Because of the large number of irrelevant features and the nonlinearity of the reward, this example is
particularly challenging for methods that learn linear reward functions. With 16 or more examples,
GPIRL consistently learned reward functions that performed as well as the true reward, as shown
in Figure 1, and was able to sustain this performance as the number of distractors increased, as
shown in Figure 2. While the performance of MaxEnt and FIRL also improved with additional
examples, they were consistently outperformed by GPIRL. In the case of FIRL, this was likely due
to the suboptimal expert examples. In the case of MaxEnt, although the Laplace prior improved the
results, the inability to represent nonlinear rewards limited the algorithm’s accuracy. These issues
are evident in Figure 3, which shows part of a reward function learned by each method. When using
continuous features, the performance of MaxEnt suffered even more from the increased nonlinearity
of the reward function, while GPIRL maintained a similar level of accuracy.

True Reward GPIRL MaxEnt/Lp FIRL

#00000 outer color 1 objects eeeo0e0 outer color 2 objects eesoee other objects (distractors) 4 — b4 o expert actions

Figure 3: Part of a reward function learned by each algorithm on an objectworld. While GPIRL
learned the correct reward function, MaxEnt was unable to represent the nonlinearities, and FIRL
learned an overly complex reward under which the suboptimal expert would have been optimal.



discrete features discrete features transfer continuous features continuous features transfer
60 60 60 60

GPIRL GPIRL — GPIRL GPIRL

@ 50 MaxEnt ® 50 MaxEnt @ 50 MaxEnt ® 50
= MaxEnt/Lp 2 MaxEnt/Lp e : MaxEnt/Lp 2 MaxEnt/Lp
;Q) FIRL g FIRL ;2; g
L 40 2 40 L 40 & 40
el © © el
® [ ® [
2 30 3 30 2 30 3 30
g g g g
el el e o
2 20 2 20 2 20 2 20
3 ] 3 5]
3 3 & 3
s 10 3 10 s 10 3 10

0 0 0 0

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

examples examples examples examples

Figure 4: Results for 64-car-length highways with varying example counts. While GPIRL achieved
only modest improvement over prior methods on the training environment, the large improvement
in the transfer tests indicates that the underlying reward structure was captured more accurately.

discrete features discrete features transfer continuous features continuous features transfer
60 60 60 60
GPIRL GPIRL GPIRL T R

@ 50 MaxEnt @ 50 MaxEnt @ 50 MaxEnt ® 50 MaxEnt
8 MaxEnt/Lp g MaxEnt/Lp g MaxEnt/Lp g MaxEnt/Lp
Q FIRL [ FIRL Qo Q
& 40 2 40-\*// & 40 L w0
© © © ©
[ [} [ o
3 30 3 30 3 30 3 30
© © [ ©
> > > >
e o ° e
2 20 D 20 2 20 2 20
|5 [5] o [5]
@ @ @ @
@ 10\,~_‘ o ® 10\\ o

o
o
o
o

2 4 8 16 2 4 8 1 4 8 16 2 4 8 16
examples examples examples examples

E)
N

Figure 5: Evaluation on the highway environment with human demonstrations. GPIRL learned a
reward function that more accurately reflected the true policy the expert was attempting to emulate.

7.2 Highway Driving Behavior

In addition to the objectworld environment, we evaluated the algorithms on more concrete behaviors
in the context of a simple highway driving simulator, modeled on the experiment in [5] and similar
evaluations in other work [1]. The task is to navigate a car on a three-lane highway, where all other
vehicles move at a constant speed. The agent can switch lanes and drive at up to four times the speed
of traffic. Other vehicles are either civilian or police, and each vehicle can be a car or motorcycle.
Continuous features indicate the distance to the nearest vehicle of a specific class (car or motorcycle)
or category (civilian or police) in front of the agent, either in the same lane, the lane to the right, the
lane to the left, or any lane. Another set of features gives the distance to the nearest such vehicle in a
given lane behind the agent. There are also features to indiciate the current speed and lane. Discrete
features again discretize the continuous features, with distances discretized in the same way as in
the objectworld. In this section, we present results from synthetic and manmade demonstrations of a
policy that drives as fast as possible, but avoids driving more than double the speed of traffic within
two car-lengths of a police vehicle. Due to the connection between the police and speed features,
the reward for this policy is nonlinear. We also evaluated a second policy that instead avoids driving
more than double the speed of traffic in the rightmost lane. The results for this policy were similar
to the first, and are included in the supplementary result tables.

Figure 4 shows a comparison of GPIRL and prior algorithms on highways with varying numbers
of 32-step synthetic demonstrations of the “police” task. GPIRL only modestly outperformed prior
methods on the training environments with discrete features, but achieved large improvement on the
transfer experiment. This indicates that, while prior algorithms learned a reasonable reward, this
reward was not expressed in terms of the correct features, and did not generalize correctly. With
continuous features, the nonlinearity of the reward was further exacerbated, making it difficult for
linear methods to represent it even on the training environment. In Figure 5, we also evaluate how
GPIRL and prior methods were able to learn the “police” behavior from human demonstrations.



Q

= T T =

m - ] 1Y m m - | W
]

w 3 w7 m W e
2 = z
T m m T
w
G} =

Figure 6: Highway reward functions learned from human demonstration. Road color indicates the
reward at the highest speed, when the agent should be penalized for driving fast near police vehicles.
The reward learned by GPIRL most closely resembles the true one.

Although the human demonstrations were suboptimal, GPIRL was still able to learn a reward func-
tion that reflected the true policy more accurately than prior methods. Furthermore, the similarity
of GPIRL’s performance with the human and synthetic demonstrations suggests that its model of
suboptimal expert behavior is a reasonable reflection of actual human suboptimality. An example of
rewards learned from human demonstrations is shown in Figure 6. Example videos of the learned
policies and human demonstrations, as well as source code for our implementation of GPIRL, can
be found at http://graphics.stanford.edu/projects/gpirl/index.htm

8 Discussion and Future Work

We presented an algorithm for inverse reinforcement learning that represents nonlinear reward func-
tions with Gaussian processes. Using a probabilistic model of a stochastic expert with a GP prior
on reward values, our method is able to recover both a reward function and the hyperparameters of
a kernel function that describes the structure of the reward. The learned GP can be used to predict a
reward function consistent with the expert on any state space in the domain of the features.

In experiments with nonlinear reward functions, GPIRL consistently outperformed prior methods,
especially when generalizing the learned reward to new state spaces. However, like many GP mod-
els, the GPIRL log likelihood is multimodal. When using the warped kernel function, a random
restart procedure was needed to consistently find a good optimum. More complex kernels might
suffer more from local optima, potentially requiring more robust optimization methods.

It should also be noted that our experiments were intentionally chosen to be challenging for algo-
rithms that construct rewards as linear combinations. When good features that form a linear basis for
the reward are already known, prior methods such as MaxEnt would be expected to perform compa-
rably to GPIRL. However, it is often difficult to ensure this is the case in practice, and previous work
on margin-based methods suggests that nonlinear methods often outperform linear ones [13, 14].

When presented with a novel state space, GPIRL currently uses the mean posterior of the GP to
estimate the reward function. In principle, we could leverage the fact that GPs learn distributions
over functions to account for the uncertainty about the reward in states that are different from any of
the inducing points. For example, such an approach could be used to learn a “conservative” policy
that aims to achieve high rewards with some degree of certainty, avoiding regions where the reward
distribution has high variance. In an interactive training setting, such a method could also inform
the expert about states that have high reward variance and require additional demonstrations.

More generally, by introducing Gaussian processes into inverse reinforcement learning, GPIRL can
benefit from the wealth of prior work on Gaussian process regression. For instance, we apply ideas
from sparse GP approximation in the use of a small set of inducing points to learn the reward func-
tion in time linear in the number of states. A substantial body of prior work discusses techniques for
automatically choosing or optimizing these inducing points [8], and such methods could be incorpo-
rated into GPIRL to learn reward functions with even smaller active sets. We also demonstrate how
different kernels can be used to learn different types of reward structure, and further investigation
into the kinds of kernel functions that are useful for IRL is another exciting avenue for future work.

Acknowledgments. We thank Andrew Y. Ng and Krishnamurthy Dvijotham for helpful feedback
and discussion. This work was supported by NSF Graduate Research Fellowship DGE-0645962.



References

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In /CML
'04: Proceedings of the 21st International Conference on Machine Learning, 2004.

[2] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process dynamic programming.
Neurocomputing, 72(7-9):1508-1524, 2009.

[3] K. Dvijotham and E. Todorov. Inverse optimal control with linearly-solvable MDPs. In ICML
’10: Proceedings of the 27th International Conference on Machine Learning, pages 335-342,
2010.

[4] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. In ICML
’05: Proceedings of the 22nd International Conference on Machine learning, pages 201-208,
2005.

[5] S. Levine, Z. Popovié, and V. Koltun. Feature construction for inverse reinforcement learning.
In Advances in Neural Information Processing Systems 23. 2010.

[6] G. Neu and C. Szepesvari. Apprenticeship learning using inverse reinforcement learning and
gradient methods. In Uncertainty in Artificial Intelligence (UAI), 2007.

[7] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In ICML ’00:
Proceedings of the 17th International Conference on Machine Learning, pages 663—-670, 2000.

[8] J. Quifionero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939-1959, 2005.

[9] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In IJCAI’07: Pro-
ceedings of the 20th International Joint Conference on Artifical Intelligence, pages 2586-2591,
2007.

[10] C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In Advances in
Neural Information Processing Systems 16, 2003.

[11] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2005.

[12] N. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In ICML ’06:
Proceedings of the 23rd International Conference on Machine Learning, pages 729-736, 2006.

[13] N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt. Boosting structured prediction for
imitation learning. In Advances in Neural Information Processing Systems 19, 2007.

[14] N. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots, 27(1):25-53, 2009.

[15] U. Syed and R. Schapire. A game-theoretic approach to apprenticeship learning. In Advances
in Neural Information Processing Systems 20, 2008.

[16] B.D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. PhD thesis, Carnegie Mellon University, 2010.

[17] B.D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI Conference on Artificial Intelligence (AAAI 2008), pages 1433—-1438, 2008.



