
Consensus Maximization Tree Search Revisited

Zhipeng Cai
The University of Adelaide

Tat-Jun Chin
The University of Adelaide

Vladlen Koltun
Intel Labs

Abstract

Consensus maximization is widely used for robust fitting
in computer vision. However, solving it exactly, i.e., finding
the globally optimal solution, is intractable. A* tree search,
which has been shown to be fixed-parameter tractable, is one
of the most efficient exact methods, though it is still limited to
small inputs. We make two key contributions towards improv-
ing A* tree search. First, we show that the consensus max-
imization tree structure used previously actually contains
paths that connect nodes at both adjacent and non-adjacent
levels. Crucially, paths connecting non-adjacent levels are
redundant for tree search, but they were not avoided previ-
ously. We propose a new acceleration strategy that avoids
such redundant paths. In the second contribution, we show
that the existing branch pruning technique also deteriorates
quickly with the problem dimension. We then propose a new
branch pruning technique that is less dimension-sensitive
to address this issue. Experiments show that both new tech-
niques can significantly accelerate A* tree search, making
it reasonably efficient on inputs that were previously out
of reach. Demo code is available at https://github.
com/ZhipengCai/MaxConTreeSearch.

1. Introduction
The prevalence of outliers makes robust model fitting

crucial in many computer vision applications. One of the
most popular robust fitting criteria is consensus maximiza-
tion, whereby, given outlier-contaminated data S = {si}Ni=1,
we seek the model θ ∈ Rd that is consistent with the largest
subset of the data. Formally, we solve

maximize
θ

c(θ|S) =
N∑
i=1

I{r(θ|si) ≤ ε}, (1)

where c(θ|S) is called the consensus of θ. The 0/1 valued
indicator function I{·} returns 1 only when si is consistent
with θ, which happens when the residual r(θ|si) ≤ ε. The
form of r(θ|si) will be defined later in Sec. 2. Constant ε is
the predefined inlier threshold, and d is called the “problem
dimension”. Given the optimal solution θ∗ of (1), si is an
inlier if r(θ∗|si) ≤ ε and an outlier otherwise.

Consensus maximization is NP-hard [4], hence, sub-
optimal but efficient methods are generally more practi-
cal. Arguably the most prevalent methods of this type are
RANSAC [11] and its variants [8, 26, 7, 24], which itera-
tively fit models on randomly sampled (minimal) data sub-
sets and return the model with the highest consensus. How-
ever, their inherent randomness makes these methods often
distant from optimal and sometimes unstable. To address this
problem, deterministic optimization techniques [23, 14, 2]
have been proposed, which, with good initializations, usually
outperform RANSAC variants. Nonetheless, a good initial
solution is not always easy to find. Hence, these methods
may still return unsatisfactory results.

The weaknesses of sub-optimal methods motivate re-
searchers to investigate globally optimal methods; however,
so far they are effective on only small input sizes (small d,
N and/or number of outliers o). One of the most efficient
exact methods is tree search [15, 5, 6] (others surveyed later
in Sec. 1.1), which fits (1) into the framework of the LP-
type methods [25, 18]. By using heuristics to guide the tree
search and conduct branch pruning, A* tree search [5, 6]
has been demonstrated to be much faster than Breadth-First
Search (BFS) and other types of globally optimal algorithms.
In fact, tree search is provably fixed-parameter tractable
(FPT) [4]. Nevertheless, as demonstrated in the experiment
of [6] and later ours, A* tree search can be highly inefficient
for challenging data with moderate d (≥ 6) and o (≥ 10).

Our contributions. In this work, we analyze reasons be-
hind the inefficiency of A* tree search and develop improve-
ments to the algorithm. Specifically:
• We demonstrate that the previous tree search algorithm

does not avoid all redundant paths, namely, paths that
connect nodes from non-adjacent levels. Based on this ob-
servation, a new acceleration strategy is proposed, which
can avoid such non-adjacent (and redundant) paths.

• We show that the branch pruning technique in [6] is not
always effective and may sometimes slow down the tree
search due to its sensitivity to d. To address this prob-
lem, we propose a branch pruning technique that is less
dimension-sensitive and hence much more effective.

Experiments demonstrate the significant acceleration achiev-
able using our new techniques (3 orders of magnitude

https://github.com/ZhipengCai/MaxConTreeSearch
https://github.com/ZhipengCai/MaxConTreeSearch

faster on challenging data). Our work represents signifi-
cant progress towards making globally optimal consensus
maximization practical on real data.

1.1. Related Work

Besides tree search, other types of globally optimal meth-
ods include branch-and-bound (BnB) [16, 28, 22], whose
exhaustive search is done by testing all possible θ. However,
the time complexity of BnB is exponential in the size of
the parameter space, which is often large. Moreover, the
bounding function of BnB is problem-dependent and not
always trivial to construct. Another type of methods [20, 9]
enumerate and fit models on all possible bases, where each
basis is a data subset of size p, where p<<N and p is usually
slightly larger than d, e.g., p = d + 1. The number of all
possible bases is

(
N
p

)
, which scales poorly with N and d.

Besides differences in actual runtime, what distinguishes
tree search from the other two types of methods is that tree
search is FPT [4]: its worst case runtime is exponential in d
and o, but polynomial in N .

2. Consensus maximization tree search

We first review several concepts that are relevant to con-
sensus maximization tree search.

2.1. Application range

Tree search requires the residual r(θ|si) to be pseudo-
convex [6]. A simple example is the linear regression residual

r(θ|si) = |aTi θ − bi|, (2)

where each datum si = {ai, bi}, ai ∈ Rd and bi ∈ R.
Another example is the residual used in common multiview
geometry problems [21, 2], which are of the form

r(θ|si) =

∥∥AT
i θ − bi

∥∥
p

cTi θ − di
, (3)

where each datum si = {Ai,bi, ci, di}, Ai ∈ Rd×m,bi ∈
Rm, ci ∈ Rd and di ∈ R. Usually, p is 1, 2 or∞.

2.2. LP-type problem

The tree search algorithm for (1) is constructed by solving
a series of minimax problems, which are of the form

minimize
θ

max
i∈S1

r(θ|si). (4)

Problem (4) minimizes the maximum residual for all data
in S1, which is an arbitrary subset of S. For convenience,
we define f(S1) as the minimum objective value of (4) com-
puted on data S1, and θ(S1) as the (exact) minimizer.

Throughout the paper, we will assume that r(·) is pseudo-
convex and S is non-degenerate (otherwise infinitestimal per-
turbations can be applied to remove degeneracy [18, 6]). Un-
der this assumption, problem (4) has a unique optimal solu-
tion and can be solved efficiently with standard solvers [10].
Furthermore, (4) is provably an LP-type problem [25, 1, 10],
which is a generalization of the linear programming (LP)
problem. An LP-type problem has the following properties:

Property 1 (Monotonicity). For every two sets
S1 ⊆ S2 ⊆ S, f(S1) ≤ f(S2) ≤ f(S).

Property 2 (Locality). For every two sets S1 ⊆ S2 ⊆ S
and every si ∈ S, f(S1) = f(S2) = f(S2 ∪ {si}) ⇒
f(S1) = f(S1 ∪ {si}).

With the above properties, the concept of basis, which is
essential for tree search, can be defined.

Definition 1 (Basis). A basis B in S is a subset of S such
that for every B′ ⊂ B, f(B′) < f(B).

For an LP-type problem (4) with pseudo-convex residuals,
the maximum size of a basis, which we call combinatorial
dimension, is d+ 1.

Definition 2 (Violation set, level and coverage). The vi-
olation set of a basis B is defined as V(B) = {si ∈ S|
r(θ(B)|si) > f(B)}. We call l(B) = |V(B)| the level of B
and C(B) = S\V(B) the coverage of B.

By the above definition,

c(θ(B)|S) = |S| − l(B). (5)

An important property of LP-type problems is that solv-
ing (4) on C(B) and B return the same solution.

Definition 3 (Support set). The level-0 basis for S is called
the support set of S, which we represent as τ(S).

Assume we know the maximal inlier set I for (1), where
|I| = c(θ∗|S). Define B∗ = τ(I) as the support set of I;
B∗ can be obtained by solving (4) on I. Then, l(B∗) is the
size of the minimal outlier set. Our target problem (1) can
then be recast as finding the optimal basis

B∗ = argmin
B⊆S

l(B), s.t. f(B) ≤ ε, (6)

and θ(B∗) is the maximizer of (1). Intuitively, B∗ is the
lowest level basis that is feasible, where a basis B is called
feasible if f(B) ≤ ε.

2.3. A* tree search algorithm

Matoušek [18] showed that the set of bases for an LP-
type problem can be arranged in a tree, where the root node
is τ(S), and the level occupied by a node B on the tree is
l(B) = |V(B)|. Another key insight is that there exists a
path from τ(S) to any higher level basis, where a path is
formed by a sequence of adjacent bases, defined as follows.

Algorithm 1 A* tree search of Chin et al. [6] for (6)
Require: S = {si}Ni=1, threshold ε.

1: Insert B = τ(S) with priority e(B) into queue q.
2: Initialize hash table T to NULL.
3: while q is not empty do
4: Retrieve from q the B with the lowest e(B).
5: if f(B) ≤ ε then
6: return B∗ = B.
7: end if
8: Br ← Attempt to reduce B by TOD method.
9: for each s ∈ Br do

10: if indices of V(B) ∪ {s} do not exist in T then
11: Hash indices of V(B) ∪ {s} into T.
12: B′ ← τ(C(B)\{s}).
13: Insert B′ with priority e(B′) into q.
14: end if
15: end for
16: end while
17: Return error (no inlier set of size greater than p).

Definition 4 (Basis adjacency). Two bases B′ and B are
adjacent if V(B′) = V(B) ∪ {si} for some si ∈ B.

Intuitively, B′ is a direct child of B in the tree. We say
that we “follow the edge” from B to B′ when we compute
τ(C(B)\{si}). Chin et al. [6] solve (6) by searching the
tree structure using the A* shortest path finding technique
(Algorithm 1). Given input data S, A* tree search starts
from the root node τ(S) and iteratively expands the tree
until B∗ is found. The queue q stores all unexpanded tree
nodes. And in each iteration, a basis B with the lowest
evaluation value e(B) is expanded. The expansion follows
the basis adjacency, which computes τ(C(B)\{s}) for all
s ∈ B (Line 12 in Algorithm 1).

The evaluation value is defined as

e(B) = l(B) + h(B), (7)

where h(B) is a heuristic which estimates the number of
outliers in C(B). A* search uses only admissible heuristics.

Definition 5 (Admissibility). A heuristic h is admissible if
h(B) ≥ 0 and h(B) ≤ h∗(B), where h∗(B) is the minimum
number of data that must removed from C(B) to make the
remaining data feasible.

Note that setting e(B) = l(B) (i.e., h(B) = 0) for all B
reduces A* search to breadth-first search (BFS). With an
admissible heuristic, A* search is guaranteed to always find
B∗ before other sub-optimal feasible bases (see [6] for the
proof). Algorithm 2 describes the heuristic hins used in [6].

Intuitively, the algorithm for hins removes a sequence of
bases in the first round of iteration until a feasible subset
F ⊆ C(B) is found. After that, the algorithm iteratively in-
serts each removed basis point s back into F . If the insertion

Algorithm 2 Admissible heuristic hins for A* tree search
Require: B

1: If f(B) ≤ ε, return 0.
2: O ← ∅.
3: while f(B) > ε do
4: O ← O ∪ B, B ← τ(C(B)\B).
5: end while
6: hins ← 0, F ← C(B).
7: for each B ∈ O do
8: for each s ∈ B do
9: B′ ← τ(F ∪ {s}).

10: if f(B′) ≤ ε then
11: F ← F ∪ {s}.
12: else
13: hins ← hins + 1, F ← F ∪ {s}\B′.
14: end if
15: end for
16: end forreturn hins.

of s makes F infeasible, τ(F ∪ {s}) is removed from the
expanded F and the heuristic value hins is increased by 1.

The admissibility of hins is proved in [6, Theorem 4]. In
brief, denote F∗ as the largest feasible subset of C(B). If
F ∪ {s} is infeasible, τ(F ∪ {s}) must contain at least one
point in F∗. Since we only add 1 to hins when this happens,
then h∗(B) ≥ hins(B).

2.4. Avoiding redundant node expansions

Algorithm 1 employs two strategies to avoid redundant
node expansions. In Line 8, before expanding B, a fast
heuristic called True Outlier Detection (TOD) [6] is used to
attempt to identify and remove true outliers from B (more
details in Sec. 4), which has the potential to reduce the size
of the branch starting from B. In Line 10, a repeated basis
check heuristic is performed to prevent bases that have been
explored previously to be considered again (details in Sec. 3).

Our main contributions are two new strategies that im-
prove upon the original methods above, as we will describe
in Secs. 3 and 4. In each of the sections, we will first carefully
analyze the weaknesses of the existing strategies. Sec. 5 will
then put our new strategies in an overall algorithm. Sec. 6
presents the results.

3. Non-adjacent path avoidance
Recall Definition 4 on adjacency: for B and B′ to be

adjacent, their violation sets V(B) and V(B′) must differ by
one point; in other words, it must hold that

|l(B′)− l(B)| = 1. (8)

Given a B, Line 12 in Algorithm 1 generates an adjacent
“child” basis of B by removing a point s from B and solving

(a) Root node Broot. (b) Level-1 node B. (c) Level-1 node B. s2 ∈ C(B). (d) Tree structure

Figure 1. (a–c) Path between non-adjacent bases (B → B′). B′ can be generated from both B and Broot, but it is not adjacent to B since
l(B′) = l(B). Note that Line 10 in Algorithm 1 cannot avoid this non-adjacent path since V(B′) ∪ {s2} = {s1, s2} 6= V(B′) = {s1}.
Panel (d) shows the relationship between the three bases during tree search. In the proposed Non-Adjacent Path Avoidance (NAPA) strategy,
the path drawn in red is not followed. As we will show in Sec. 6, this simple idea provides a massive reduction in runtime of A* tree search.

the minimax problem (4) on C(B)\{s}. In this way,

l(B′) = l(B) + 1. (9)

Iterating the s to be removed thus generates all the adjacent
child bases of B, which allows the tree to be explored.

However, an important phenomenon that is ignored in
Algorithm 1 is, while the above process generates all the
adjacent child bases of B, not all B′ generated in the pro-
cess are adjacent child bases. Figure 1 shows a concrete
example from line fitting (2): from a root node Broot, two
child bases B and B′ are generated by respectively removing
points s2 and s1. However, by further removing s1 from B
and solving (4) on C(B \ {s1}), we obtain B′ again! Since
l(B′) = l(B), these two bases are not adjacent.

In general, non-adjacent paths occur in Algorithm 1 when
some elements of V(B) are in C(B′) after solving the mini-
max problem on C(B \ {s}). While inserting a non-adjacent
B′ into the queue does not affect global optimality, it does
reduce efficiency. This is because the repeated basis check
heuristic in Algorithm 1 assumes that the level of the child
node B′ is always lower than the parent B by 1; this assump-
tion does not hold if the generated basis B′ is not adjacent.
More formally, if B′ is not adjacent to B, then

V(B) ∪ {s} 6= V(B′) (10)

and the repeated basis check in Line 8 in Algorithm 1 fails.
Since the same B′ could be generated from its “real” parent
(e.g., in Figure 1, B′ was also generated by Broot), the same
basis can be inserted into the queue more than once.

Since tree search only needs adjacent paths, we can safely
skip traversing any non-adjacent path without affecting the
final solution. To do this, we propose a Non-Adjacent Path
Avoidance (NAPA) strategy for A* tree search; see Fig. 1(d).
Given a basis B, any non-adjacent basis generated from it
cannot have a level that is higher than l(B). Therefore, we
can simply discard any newly generated basis B′ (Line 12) if
l(B′) ≤ l(B). Though one redundant minimax problem (4)

(a) TOD (b) DIBP

Figure 2. (a) In TOD, on current node B, if s2 is identified as the
true outlier, then the shortest path towards a feasible basis B∗ must
pass through s2 (path rendered in red). All the the other |B| − 1
branches (leading from s1 and s3 in this example) can be skipped.
(b) In DIBP, instead of attempting to identify a single true outlier, a
group SB that contains at least one true outlier (SB = {s1, s2} in
this example) is identified; if this is successful, the other |B|− |SB|
paths (corresponding to s3 in this example) can be skipped. DIBP
is more effective than TOD because it is easier to reject a subset
than a single point as outlier; see Sec. 4.2 for details.

still needs to be solved when finding B′, a much larger cost
for computing e(B′) (which requires to solve multiple prob-
lems (4)) is saved along with all the computation required
for traversing the children of B′. The effectiveness of this
strategy will be demonstrated later in Sec. 6.

4. Dimension-insensitive branch pruning
Our second improvement to A* tree search lies in a

new branch pruning technique. We first review the origi-
nal method (TOD) and then describe our new technique.

4.1. Review of true outlier detection (TOD)

Referring to Line 8 in Algorithm 1 [6], let F∗ be the
largest feasible subset of C(B). A point s ∈ B is said to be
a true outlier if s /∈ F∗, otherwise we call it a true inlier.
Given an infeasible node B, one of the elements in B must
be a true outlier. The goal of TOD is to identify one such
true outlier in B. If s ∈ B is successfully identified as a

true outlier, we can skip the child generation for all the other
points in B without hurting optimality, since s must be on
the shortest path to feasibility via B; see Fig. 2(a). If such
an s can be identified, the reduced subset Br is simply {s}.

The principle of TOD is as follows: define h∗(B|s) as the
minimum number of data points that must be removed from
C(B) to achieve feasibility, with s forced to be feasible. We
can conclude that s ∈ B is a true outlier if and only if

h∗(B|s) > h∗(B); (11)

see [6] for the formal proof. Intuitively, if s is a true inlier,
forcing its feasibility will not change the value of h∗. On
the other hand, if forcing s to be feasible leads to the above
condition, s cannot be a true inlier.

Bound computation for TOD. Unsurprisingly h∗(B|s) is
as difficult to compute as h∗(B). To avoid directly comput-
ing h∗(B|s), TOD computes an admissible heuristic h(B|s)
of h∗(B|s) and an upper bound g(B) of h∗(B). Given s ∈ B,
h(B|s) and g(B), if

h(B|s) > g(B), (12)

then it must hold that

h∗(B|s) ≥ h(B|s) > g(B) ≥ h∗(B), (13)

which implies that s is a true outlier.
As shown in [6], g(B) can be computed as a by-product

of computing hins(B), and h(B|s) is computed by a con-
strained version of hins, which we denote as hins(B|s).
Computing hins(B|s) is done by the constrained version
of Algorithm 2, where all minimax problems (4) required to
solve are replaced by their constrained versions, which are
in the following form:

minimize
θ

max
si∈S1

r(θ|si), (14a)

s.t. r(θ|s′j) ≤ ε, ∀s′j ∈ S ′. (14b)

The only difference between (14) and (4) is the constraint
that all data in S ′ must be feasible. And similar to (4), (14)
is also an LP-type problem which can be solved by standard
solvers [10]. Similar as in (4) we also define f(S1|S ′) as
the minimum objective value of (14) and θ(S1|S ′) as the
corresponding optimal solution.

With the above definition, changing Algorithm 2 to its
constrained version can be simply done by replacing f(B)
(Line 3) and f(B′) (Line 10) by f(B|{s}) and f(B′|{s}).
Why is TOD ineffective? The effectiveness of TOD in
accelerating Algorithm 1 depends on how frequent TOD
can detect a true outlier. When a true outlier for B is de-
tected, TOD prunes |B|−1 branches; on the flipside, if TOD
cannot identify an s ∈ B as the true outlier, the runtime to
compute hins(B|s) will be wasted. In the worst case where

no true outlier is identified for B, Algorithm 2 has to be
executed redundantly for |B| times. Whether TOD can find
the true outlier is largely decided by how well hins(B|s)
approximates h∗(B|s).

We now show that hins(B|s) is usually a poor estimator
of h∗(B|s). Define O∗(B|s) as the smallest subset that must
be removed from C(B)\s to achieve feasibility, with s forced
to be feasible, i.e., |O∗(B|s)| = h∗(B|s). Then, hins(B|s)
and h∗(B|s) will be different if a basis Brem removed during
Algorithm 2 contains multiple elements in O∗(B|s), since
we only add 1 to hins when actually more than 1 points in
Brem should be removed. And the following lemma shows
that the difference between hins(B|s) and h∗(B|s) will be
too large for TOD to be effective if the rate of true outliers
in C(B), i.e., h

∗(B)
C(B) , is too large.

Lemma 1. Condition (12) is always false when

h∗(B)
C(B)

≥ 1

φ
· |C(B)| − 1

|C(B)|
, (15)

where φ is the average size of all Brem during Algorithm 2.

Proof. Since hins(B|s) is the number of Brem during Algo-
rithm 2, hins(B|s) · φ ≤ |C(B)\{s}| = |C(B)| − 1. Hence,

hins(B|s) ≤
|C(B)| − 1

φ
, (16)

Therefore, condition (12) can never be true if

h∗(B) ≥ |C(B)| − 1

φ
. (17)

Dividing both sides of (17) by C(B) leads to (15).

Intuitively, when (15) happens, there are too many out-
liers in C(B) hence too many Brem that include multiple ele-
ments in O∗(B|s), making hins(B|s) too far from h∗(B|s).

In addition, φ is positively correlated with d, and in the
worst case can be d + 1, which makes TOD sensitive to d.
Figure 3 shows the effectiveness of TOD as a function of
d, for problems with linear residual (2). As can be seen,
the outlier rate where TOD can be effective reduces quickly
with d (<15% when d≥7). Note that since g(B) is only an
estimation of h∗(B), the actual range where TOD is effective
can be smaller than the region above the dashed line.

4.2. New pruning technique: DIBP

Due to the above limitation, TOD is often not effective in
pruning; the cost to carry out Line 8 in Algorithm 1 is thus
usually wasted. To address this issue, we propose a more
effective branch pruning technique called DIBP (dimension-
insensitive branch pruning).

DIBP extends the idea of TOD, where instead of search-
ing for one true outlier, we search for a subset SB of B that

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

d = 9

d = 10

Figure 3. Effectiveness of TOD as a function of d. All problem
instances are generated randomly and each solid curve contains
data with true outlier rates h∗(B)

C(B) from 0 to 90%. Note that (15) is
true for a d when the solid curve for the d is below the dashed line.

2 3 4 5 6 7

50

100

150

aaa

aaa

aaa

aaaaaaaaaaaaaaaaaaaaaa

aaa

Figure 4. Effectiveness of DIBP when d = 8. |C(B)| = 200.
hins(B|SB) increases stably along with |SB| and is effective even
when the true outlier rate is 90%. Though only the 50% case
is shown, changing the outlier rate in practice merely affects the
values of hins(B|SB) as long as the data distribution is similar.

must contain at least one true outlier. If such a subset can
be identified, the children of B corresponding to removing
points not in SB can be ignored during node expansion—
again, this is because the shortest path to feasibility via B
must go via SB; Fig. 2(b) illustrates this idea.

To find such an SB, we greedily add points from B into
SB to see whether enforcing the feasibility of SB contradicts
the following inequality

hins(B|SB) > g(B), (18)

which is the extension of (12), with h = hins. Similar
to hins(B|s), hins(B|SB) is computed by the constrained
version of Algorithm 2 with S ′ = SB in problem (14).

The insight is that by adding more and more constraints
into problem (14), the average basis size φ will gradually
reduce, making the right hand side of (15) increase until it
exceeds the left hand side, so that even with large d, branch
pruning will be effective with high true outlier rate. Fig-
ure 4 shows the effectiveness of DIBP for an 8-dimensional
problem with linear residuals. Observe that hins(B|SB) in-
creases steadily along with |SB| and can tolerate more than
90% of true outliers when |SB| = |B| − 1 = 8.

During DIBP, we want to add true outliers into SB as soon
as possible, since (18) can never be true if SB contains no
true outliers. To do so, we utilize the corresponding solution

θg(B) that leads to g(B). During DIBP, the s ∈ B with the
largest residual r(θg(B)|s) will be added into SB first, since
a larger residual means a higher chance that s is a true outlier.
In practice, this strategy often enables DIBP to find close to
minimal-size SB.

For problems with linear residuals, we can further com-
pute an adaptive starting value z(B) of |SB|, where DIBP
can safely skip the first z(B)−1 computations of hins(B|SB)
without affecting the branch pruning result. The value of
z(B) should be max{1, d + 2 − |C(B)|−1g(B) }. The reason is
demonstrated in the following lemma:

Lemma 2. For problems with linear residuals, (18) cannot
be true unless

|SB| > d+ 1− |C(B)| − 1

g(B)
. (19)

Proof. As in (16), we have hins(B|SB) < |C(B)|−1
φ . To

ensure that (18) can be true, we must have g(B) < |C(B)|−1
φ ,

which we rewrite as

φ <
|C(B)| − 1

g(B)
. (20)

And for problems with linear residuals, (14) with S ′ = SB is
a linear program, whose optimal solution resides at a vertex
of the feasible polytope [19, Chapter 13]. This means that
for problem (14), the basis size plus the number of active
constraints at the optimal solution must be d + 1. And
since each absolute-valued constraint in (14b) can at most
contribute one active linear constraint, the maximum number
of active constraints is |SB|. Thus during the computation
of hins(B|SB), the average basis size φ ≥ d + 1 − |SB|.
Substituting this inequality into (20) results in (19).

5. Main algorithm
Algorithm 3 summarizes the A* tree search algorithm

with our new acceleration techniques. A reordering is done
so that cheaper acceleration techniques are executed first.
Specifically, given the current basis B, we iterate through
each element s ∈ B and check first whether it leads to a
repeated adjacent node and skip s if yes (Line 8). Otherwise,
we check whether the node B′ generated by s is non-adjacent
to B and discard B′ if yes (Line 11). If not, we insert B′
into the queue since it cannot be pruned by other techniques.
After that, we perform DIBP (Line 14) and skip the other
elements in B if condition (18) is satisfied. Note that we can
still add s into SB even though it leads to repeated bases.
This strategy makes DIBP much more effective in practice.

6. Experiments
To demonstrate the effectiveness of our new techniques,

we compared the following A* tree search variants:

Algorithm 3 A* tree search with NAPA and DIBP
Require: S = {si}Ni=1, threshold ε.

1: Insert B = τ(S) with priority e(B) into queue q.
2: Initialize hash table T to NULL.
3: while q is not empty do
4: Retrieve from q the B with the lowest e(B).
5: If f(B) ≤ ε then return B∗ = B.
6: SB ← ∅; Sort B descendingly based on r(θg(B)|s).
7: for each s ∈ B do
8: if indices of V(B) ∪ {s} do not exist in T then
9: Hash indices of V(B) ∪ {s} into T.

10: B′ ← τ(C(B)\{s}).
11: if l(B′) > l(B) then.
12: SB ← SB ∪ {s}.
13: Insert B′ with priority e(B′) into q.
14: If |SB| = |B| ∨ (18) is true then break.
15: end if
16: else
17: SB ← SB ∪ {s}.
18: end if
19: end for
20: end while
21: Return error (no inlier set of size greater than p).

• Original A* tree search (A*) [5].
• A* with TOD for branch pruning (A*-TOD) [6].
• A* with non-adjacenct path avoidance (A*-NAPA).
• A*-NAPA with TOD branch pruning (A*-NAPA-TOD).
• A*-NAPA with DIBP branch pruning (A*-NAPA-DIBP).

All variants were implemented in MATLAB 2018b, based
on the original code of A*. For problems with linear resid-
uals, we use the self-implemented vertex-to-vertex algo-
rithm [3] to solve the minimax problems (4) and (14). And
in the non-linear case, these two problems were solved by
the matlab function fminimax. All experiments were exe-
cuted on a laptop with Intel Core 2.60GHz i7 CPU, 16GB
RAM and Ubuntu 14.04 OS.

6.1. Controlled experiment on synthetic data

To analyze the effect of o and N to different methods,
we conducted a controlled experiment on the 8-dimensional
robust linear regression problem with different N and o.
The residual of linear regression is in the form of (2). To
generate data S = {ai, bi}Ni=1, a random model θ ∈ Rd
was first generated and N data points that perfectly fit the
model were randomly sampled. Then, we randomly picked
N − o points as inliers and assigned to the bi of these points
noise uniformly distributed between [−0.1, 0.1]. Then we
assigned to the other o points noise uniformly distributed
from [−5,−0.1) ∪ (0.1, 5] to create a controlled number of
outliers. The inlier threshold ε was set to 0.1.

To verify the superior efficiency of tree search com-
pared to other types of globally optimal methods, we also
tested the Mixed Integer Programming-based BnB algorithm
(MIP) [28] in this experiment. The state-of-the-art Gurobi
solver was used as the optimizer for MIP. MIP was par-
allelized by Gurobi using 8 threads, while all tree search
methods were executed sequentially.

As shown in Figure 5, all A* tree search variants are much
faster than MIP, even though MIP was significantly acceler-
ated by parallel computing. Both NAPA and DIBP brought
considerable acceleration to A* tree search, which can be
verified by the gaps between the variants with and without
these techniques. Note that when N = 200, A*-NAPA had
similar performance with and without TOD, while DIBP
provided stable and significant acceleration for all data.

Interestingly, having a larger N made A* tree search
efficient for a much larger o. This can be explained by
condition (15). With the same o, a larger N meant a lower
true outlier rate, which made (15) less likely.

6.2. Linearized fundamental matrix estimation

Experiments were also conducted on real data. We ex-
ecuted all tree seach variants for linearized fundamental
matrix estimation [6], which used the algebaric error [13,
Sec.11.3] as the residual and ignored the non-convex rank-
2 constraints. 5 image pairs (the first 5 crossroads) were
selected from the sequence 00 of the KITTI Odometry
dataset [12]. For each image pair, the input was a set of
SIFT [17] feature matches generated using VLFeat [27].
The inlier threshold ε was set to 0.03 for all image pairs.

The result is shown in Table 1. We also showed the
number of unique nodes (NUN) generated and the num-
ber of branch pruning steps (NOBP) executed before the
termination of each algorithm. A*-NAPA-DIBP found the
optimal solution in less than 10s for all data, while A* and
A*-TOD often failed to finish in 2 hours. A*-NAPA-DIBP
was faster by more than 500 times on all data compared
to the fastest method among A* and A*-TOD. For the ef-
fectiveness of each technique, applying NAPA to A* of-
ten resulted in more than 10x acceleration. And applying
DIBP further sped up A*-NAPA by more than 1000x on
challenging data (e.g. Frame-198-201). This signifi-
cant acceleration is because many elements in SB were the
ones that led to redundant nodes, which made most non-
redundant paths effectively pruned. TOD was much less ef-
fective than DIBP and introduced extra runtime to A*-NAPA
on Frame-104-108 and Frame-198-201. We also at-
tached oLRS , the estimated number of outliers returned from
LO-RANSAC [8], which is an effective RANSAC variant.
None of the LO-RANSAC results were optimal. A visual-
ization of the tree search result is shown in Figure 6.

0 10 20 30 40

o

0

500

1000

1500

2000

2500

3000

3500

ru
n

ti
m

e
 (

s
)

MIP (parallelized)

A*

A*-TOD

A*-NAPA

A*-NAPA-TOD

A*-NAPA-DIBP

(a) N = 200

0 20 40 60 70

o

0

500

1000

1500

2000

2500

3000

3500

ru
n

ti
m

e
 (

s
)

MIP (parallelized)

A*

A*-TOD

A*-NAPA

A*-NAPA-TOD

A*-NAPA-DIBP

(b) N = 400

Figure 5. Runtime vs o for robust linear regression on synthetic data. d = 8.

Figure 6. (Top) Fundamental matrix estimation result
of A*-NAPA-DIBP on Frame-738-742. (Bottom)
Homography estimation result of A*-NAPA-DIBP on
data BruggeTower. The inliers (in green) in the top
figure were down-sampled to 100 for clarity.

data Frame-104-108 Frame-198-201 Frame-417-420 Frame-579-582 Frame-738-742
d = 8 o = 13 (oLRS = 23); N = 302 o = 13 (oLRS = 19); N = 309 o = 19 (oLRS = 23); N = 385 o = 22 (oLRS = 25); N = 545 o = 14 (oLRS = 32); N = 476

NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s)
A* 163232/0 > 6400 169369/0 > 6400 144560/0 > 6400 136627/0 > 6400 160756/0 > 6400

A*-TOD 134589/119871 > 6400 129680/126911 > 6400 80719/92627 3712.99 55764/58314 2709.21 49586/50118 1729.34
A*-NAPA 35359/0 561.81 23775/0 351.07 175806/0 5993.68 147200/0 > 6400 29574/0 471.15

A*-NAPA-TOD 33165/22275 770.08 19308/13459 451.39 15310/10946 429.06 15792/12073 576.82 14496/10752 373.36
A*-NAPA-DIBP 205/311 7.63 105/160 3.88 172/216 6.85 60/84 3.49 52/77 2.00

A*-NAPA-DIBP vs best previous method faster by best previous method faster by best previous method faster by best previous method faster by best previous method faster by
previous best method A*/A*-TOD > 839x A*/A*-TOD > 1648x A*-TOD 541x A*-TOD 775x A*-TOD 864x

Table 1. Linearized fundamental matrix estimation result. The names of the data are the image indices in the sequence. oLRS is the estimated
outlier number returned by LO-RANSAC. NUN: number of unique nodes generated. NOBP: number of branch pruning steps executed. The
last row shows how much faster A*-NAPA-DIBP was, compared to the fastest previously proposed variants (A* and A*-TOD).

data Adam City Boston Brussels BruggeTower
d = 8 o = 38 (oLRS = 40); N = 282 o = 19 (oLRS = 22); N = 87 o = 43 (oLRS = 44); N = 678 o = 9 (oLRS = 25); N = 231 o = 17 (oLRS = 26); N = 208

NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s)
A* 224/0 538.91 7072/0 > 6400 406/0 2455.03 397/0 437.25 5003/0 > 6400

A*-TOD 38/37 156.98 462/514 910.51 7/6 74.63 359/281 499.77 333/260 298.39
A*-NAPA 168/0 404.77 6481/0 > 6400 234/0 1284.14 264/0 268.85 3731/0 4740.68

A*-NAPA-TOD 38/37 156.98 286/241 485.36 7/6 74.63 249/191 297.91 201/151 161.95
A*-NAPA-DIBP 38/37 156.98 34/40 64.44 7/6 74.63 30/42 50.13 40/48 68.20

A*-NAPA-DIBP vs best previous method faster by best previous method faster by best previous method faster by best previous method faster by best previous method faster by
previous best method A*-TOD same runtime A*-TOD 13.1x A*-TOD same runtime A* 7.7x A*-TOD 3.4x

Table 2. Homography estimation result. oLRS is the estimated outlier number returned by LO-RANSAC. NUN: number of unique nodes
generated. NOBP: number of branch pruning steps executed. The last row shows how much faster A*-NAPA-DIBP was, compared to the
fastest previously proposed variants (A* and A*-TOD).

6.3. Homography estimation (non-linear)

To test all methods on non-linear problems, another exper-
iment for homography estimation [13] was done on “homogr”
dataset1. As before, we picked 5 image pairs, computed the
SIFT matches and used them as the input data. The transfer
error in one image [13] was used as the residual, which was
in the form of (3). ε was set to 4 pixels.

Table 2 shows the result of all methods. Compared to
the linear case, solving non-linear minimax problems (4)
and (14) was much more time-consuming (can be 100x
slower with fminimax). Thus with similar NUN and
NOBP, the runtime was much larger. However, the value
of φ in the non-linear case was usually also much smaller,
which made the heuristic hins and in turn all branch prun-
ing techniques much more effective than in the linear case.
And for easy data such as Boston and Adam, perform-

1http://cmp.felk.cvut.cz/data/geometry2view/
index.xhtml

ing either TOD or DIBP was enough to achieve the highest
speed. Nonetheless, DIBP was still much more effective
than TOD on other data. And DIBP never slowed down the
A* tree search as TOD sometimes did (e.g., in Brussels).
A*-NAPA-DIBP remained fastest on all image pairs. An
example of the visual result is provided in Figure 6.

7. Conclusion
We presented two new acceleration techniques for con-

sensus maximization tree search. The first avoids redundant
non-adjacent paths that exist in the consensus maximiza-
tion tree structure. The second makes branch pruning much
less sensitive to the problem dimension, and therefore much
more reliable. The significant acceleration brought by the
two techniques contributes a solid step towards practical and
globally optimal consensus maximization.

Acknowledgements. We thank Dr. Nan Li for his valu-
able suggestions.

http://cmp.felk.cvut.cz/data/geometry2view/index.xhtml
http://cmp.felk.cvut.cz/data/geometry2view/index.xhtml

References
[1] Nina Amenta, Marshall Bern, and David Eppstein. Optimal

point placement for mesh smoothing. Journal of Algorithms,
30(2):302–322, 1999.

[2] Zhipeng Cai, Tat-Jun Chin, Huu Le, and David Suter. De-
terministic consensus maximization with biconvex program-
ming. In European Conference on Computer Vision (ECCV),
2018.

[3] E. W. Cheney. Introduction to Approximation Theory.
McGraw-Hill, 1966.

[4] Tat-Jun Chin, Zhipeng Cai, and Frank Neumann. Robust
fitting in computer vision: Easy or hard? In European Con-
ference on Computer Vision (ECCV), 2018.

[5] Tat-Jun Chin, Pulak Purkait, Anders Eriksson, and David
Suter. Efficient globally optimal consensus maximisation
with tree search. In Computer Vision and Pattern Recognition
(CVPR), 2015.

[6] Tat-Jun Chin, Pulak Purkait, Anders Eriksson, and David
Suter. Efficient globally optimal consensus maximisation
with tree search. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 39(4):758–772, 2017.

[7] Ondrej Chum and Jiri Matas. Matching with prosac-
progressive sample consensus. In Computer Vision and Pat-
tern Recognition (CVPR), 2005.

[8] Ondřej Chum, Jiřı́ Matas, and Josef Kittler. Locally optimized
RANSAC. In Joint Pattern Recognition Symposium, 2003.

[9] Olof Enqvist, Erik Ask, Fredrik Kahl, and Kalle Åström.
Robust fitting for multiple view geometry. In European Con-
ference on Computer Vision (ECCV), 2012.

[10] David Eppstein. Quasiconvex programming. Combinatorial
and Computational Geometry, 52(3):287–331, 2005.

[11] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Computer Vision and Pattern Recognition (CVPR),
2012.

[13] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press,
2003.

[14] Huu Le, Tat-Jun Chin, and David Suter. An exact penalty
method for locally convergent maximum consensus. In Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[15] Hongdong Li. A practical algorithm for L∞ triangulation
with outliers. In Computer Vision and Pattern Recognition
(CVPR), 2007.

[16] Hongdong Li. Consensus set maximization with guaranteed
global optimality for robust geometry estimation. In Interna-
tional Conference on Computer Vision (ICCV), 2009.

[17] David G Lowe. Object recognition from local scale-invariant
features. In International Conference on Computer Vision
(ICCV), 1999.

[18] Jiřı́. Matoušek. On geometric optimization with few vio-
lated constraints. Discrete and Computational Geometry,
14(4):365–384, 1995.

[19] Jorge Nocedal and Stephen Wright. Numerical Optimization.
Springer Science & Business Media, 2006.

[20] Carl Olsson, Olof Enqvist, and Fredrik Kahl. A polynomial-
time bound for matching and registration with outliers. In
Computer Vision and Pattern Recognition (CVPR), 2008.

[21] Carl Olsson, Anders P Eriksson, and Fredrik Kahl. Efficient
optimization for L∞-problems using pseudoconvexity. In
International Conference on Computer Vision (ICCV), 2007.

[22] Alvaro Parra Bustos and Tat-Jun Chin. Guaranteed outlier
removal for rotation search. In International Conference on
Computer Vision (ICCV), 2015.

[23] Pulak Purkait, Christopher Zach, and Anders Eriksson. Maxi-
mum consensus parameter estimation by reweighted L1 meth-
ods. In Energy Minimization Methods in Computer Vision
and Pattern Recognition (EMMCVPR), 2017.

[24] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas,
and Jan-Michael Frahm. USAC: a universal framework for
random sample consensus. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 35(8):2022–
2038, 2013.

[25] Micha Sharir and Emo Welzl. A combinatorial bound for lin-
ear programming and related problems. In Annual Symposium
on Theoretical Aspects of Computer Science, 1992.

[26] Ben J Tordoff and David W Murray. Guided-MLESAC: Faster
image transform estimation by using matching priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 27(10):1523–1535, 2005.

[27] Andrea Vedaldi and Brian Fulkerson. VLFeat: An open
and portable library of computer vision algorithms. In ACM
International Conference on Multimedia, 2010.

[28] Yinqiang Zheng, Shigeki Sugimoto, and Masatoshi Okutomi.
Deterministically maximizing feasible subsystems for robust
model fitting with unit norm constraints. In Computer Vision
and Pattern Recognition (CVPR), 2011.

