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Abstract
Increasing the scale of reinforcement learning
experiments has allowed researchers to achieve
unprecedented results in both training sophisti-
cated agents for video games, and in sim-to-real
transfer for robotics. Typically such experiments
rely on large distributed systems and require ex-
pensive hardware setups, limiting wider access
to this exciting area of research. In this work
we aim to solve this problem by optimizing the
efficiency and resource utilization of reinforce-
ment learning algorithms instead of relying on
distributed computation. We present the “Sam-
ple Factory”, a high-throughput training system
optimized for a single-machine setting. Our archi-
tecture combines a highly efficient, asynchronous,
GPU-based sampler with off-policy correction
techniques, allowing us to achieve throughput
higher than 105 environment frames/second on
non-trivial control problems in 3D without sacri-
ficing sample efficiency. We extend Sample Fac-
tory to support self-play and population-based
training and apply these techniques to train highly
capable agents for a multiplayer first-person
shooter game. Github: https://github.com/
alex-petrenko/sample-factory

1. Introduction
Training agents in simulated environments is a cornerstone
of contemporary reinforcement learning research. Substan-
tial progress has been made in recent years by applying
reinforcement learning methods to train agents in these fast
and efficient environments, whether it is to solve complex
computer games (Dosovitskiy & Koltun, 2017; Jaderberg
et al., 2019; Vinyals et al., 2019) or sophisticated robotic
control problems via sim-to-real transfer (Müller et al., 2018;
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Hwangbo et al., 2019; Molchanov et al., 2019; Andrychow-
icz et al., 2020).

Despite major improvements in the sample efficiency of
modern learning methods, most of them remain notoriously
data-hungry. For the most part, the level of results in re-
cent years has risen due to the increased scale of experi-
ments, rather than the efficiency of learning. Billion-scale
experiments with complex environments are now relatively
commonplace (Horgan et al., 2018; Espeholt et al., 2018;
Kapturowski et al., 2019), and the most advanced efforts
consume trillions of environment transitions in a single train-
ing session (Berner et al., 2019).

To minimize the turnaround time of these large-scale exper-
iments, the common approach is to use distributed super-
computing systems consisting of hundreds of individual ma-
chines (Berner et al., 2019). Here, we show that by optimiz-
ing the architecture and improving the resource utilization
of reinforcement learning algorithms, we can train agents on
billions of environment transitions even on a single compute
node. We present the “Sample Factory”, a high-throughput
training system optimized for a single-machine scenario.
Sample Factory, built around an Asynchronous Proximal
Policy Optimization (APPO) algorithm, is a reinforcement
learning architecture that allows us to aggressively paral-
lelize the experience collection and achieve throughput as
high as 130000 FPS (environment frames per second) on a
single multi-core compute node with only one GPU. We de-
scribe theoretical and practical optimizations that allow us to
achieve extreme frame rates on widely available commodity
hardware.

We evaluate our algorithm on a set of challenging 3D envi-
ronments and demonstrate how to leverage vast amounts of
simulated experience to train agents that reach high levels
of skill. We then extend Sample Factory to support self-play
and population-based training and apply these techniques to
train highly capable agents for a full multiplayer game of
Doom (Kempka et al., 2016).

2. Prior Work
The quest for performance and scalability has been ongo-
ing since before the advent of deep RL (Li & Schuurmans,
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2011). Higher throughput algorithms allow for faster itera-
tion and wider hyperparameter sweeps for the same amount
of compute resources, and are therefore highly desirable.

The standard implementation of a policy gradient algorithm
is fairly simple. It involves a (possibly vectorized) sampler
that collects environment transitions fromNenvs ≥ 1 copies
of the environment for a fixed number of timesteps T . The
collected batch of experience – consisting ofNenvs×T sam-
ples – is aggregated and an iteration of SGD is performed,
after which the experience can be collected again with an
updated policy. This method has acquired the name Advan-
tage Actor-Critic (A2C) in the literature (Beeching et al.,
2019). While it is straightforward to implement and can be
accelerated with batched action generation on the GPU, it
has significant disadvantages. The sampling process has to
halt when the actions for the next step are being calculated,
and during the backpropagation step. This leads to a signifi-
cant under-utilization of system resources during training.
Other algorithms such as TRPO (Schulman et al., 2015) and
PPO (Schulman et al., 2017) are usually also implemented
in this synchronous A2C style (Dhariwal et al., 2017).

Addressing the shortcomings of the naive implementation,
the Asynchronous Advantage Actor-Critic (A3C) (Mnih
et al., 2016) proposed a distributed scheme consisting of
a number of independent actors, each with its own copy
of the policy. Every actor is responsible for environment
simulation, action generation, and gradient calculation. The
gradients are asynchronously aggregated on a single param-
eter server, and actors query the updated copy of the model
after each collected trajectory.

GA3C (Babaeizadeh et al., 2017) recognized the potential
of using a GPU in an asynchronous implementation for
both action generation and learning. A separate learner
component is introduced, and trajectories of experience are
communicated between the actors and the learner instead
of parameter vectors. GA3C outperforms CPU-only A3C
by a significant margin, although the high communication
cost between CPU actors and GPU predictors prevents the
algorithm from reaching optimal performance.

IMPALA (Espeholt et al., 2018) uses an architecture con-
ceptually similar to GA3C, extended to support distributed
training. An efficient implementation of GPU batching for
action generation leads to increased throughput, with re-
ported training frame rate of 24K FPS for a single machine
with 48 CPU cores, and up to 250K FPS on a cluster with
500 CPUs.

The need for ever larger-scale experiments has focused at-
tention on high-throughput reinforcement learning in re-
cent publications. Decentralized Distributed PPO (Wijmans
et al., 2020) optimizes the distributed policy gradient setup
for multi-GPU clusters and resource-intensive environments

by parallelizing the learners and significantly reducing the
network throughput required. Concurrent with this work,
SEED RL (Espeholt et al., 2019) improves upon the IM-
PALA architecture and achieves high throughput in both
single-machine and multi-node scenarios, although unlike
Sample Factory it focuses on more expensive hardware se-
tups involving multiple accelerators.

Deep RL frameworks also provide high-throughput imple-
mentations of policy gradient algorithms. RLlib (Liang
et al., 2018), based on the distributed computation frame-
work Ray (Moritz et al., 2018), and TorchBeast (Küttler
et al., 2019) provide optimized implementations of the IM-
PALA architecture. Rlpyt (Stooke & Abbeel, 2019) im-
plements highly-efficient asynchronous GPU samplers that
share some ideas with our work, although currently it does
not include asynchronous policy gradient methods such as
IMPALA or APPO.

Methods such as APE-X (Horgan et al., 2018) and R2D2
(Kapturowski et al., 2019) demonstrate the great scalability
of off-policy RL. While off-policy algorithms exhibit state-
of-the-art performance in domains such as Atari (Bellemare
et al., 2013), they may be difficult to extend to the full
complexity of more challenging problems (Vinyals et al.,
2019), since Q-functions may be hard to learn for large
multi-headed and autoregressive action spaces. In this work,
we focused on policy gradient methods, although there is
great potential in off-policy learning. Hybrid methods such
as LASER (Schmitt et al., 2019) promise to combine high
scalability, flexibility, and sample efficiency.

3. Sample Factory
Sample Factory is an architecture for high-throughput rein-
forcement learning on a single machine. When designing
the system we focused on making all key computations fully
asynchronous, as well as minimizing the latency and the
cost of communication between components, taking full
advantage of fast local messaging.

A typical reinforcement learning scenario involves three
major computational workloads: environment simulation,
model inference, and backpropagation. Our key motivation
was to build a system in which the slowest of three work-
loads never has to wait for any other processes to provide
the data necessary to perform the next computation, since
the overall throughput of the algorithm is ultimately defined
by the workload with the lowest throughput. In order to
minimize the amount of time processes spend waiting, we
need to guarantee that the new portion of the input is always
available, even before the next step of computation is about
to start. The system in which the most compute-intensive
workload never idles can reach the highest resource utiliza-
tion, thereby approaching optimal performance.
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Figure 1. Overview of the Sample Factory architecture. N parallel rollout workers simulate k environments each, collecting observations.
These observations are processed by M policy workers, which generate actions and new hidden states via an accelerated forward pass on
the GPU. Complete trajectories are sent from rollout workers to the learner. After the learner completes the backpropagation step, the
model parameters are updated in shared CUDA memory and immediately fetched by the policy workers.

3.1. High-level design

The desire to minimize the idle time for all key computations
motivates the high-level design of the system (Figure 1). We
associate each computational workload with one of three
dedicated types of components. These components commu-
nicate with each other using a fast protocol based on FIFO
queues and shared memory. The queueing mechanism pro-
vides the basis for continuous and asynchronous execution,
where the next computation step can be started immediately
as long as there is something in the queue to process. The
decision to assign each workload to a dedicated compo-
nent type also allows us to parallelize them independently,
thereby achieving optimized resource balance. This is dif-
ferent from prior work (Mnih et al., 2016; Espeholt et al.,
2018), where a single system component, such as an actor,
typically has multiple responsibilities. The three types of
components involved are rollout workers, policy workers,
and learners.

Rollout workers are solely responsible for environment sim-
ulation. Each rollout worker hosts k ≥ 1 environment in-
stances and sequentially interacts with these environments,
collecting observations xt and rewards rt. Note that the roll-
out workers do not have their own copy of the policy, which
makes them very lightweight, allowing us to massively paral-
lelize the experience collection on modern multi-core CPUs.

The observations xt and the hidden states of the agent ht
are then sent to the policy worker, which collects batches
of xt, ht from multiple rollout workers and calls the policy
π, parameterized by the neural network θπ to compute the
action distributions µ(at|xt, ht), and the updated hidden
states ht+1. The actions at are then sampled from the distri-
butions µ, and along with ht+1 are communicated back to
the corresponding rollout worker. This rollout worker uses
the actions at to advance the simulation and collect the next

set of observations xt+1 and rewards rt+1.

Rollout workers save every environment transition to a tra-
jectory buffer in shared memory. Once T environment steps
are simulated, the trajectory of observations, hidden states,
actions, and rewards τ = x1, h1, a1, r1, ..., xT , hT , aT , rT
becomes available to the learner. The learner continuously
processes batches of trajectories and updates the parameters
of the actor θπ and the critic θV . These parameter updates
are sent to the policy worker as soon as they are available,
which reduces the amount of experience collected by the pre-
vious version of the model, minimizing the average policy
lag. This completes one training iteration.

Parallelism. As mentioned previously, the rollout work-
ers do not own a copy of the policy and therefore are es-
sentially thin wrappers around the environment instances.
This allows them to be massively parallelized. Addition-
ally, Sample Factory also parallelizes policy workers. This
can be achieved because all of the current trajectory data
(xt, ht, at, ...) is stored in shared tensors that are accessible
by all processes. This allows the policy workers themselves
to be stateless, and therefore consecutive trajectory steps
from a single environment can be easily processed by any
of them. In practical scenarios, 2 to 4 policy worker in-
stances easily saturate the rollout workers with actions, and
together with a special sampler design (section 3.2) allow
us to eliminate this potential bottleneck.

The learner is the only component of which we run a single
copy, at least as long as single-policy training is concerned
(multi-policy training is discussed in section 3.5). We can,
however, utilize multiple accelerators on the learner through
data-parallel training and Hogwild-style parameter updates
(Recht et al., 2011). Together with large batch sizes typi-
cally required for stable training in complex environments,
this gives the learner sufficient throughput to match the ex-
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Figure 2. a) Batched sampling enables forward pass acceleration
on GPU, but rollout workers have to wait for actions before the
next environment step can be simulated, underutilizing the CPU.
b) Double-buffered sampling splits k environments on the rollout
worker into two groups, alternating between them during sampling,
which practically eliminates idle time on CPU workers.

perience collection rate, unless the computational graph is
highly non-trivial.

3.2. Sampling

Rollout workers and policy workers together form the sam-
pler. The sampling subsystem most critically affects the
throughput of the RL algorithm, since it is often the bot-
tleneck. We propose a specific way of implementing the
sampler that allows for optimal resource utilization through
minimizing the idle time on the rollout workers.

First, note that training and experience collection are de-
coupled, so new environment transitions can be collected
during the backpropagation step. There are no parameter
updates for the rollout workers either, since the job of ac-
tion generation is off-loaded to the policy worker. However,
if not addressed, this still leaves the rollout workers wait-
ing for the actions to be generated by policy workers and
transferred back through interprocess communication.

To alleviate this inefficiency we use Double-Buffered Sam-
pling (Figure 2). Instead of storing only a single environ-
ment on the rollout worker, we instead store a vector of envi-
ronmentsE1, ..., Ek, where k is even for simplicity. We split
this vector into two groups E1, ..., Ek/2, Ek/2+1, ..., Ek,
and alternate between them as we go through the rollout.
While the first group of environments is being stepped
through, the actions for the second group are calculated
on the policy worker, and vice versa. With a fast enough
policy worker and a correctly tuned value for k we can com-
pletely mask the communication overhead and ensure full
utilization of the CPU cores during sampling, as illustrated
in Figure 2. For maximal performance with double-buffered

sampling we want k/2 >
⌈
tinf/tenv

⌉
, where tinf and tenv

are average inference and simulation time, respectively.

3.3. Communication between components

The key to unlocking the full potential of the local, single-
machine setup is to utilize fast communication mechanisms
between system components. As suggested by Figure 1,
there are four main pathways for information flow: two-
way communication between rollout and policy workers,
transfer of complete trajectories to the learner, and transfer
of parameter updates from the learner to the policy worker.
For the first three interactions we use a mechanism based
on PyTorch (Paszke et al., 2019) shared memory tensors.
We note that most data structures used in an RL algorithm
can be represented as tensors of fixed shape, whether they
are trajectories, observations, or hidden states. Thus we
preallocate a sufficient number of tensors in system RAM.
Whenever a component needs to communicate, we copy the
data into the shared tensors, and send only the indices of
these tensors through FIFO queues, making messages tiny
compared to the overall amount of data transferred.

For the parameter updates we use memory sharing on the
GPU. Whenever a model update is required, the policy
worker simply copies the weights from the shared memory
to its local copy of the model.

Unlike many popular asynchronous and distributed imple-
mentations, we do not perform any kind of data serial-
ization as a part of the communication protocol. At full
throttle, Sample Factory generates and consumes more
than 1 GB of data per second, and even the fastest seri-
alization/deserialization mechanism would severely hinder
throughput.

3.4. Policy lag

Policy lag is an inherent property of asynchronous RL al-
gorithms, a discrepancy between the policy that collected
the experience (behavior policy) and the target policy that
is learned from it. The existence of this discrepancy con-
ditions the off-policy training regime. Off-policy learning
is known to be hard for policy gradient methods, in which
the model parameters are usually updated in the direction of
∇ logµ(as|xs)q(xs, as), where q(xs, as) is an estimate of
the policy state-action value. The bigger the policy lag, the
harder it is to correctly estimate this gradient using a set of
samples xs from the behavior policy. Empirically this gets
more difficult in learning problems that involve recurrent
policies, high-dimensional observations, and complex ac-
tion spaces, in which even very similar policies are unlikely
to exhibit the same performance over a long trajectory.

Policy lag in an asynchronous RL method can be caused
either by acting in the environment using an old policy, or
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collecting more trajectories from parallel environments in
one iteration than the learner can ingest in a single minibatch,
resulting in a portion of the experience becoming off-policy
by the time it is processed. We deal with the first issue by
immediately updating the model on policy workers, as soon
as new parameters become available. In Sample Factory the
parameter updates are cheap because the model is stored
in shared memory. A typical update takes less than 1 ms,
therefore we collect a very minimal amount of experience
with a policy that is different from the “master” copy.

It is however not necessarily possible to eliminate the sec-
ond cause. It is beneficial in RL to collect training data from
many environment instances in parallel. Not only does this
decorrelate the experiences, it also allows us to utilize multi-
core CPUs, and with larger values for k (environments per
core), take full advantage of the double-buffered sampler.
In one “iteration” of experience collection, n rollout work-
ers, each running k environments, will produce a total of
Niter = n × k × T samples. Since we update the policy
workers immediately after the learner step, potentially in the
middle of a trajectory, this leads to the earliest samples in
trajectories lagging behind Niter/Nbatch−1 policy updates
on average, while the newest samples have no lag.

One can minimize the policy lag by decreasing T or increas-
ing the minibatch size Nbatch. Both have implications for
learning. We generally want larger T , in the 25–27 range
for backpropagation through time with recurrent policies,
and large minibatches may reduce sample efficiency. The
optimal batch size depends on the particular environment,
and larger batches were shown to be suitable for complex
problems with noisy gradients (McCandlish et al., 2018).

Additionally, there are two major classes of techniques de-
signed to cope with off-policy learning. The first idea is to
apply trust region methods (Schulman et al., 2015; 2017):
by staying close to the behavior policy during learning, we
improve the quality of gradient estimates obtained using
samples from this policy. Another approach is to use impor-
tance sampling to correct the targets for the value function
V π to improve the approximation of the discounted sum of
rewards under the target policy (Harutyunyan et al., 2016).
IMPALA (Espeholt et al., 2018) introduced the V-trace al-
gorithm that uses truncated importance sampling weights
to correct the value targets. This was shown to improve the
stability and sample-efficiency of off-policy learning.

Both methods can be applied independently, as V-trace
corrects our training objective and the trust region guards
against destructive parameter updates. Thus we imple-
mented both V-trace and PPO clipping in Sample Factory.
Whether to use these methods or not can be considered a
hyperparameter choice for a specific experiment. We find
that a combination of PPO clipping and V-trace works well
across tasks and yields stable training, therefore we decided

to use both methods in all experiments reported in the paper.

3.5. Multi-agent learning and self-play

Some of the most advanced recent results in deep RL have
been achieved through multi-agent reinforcement learning
and self-play (Bansal et al., 2018; Berner et al., 2019).
Agents trained via self-play are known to exhibit higher
levels of skill than their counterparts trained in fixed sce-
narios (Jaderberg et al., 2019). As policies improve during
self-play they generate a training environment of gradually
increasing complexity, naturally providing a curriculum for
the agents and allowing them to learn progressively more
sophisticated skills. Complex behaviors (e.g. cooperation
and tool use) have been shown to emerge in these training
scenarios (Baker et al., 2020).

There is also evidence that populations of agents training
together in multi-agent environments can avoid some fail-
ure modes experienced by regular self-play setups, such as
early convergence to local optima or overfitting. A diverse
training population can expose agents to a wider set of ad-
versarial policies and produce more robust agents, reaching
higher levels of skill in complex tasks (Vinyals et al., 2019;
Jaderberg et al., 2019).

To unlock the full potential of our system we add support for
multi-agent environments, as well as training populations of
agents. Sample Factory naturally extends to multi-agent and
multi-policy learning. Since the rollout workers are mere
wrappers around the environment instances, they are totally
agnostic to the policies providing the actions. Therefore to
add more policies to the training process we simply spawn
more policy workers and more learners to support them. On
the rollout workers, for every agent in every multi-agent
environment we sample a random policy πi from the popu-
lation at the beginning of each episode. The action requests
are then routed to their corresponding policy workers using
a set of FIFO queues, one for every πi. The population-
based setup that we use in this work is explained in more
detail in Section 4.

4. Experiments
4.1. Computational performance

Since increasing throughput and reducing experiment
turnaround time was the major motivation behind our work,
we start by investigating the computational aspects of sys-
tem performance. We measure training frame rate on two
hardware systems that closely resemble commonly available
hardware setups in deep learning research labs. In our exper-
iments, System #1 is a workstation-level PC with a 10-core
CPU and a GTX 1080 Ti GPU. System #2 is equipped with
a server-class 36-core CPU and a single RTX 2080 Ti.
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Figure 3. Training throughput, measured in environment frames per second.

As our testing environments we use three simulators: Atari
(Bellemare et al., 2013), VizDoom (Kempka et al., 2016),
and DeepMind Lab (Beattie et al., 2016). While that
Atari Learning Environment is a collection of 2D pixel-
based arcade games, VizDoom and DMLab are based on
the rendering engines of immersive 3D first-person games,
Doom and Quake III. Both VizDoom and DMLab feature
first-person perspective, high-dimensional pixel observa-
tions, and rich configurable training scenarios. For our
throughput measurements in Atari we used the game Break-
out, with grayscale frames in 84 × 84 resolution and 4-
framestack. In VizDoom we chose the environment Battle
described in section 4.3, with the observation resolution of
128×72×3. Finally, for DeepMind Lab we used the environ-
ment rooms_collect_good_objects from DMLab-30, also re-
ferred to as seekavoid_arena_01 (Espeholt et al., 2018). The
resolution for DeepMind Lab is kept at standard 96×72×3.
We follow the original implementation of IMPALA and use
a CPU-based software renderer for Lab environments. We
noticed that higher frame rate can be achieved when using
GPUs for environment rendering, especially on System #1
(see appendix). The reported throughput is measured in sim-
ulated environment steps per second, and in all three testing
scenarios we used traditional 4-frameskip, where the RL
algorithm receives a training sample every 4 environment
steps.

We compare performance of Sample Factory to other high-
throughput policy gradient methods. Our first baseline is an
original version of the IMPALA algorithm (Espeholt et al.,
2018). The second baseline is IMPALA implemented in
RLlib (Liang et al., 2018), a high-performance distributed
RL framework. Third is a recent evolution of IMPALA from
DeepMind, SeedRL (Espeholt et al., 2019). Our final com-
parison is against a version of PPO with asynchronous sam-
pling from the rlpyt framework (Stooke & Abbeel, 2019),
one of the fastest open-source RL implementations. We
use the same model architecture for all methods, a Con-

vNet with three convolutional layers, an RNN core, and
two fully-connected heads for the actor and the critic. Full
benchmarking details, including hardware configuration and
model architecture are provided in the supplementary files.

Figure 3 illustrates the training throughput in different con-
figurations averaged over five minutes of continuous training
to account for performance fluctuations caused by episode
resets and other factors. Aside from showing the peak frame
rate we also demonstrate how the performance scales with
the increased number of environments sampled in parallel.

Sample Factory outperforms the baseline methods in most
of the training scenarios. Rlpyt and SeedRL follow closely,
matching Sample Factory performance in some configura-
tions with a small number of environments. Both IMPALA
implementations fail to efficiently utilize the resources in a
single-machine deployment and hit performance bottlenecks
related to data serialization and transfer. Additionally, their
higher per-actor memory usage did not allow us to sample
as many environments in parallel. We omitted data points
for configurations that failed due to lack of memory or other
resources.

Figure 4 demonstrates how the system throughput translates
into raw wall-time training performance. Sample Factory
and SeedRL implement similar asynchronous architectures
and demonstrate very close sample efficiency with equiva-
lent sets of hyperparameters. We are therefore able to com-
pare the training time directly. We trained agents on two
standard VizDoom environments. The plots demonstrate
a 4x advantage of Sample Factory over the state-of-the-art
baseline. Note that direct fair comparison with the fastest
baseline, rlpyt, is not possible since it does not implement
asynchronous training. In rlpyt the learner waits for all
workers to finish their rollouts before each iteration of SGD,
therefore increasing the number of sampled environments
also increases the training batch size, which significantly
affects sample efficiency. This is not the case for SeedRL
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Figure 4. Direct comparison of wall-time performance. We show
the mean and standard deviation of four training runs for each
experiment.

and Sample Factory, where a fixed batch size can be used
regardless of the number of environments simulated.

Finally, we also analyzed the theoretical limits of RL train-
ing throughput. By stripping away all computationally ex-
pensive workloads from our system we can benchmark a
bare-bones sampler that just executes a random policy in
the environment as quickly as possible. The framerate of
this sampler gives us an upper bound on training perfor-
mance, emulating an ideal RL algorithm with infinitely fast
action generation and learning. Table 1 shows that Sample
Factory gets significantly closer to this ideal performance
than the baselines. This experiment also shows that fur-
ther optimization may be possible. For VizDoom, for ex-
ample, the sampling rate is so high that the learner loop
completely saturates the GPU even with relatively shallow
models. Therefore performance can be further improved
by using multiple GPUs in data-parallel mode, or, alterna-
tively, we can train small populations of agents, with learner
processes of different policies spread across GPUs.

4.2. DMLab-30 experiment

IMPALA (Espeholt et al., 2018) showed that with sufficient
computational power it is possible to move beyond single-
task RL and train one agent to solve a set of 30 diverse
pixel-based environments at once. Large-scale multi-task
training can facilitate the emergence of complex behaviors,

Atari, FPS VizDoom, FPS DMLab, FPS

Pure simulation 181740 (100%) 322907 (100%) 49679 (100%)

DeepMind IMPALA 9961 (5.3%) 10708 (3.3%) 8782 (17.7%)
RLlib IMPALA 22440 (12.3%) 12391 (3.8%) 13932 (28.0%)
SeedRL V-trace 39726 (21.9%) 34428 (10.7%) 34773 (70.0%)
rlpyt PPO 68880 (37.9%) 73544 (22.8%) 32948 (66.3%)

SampleFactory APPO 135893 (74.8%) 146551 (45.4%) 42149 (84.8%)

Table 1. Peak throughput of various RL algorithms on System #2
in environment frames per second and as percentage of the optimal
frame rate.

which motivates further investment in this research direc-
tion. To demonstrate the efficiency and flexibility of Sample
Factory we use our system to train a population of four
agents on DMLab-30 (Figure 5). While the original im-
plementation relied on a distributed multi-server setup, our
agents were trained on a single 36-core 4-GPU machine.
Sample Factory reduces the computational requirements for
large-scale experiments and makes multi-task benchmarks
like DMLab-30 accessible to a wider research community.
To support future research, we also release a dataset of
pre-generated environment layouts for DMLab-30 which
contains a sufficient number of unique environments for
1010-sample training and beyond. This dataset removes
the need to dynamically generate new layouts during train-
ing, which leads to a multifold increase in throughput on
DMLab-30.
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Figure 5. Mean capped human-normalized training score (Espeholt
et al., 2018) for a single-machine DMLab-30 PBT run with Sample
Factory. (Compared to cluster-scale IMPALA deployment.)

4.3. VizDoom experiments

We further use Sample Factory to train agents on a set of
VizDoom environments. VizDoom provides challenging
scenarios with very high potential skill cap. It supports rapid
experience collection at fairly high input resolution. With
Sample Factory, we can train agents on billions of environ-
ment transitions in a matter of hours (see Figure 3). Despite
substantial effort put into improving VizDoom agents, in-
cluding several years of AI competitions, the best reported
agents are still far from reaching expert-level human perfor-
mance (Wydmuch et al., 2019).

We start by examining agent performance in a set of basic
environments included in the VizDoom distribution (Figure
6). Our algorithm matches or exceeds the performance re-
ported in prior work on the majority of these tasks (Beeching
et al., 2019).

We then investigate the performance of Sample Factory
agents in four advanced single-player game modes: Battle,
Battle2, Duel, and Deathmatch. In Battle and Battle2, the
goal of the agent is to defeat adversaries in an enclosed maze
while maintaining health and ammunition. The maze in Bat-
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Figure 6. Training curves for standard VizDoom scenarios. We show the mean and standard deviation for ten independent experiments
conducted for each scenario.

tle2 is a lot more complex, with monsters and healthpacks
harder to find. The action set in the battle scenarios includes
five independent discrete action heads for moving, aiming,
strafing, shooting, and sprinting. As shown in Figure 7,
our final scores on these environments significantly exceed
those reported in prior work (Dosovitskiy & Koltun, 2017;
Zhou et al., 2019).

We also introduce two new environments, Duel and Death-
match, based on popular large multiplayer maps often cho-
sen for competitive matches between human players. Single-
player versions of these environments include scripted in-
game opponents (bots) and can thus emulate a full Doom
multiplayer gameplay while retaining high single-player
simulation speed. We used in-game opponents that are in-
cluded in standard Doom distributions. These bots are pro-
grammed by hand and have full access to the environment
state, unlike our agents, which only receive pixel observa-
tions and auxiliary info such as the current levels of health
and ammunition.

For Duel and Deathmatch we extend the action space to also
include weapon switching and object interaction, which
allows the agent to open doors and call elevators. The
augmented action space fully replicates a set of controls
available to a human player. This brings the total number of
possible actions to ∼ 1.2× 104, which makes the policies
significantly more complex than those typically used for
Atari or DMLab. We find that better results can be achieved
in these environments when we repeat actions for two con-
secutive frames instead of the traditional four (Bellemare
et al., 2013), allowing the agents to develop precise move-
ment and aim. In Duel and Deathmatch experiments we
use a 36-core PC with four GPUs to harness the full power
of Sample Factory and train a population of 8 agents with
population-based training. The final agents beat the in-game
bots on the highest difficulty in 100% of the matches in both
environments. In Deathmatch our agents defeat scripted op-
ponents with an average score of 80.5 versus 12.6. In Duel
the average score is 34.7 to 3.6 frags per episode (Figure 8).

Self-play experiment. Using the networking capabilities
of VizDoom we created a Gym interface (Brockman et al.,
2016) for full multiplayer versions of Duel and Deathmatch
environments. In our implementation we start a separate

environment instance for every participating agent, after
which these environments establish network connections
using UDP sockets. The simulation proceeds one step at a
time, synchronizing the state between the game instances
connected to the same match through local networking. This
environment allows us to evaluate the ultimate configuration
of Sample Factory, which includes both multi-agent and
population-based training.

We use this configuration to train a population of eight
agents playing against each other in 1v1 matches in a Duel
environment, using a setup similar to the “For The Win”
(FTW) agent described in (Jaderberg et al., 2019). As in
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scenarios with scripted opponents, within one episode our
agents optimize environment reward based on game score
and in-game events, including positive reinforcement for
scoring a kill or picking up a new weapon and penalties
for dying or losing armor. The agents are meta-optimized
through hyperparameter search via population-based train-
ing. The meta-objective in the self-play case is simply
winning, with a reward of +1 for outscoring the opponent
and 0 for any other outcome. This is different from our ex-
periments with scripted opponents, where the final objective
for PBT was based on the total number of kills, because
agents quickly learned to win 100% of the matches against
scripted bots.

During population-based training we randomly mutate the
bottom 70% of the population every 5× 106 environment
frames, altering hyperparameters such as learning rate, en-
tropy coefficient, and reward weights. If the win rate of the
policy is less than half of the best-performing agent’s win
rate, we simply copy the model weights and hyperparame-
ters from the best agent to the underperforming agent and
continue training.

As in our experiments with scripted opponents, each of
the eight agents was trained for 2.5 × 109 environment
frames on a single 36-core 4-GPU server, with the whole
population consuming ∼ 18 years of simulated experience.
We observe that despite a relatively small population size,
a diverse set of strategies emerges. We then simulated 100
matches between the self-play (FTW) agent and the agent
trained against scripted bots, selecting the agent with the
highest score from both populations. The results were 78
wins for the self-play agent, 3 losses, and 19 ties. This
demonstrates that population-based training resulted in more
robust policies (Figure 9), while the agent trained against
bots ultimately overfitted to a single opponent type. Video
recordings of our agents can be found at https://sites.
google.com/view/sample-factory.

5. Discussion
We presented an efficient high-throughput reinforcement
learning architecture that can process more than 105 envi-
ronment frames per second on a single machine. We aim to
democratize deep RL and make it possible to train whole
populations of agents on billions of environment transitions
using widely available commodity hardware. We believe
this is an important area of research, as it can benefit any
project that leverages model-free RL. With our system ar-
chitecture, researchers can iterate on their ideas faster, thus
accelerating progress in the field.

We also want to point out that maximizing training efficiency
on a single machine is equally important for distributed sys-
tems. In fact, Sample Factory can be used as a single node in

Figure 9. Behavior of an agent trained via self-play. Top: Agents
tend to choose the chaingun to shoot at their opponents from
longer distance. Bottom: Agent opening a secret door to get a
more powerful weapon.

a distributed setup, where each machine has a sampler and
a learner. The learner computes gradients based on locally
collected experience only, and learners on multiple nodes
can then synchronize their parameter updates after every
training iteration, akin to DD-PPO (Wijmans et al., 2020).

We showed the potential of our architecture by training
highly capable agents for a multiplayer configuration of the
immersive 3D game Doom. We chose the most challenging
scenario that exists in first-person shooter games – a duel.
Unlike multiplayer deathmatch, which tends to be chaotic,
the duel mode requires strategic reasoning, positioning, and
spatial awareness. Despite the fact that our agents were
able to convincingly defeat scripted in-game bots of the
highest difficulty, they are not yet at the level of expert
human players. One of the advantages human players have
in a duel is the ability to perceive sound. An expert human
player can hear the sounds produced by the opponent (ammo
pickups, shots fired, etc.) and can integrate these signals
to determine the opponent’s position. Recent work showed
that RL agents can beat humans in pixel-based 3D games
in limited scenarios (Jaderberg et al., 2019), but the task
of defeating expert competitors in a full game, as played
by humans, requires additional research, for example into
fusing information from multiple sensory systems.
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