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Abstract
Deep equilibrium networks (DEQs) are a new
class of models that eschews traditional depth in
favor of finding the fixed point of a single non-
linear layer. These models have been shown to
achieve performance competitive with the state-
of-the-art deep networks while using significantly
less memory. Yet they are also slower, brittle to
architectural choices, and introduce potential in-
stability to the model. In this paper, we propose
a regularization scheme for DEQ models that ex-
plicitly regularizes the Jacobian of the fixed-point
update equations to stabilize the learning of equi-
librium models. We show that this regularization
adds only minimal computational cost, signifi-
cantly stabilizes the fixed-point convergence in
both forward and backward passes, and scales
well to high-dimensional, realistic domains (e.g.,
WikiText-103 language modeling and ImageNet
classification). Using this method, we demon-
strate, for the first time, an implicit-depth model
that runs with approximately the same speed and
level of performance as popular conventional deep
networks such as ResNet-101, while still main-
taining the constant memory footprint and archi-
tectural simplicity of DEQs. Code is available
here.

1. Introduction
While conventional deep networks like ResNets (He et al.,
2016) and Transformers (Vaswani et al., 2017) rely on hi-
erarchical layer stacking, the recently-proposed deep equi-
librium networks (DEQs) (Bai et al., 2019) directly model
the “infinite-depth” representation of a single layer fθ by
solving for its fixed point (i.e., “equilibrium”) z?:

z? = fθ(z
?;x),

where x is the original input. Importantly, to train these
models, one could directly differentiate through the final
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equilibrium z? by the implicit function theorem (Krantz &
Parks, 2012), irrespective of the method used to solve for
this equilibrium in the forward pass. Therefore, like other
implicit-depth architectures such as Neural ODEs (Chen
et al., 2018), DEQs have the notable advantages that their
forward passes can rely on any black-box root solvers (e.g.,
Newton, quasi-Newton, simplest forward iterations), and
that their training only consumes O(1) memory. With this
formulation, prior works have managed to extend the DEQ
framework for multiple large-scale applications, such as
language modeling (Bai et al., 2019) and large-scale image
classification or segmentation (Bai et al., 2020).

However, these models suffer from a few issues. First,
despite their memory efficiency, DEQs are also slower than
conventional deep networks that achieve the same level
of accuracy. Second, the number of iterations required to
solve for the equilibrium quickly grows over the course
of training, indicating a trend for approaching instability.
Third, the DEQ model is sensitive to architectural choices,
and sometimes even small modifications could break the
model’s stability of convergence. Some recent works have
tackled this third issue by exploiting provably convergent
layers via monotone operator splitting theories (Winston
& Kolter, 2020) and Lipschitz boundedness (Revay et al.,
2020). However, these structural solutions rely extensively
on specific layer parameterizations, rendering DEQ models
unscalable and even more inflexible.

In this paper, we first summarize and provide empirical evi-
dence on all of these downsides of the equilibrium networks
that have so far thwarted many from extending DEQs to
both broader applications and more architectural variants.
To address these issues, we further propose a regularization
solution to improve on DEQ models’ stability, efficiency
and flexibility. Importantly, while prior DEQs adopted regu-
larization methods direcly borrowed from explicit deep net-
works (e.g., recurrent dropout (Gal & Ghahramani, 2016)),
we introduce a simple and theoretically-motivated Jacobian
regularization pursuant to DEQ models’ implicitness. We
will discuss in detail how this Jacobian regularization relates
to the contractivity of DEQ’s forward non-linear system and
backward linear system, and is thus able to effectively stabi-
lize not only forward but also backward dynamics of DEQ
networks. There are two immediate benefits of the resulting
stability in the dynamics. First, solving a DEQ requires
far fewer iterations than before, which makes regularized

https://github.com/locuslab/deq
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DEQs significantly faster than their unregularized counter-
parts. Second, this model class becomes much less brittle to
architectural variants that would otherwise break the DEQ.

We validate the proposed regularization by experiments on
both toy-scale synthetic tasks and large-scale real datasets
across domains: word-level language modeling on WikiText-
103 (Merity et al., 2017) and high-resolutional image clas-
sification on the full ImageNet dataset (Deng et al., 2009).
Empirically, our regularized DEQs are generally 2x to 3x
faster than prior DEQs, and can be accelerated to be as fast
as explicit deep networks (e.g., ResNets, DenseNets, and
Transformers). This is the first time that implicit models
are accelerated to this level without sacrificing scalability,
accuracy, or structural flexibility. With their O(1) memory
footprint, this further establishes implicit models as a strong
competitor to explicit deep architectures.

2. Background & Related Work
While explicit deep networks hierarchically stack layers to
build a computation graph for their forward and backward
propagations, implicit models (Amos & Kolter, 2017; Chen
et al., 2018; El Ghaoui et al., 2019; Gould et al., 2019; Bai
et al., 2019) do not have a prescribed computation graph.
Instead these models solve for a non-linear system. One
example is the Neural ODE (Chen et al., 2018), which solves
an initial-value ODE problem that involves a residual layer.
Another example, which is the primary focus of our work,
is the deep equilibrium network (DEQ) (Bai et al., 2019),
which reduces the forward pass to a root-solving problem.
In this section, we introduce the basics of DEQ models and
the relevant threads of work, followed by a discussion of
prior approaches to regularizing implicit models.

2.1. Deep Equilibrium Models

Given a layer/block fθ (which may contain a few shallow
sublayers) and an input x, a deep equilibrium model aims
to approximate an “infinite-level” layer stacking of the form
z[i+1] = fθ(z

[i];x) (where i = 1, . . . , L, with L→∞) by
directly solving for its fixed-point representation:

z? = fθ(z
?;x).

One of the appealing properties of this fixed-point formu-
lation is that one can implicitly differentiate through the
equilibrium feature, without dependency on any intermedi-
ate activations in the forward pass. Formally, given a loss `,
one can directly compute the gradient using the final output:

∂`

∂(·) =
∂`

∂z?
(I − Jfθ (z?))−1

∂fθ(z
?;x)

∂(·) ,

where Jfθ (z
?) is the Jacobian matrix at equilibrium z?.

To solve for the equilibrium, Bai et al. (2019) proposed to
use Broyden’s method (Broyden, 1965) to find the root of

fθ(z
?;x)− z? = 0; later works (Winston & Kolter, 2020;

Revay et al., 2020) and a recent tutorial (Duvenaud et al.,
2020) have applied other algorithms, such as Peaceman-
Rachford splitting (Peaceman & Rachford, 1955) and An-
derson acceleration (Anderson, 1965).

Compared to Neural ODEs, deep equilibrium networks
have been demonstrated to scale well to large and high-
dimensional tasks, such as language modeling, ImageNet
classification, and semantic segmentation (Bai et al., 2019;
2020), and are thus more applicable to domains where deep
learning has been traditionally successful. However, unlike
ODE flows, DEQ networks do not have a unique trajectory,
and are not guaranteed to converge. Thus recent works have
also begun to examine the stability and other theoretical
properties of DEQs. Winston & Kolter (2020) propose a
monotone DEQ that has a unique fixed point. Pabbaraju
et al. (2021); Revay et al. (2020) further study the Lipschitz
boundedness of monotone DEQs. Kawaguchi (2021) ana-
lyze the gradient dynamics of a linearized version of DEQs.
Lu et al. (2021) apply an invertible equilibrium model to
generative modeling via normalizing flows.

2.2. Regularizing Implicit Models

Just like explicit deep networks, implicit networks can over-
fit to the dataset; but additionally, they can also become
unstable. For instance, Neural ODEs are essentially mod-
eling infintesimal steps of a residual block (He et al., 2016;
Chang et al., 2018), and Grathwohl et al. (2019) found
that weight decay & spectral normalization (Miyato et al.,
2018) are useful (though expensive) in reducing the rapidly
growing number of functional evaluations (NFEs) needed
to solve for the ODE endpoint. On the other hand, large-
scale DEQ networks (Bai et al., 2019; 2020) have adopted
weight normalization (Salimans & Kingma, 2016), recurrent
dropout (Gal & Ghahramani, 2016), and group normaliza-
tion (Wu & He, 2018) for preventing overfitting and diver-
gence. Nonetheless, all these methods are borrowed from
explicit deep networks, where they have long been known to
work well. They do not exploit the implicitness of implicit
models.

More recently, a few different regularization methods have
been introduced to specifically fix the numerous issues of
the vanilla Neural ODE and continuous normalizing flow
models, such as augmenting the hidden state (Dupont et al.,
2019), using hyper ODE solvers (Poli et al., 2020), and reg-
ularizing higher-order time derivatives (Kelly et al., 2020).
These methods directly leverage the dynamical system view
of Neural ODEs. However, due to the inherent challenge of
solving high-dimensional ODEs, these accelerated Neural
ODE models can still easily take > 100 forward iterations
even on MNIST classification (Kelly et al., 2020), and even
more for their backward pass. In comparison, DEQs scale
better to high-dimensional tasks (e.g., 25-30 iterations on
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(a) Without regularizations, the relative residual of a
DEQ’s final output gets worse over training. Both mod-
els achieve roughly the same eventual level of accuracy.
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(b) In the same setting as Figure 1a,
DEQ’s convergence residual vs. Jacobian
norm ‖Jf‖2F .
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Figure 1. Visualizations of DEQs’ instablity and inefficiency problems.

ImageNet) (Bai et al., 2020) and complex fθ (e.g., a Trans-
former layer). But such extra complexities also make DEQ
models harder to regularize; e.g., simply resorting to weight
decay doesn’t fix the instability of DEQs (see Section 5.5).
To the best of our knowledge, there has been almost no
exploration of directly regularizing DEQ stability and con-
vergence.

Our method is closely connected to the many prior works
that study Jacobian/gradient regularization (Drucker &
Le Cun, 1992; Novak et al., 2018; Hoffman et al., 2019;
Finlay et al., 2020; Linsley et al., 2020), though these were
also motivated differently. Specifically, Sokolić et al. (2017);
Hoffman et al. (2019) regularized the input-output Jacobians
of the entire (very deep) explicit classification networks to
increase the prediction margin in a robust learning setting
(and are thus expensive). Finlay et al. (2020) was inspired by
a kinetic energy view and possible overfitting of a training-
time dynamical system. The method of Linsley et al. (2020)
targeted (for a Jacobian J) a Lipschitzness level λ, used
maxi(1

>J)i to approximate the matrix 1-norm, and pro-
posed loss L = ‖(1>J − λ)+‖2. Yet this approximation
is in fact problematic, as it does not provably bound the
spectral radius (i.e., stability) at all. For example, matrix

J =

[
2 −2
−2 2

]

has L = 0 and yet an eigenvalue of 4 (we also empirically
verify that this method does not help DEQ models, exactly
due to this issue).

In contrast to these works, the key contributions of our paper
are that (1) we provide a thorough discussion & summary of
various issues with DEQ models, and how ill-conditioned
Jacobians are related to the forward/backward instabilities,
via the new lens of fixed-point convergence; and (2) we
demonstrate how regularizing the Jacobian of DEQs at the
equilibrium point (i.e., the final output z?) can provably
bound the stability of the forward and backward conver-

gences, thereby addressing these various problems. For
example, our experiments show that we can significantly
stabilize DEQs with new (and more unstable) architectural
variants and accelerate DEQs to be nearly as fast as cer-
tain explicit architectures (e.g., we only need ≤ 6 NFEs
on CIFAR-10) on tasks across different scales and with
comparable accuracy.

3. DEQ Models and Their Discontents
Despite the DEQ models’ success in some very challenging
tasks, such as Cityscapes semantic segmentation (Cordts
et al., 2016; Bai et al., 2020), these models suffer from
multiple serious downsides. In this section, we provide a
summary of some of these problems. While these issues
directly lead to our subsequent discussion on the need for
regularization (see Section 4), we also believe such sys-
tematic discussion provides a useful overview for potential
future research on further addressing these issues.

3.1. Growing Instability during Training

Although a DEQ network has no “depth”, a relevant mea-
sure of computational efficiency is the number of function
evaluations (NFEs) of the layer fθ(z;x) used by the iterative
root solver (e.g., Broyden’s method (Broyden, 1965)).

However, one common phenomenon to all prior works on
DEQs is that the fixed points are increasingly harder to solve
for over the course of model training. In other words, as
a DEQ’s performance gradually improves during training,
the NFE required to converge to the same threshold ε (e.g.,
10−3) rapidly grows. This observation has been made on
different instantiations of equilibrium networks, and regard-
less of whether the model is provably convergent or not
(e.g., (Bai et al., 2019; Winston & Kolter, 2020), where a
DEQ at the end of training can take > 3× more iterations).
Intuitively, such tendency to approach “critical stability” im-
plicitly characterizes an inclination of the model to learn
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Figure 2. Pre- vs. post-LN DEQ-Transformer layer (Xiong et al.,
2020). FFN is a 2-layer feed-forward block (Vaswani et al., 2017).

“deeper” networks; so it is unsurprising that unregularized
training will keep driving it in this direction. But as a result,
the dynamical system only becomes more and more brittle.
The existing way of “addressing” this is to circumvent it by
setting a maximum NFE limit besides the ε-threshold; i.e.,
the solver stops either when 1) the residual is smaller than ε,
or 2) it has run for a max number of steps T . This could be
risky because as the convergence gets more unstable/critical,
such a hard stop for the solver cannot guarantee that we are
close enough to the fixed point. In the backward pass, for
instance, we may consequently be training DEQs with very
noisy gradients. A similar issue exists for Neural ODEs,
though these cannot easily be hard-stopped like DEQs due
to the need to accurately trace the flow to the endpoint.

We illustrate this issue on CIFAR-10 classification in Fig. 1a.
One can easily see that both forward and backward estimates
of the fixed points gets increasingly worse with the train-
ing steps (and eventually plateaus in an unstable region
where the model keeps yielding bad gradients). Such grow-
ing instability is also reflected empirically in the growth of

Jacobian norm at equilibrium; i.e.,
∥∥∥∂fθ(z

?;x)
∂z?

∥∥∥
F

(see Fig-

ure 1b), which we discuss in Section 4. Moreover, interest-
ingly, while these plots might suggest simple regularizations
like weight decay, we show later that weight decay often
makes this stability issue worse for equilibrium networks,
and even leads to divergence.

3.2. Inefficiency Compared to Explicit Networks

A direct ramification of the increase in iterations required
(see Section 3.1) is the significant increase in both training
and inference time for DEQ models.

One advantage of DEQs noted by Bai et al. (2019) is that the
forward trajectory need not strictly reach the equilibrium.
Therefore in a certain sense, we could trade performance for
efficiency by stopping at a “good enough” estimate of the
equilibrium. However, due to the growing instability prob-
lem, this could still be increasingly costly. This causes the
existing DEQs to be significantly slower than their explicit
network counterparts of comparable size and performance.
E.g., a DEQ-Transformer (Bai et al., 2019) is about 3×
slower than a deep Transformer-XL (Dai et al., 2019); a
multiscale DEQ (Bai et al., 2020) is over 4× slower than
ResNet-101 on ImageNet. Despite their memory efficiency,
such slowdown is a roadblock to wider deployment of this
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Figure 3. Comparing different architectural modifications of a
DEQ-Transformer (first 60K steps). The DEQ networks are brittle:
even slight modifications such as changing the whereabouts of
LayerNorm (see Figure 2) or removing weight normalization can
cause the model to quickly diverge during training.

class of models in practice. In Figure 1c, we visualize this
slowdown on the validation set of WikiText-103 language
modeling (Merity et al., 2017) (with comparable model sizes
and the same number of training steps).

3.3. Brittleness to Architectural Choices

The need to have a relatively stable DEQ in order to train it
via the implicit function theorem also calls for more care-
ful attention in designing the layer fθ. For example, the
largest-scale DEQs (Bai et al., 2019; 2020) all had nor-
malizations (Ba et al., 2016; Wu & He, 2018) at the end
of the layer to constrain the output range. How important
are these architectural choices? We demonstrate the brit-
tleness of DEQs by ablative studies on the use of layer
normalization (LN) or weight normalization (WN) in the
DEQ-Transformer model on the large-scale WikiText-103
language modeling task. Specifically, we compare the use
of the two most popular Transformer layer designs in the
DEQ framework: pre-LN and post-LN, which simply inserts
the LN layers at different parts of the block (see Figure 2).
These two settings have been extensively studied, used, and
compared in the literature (Liu et al., 2020; Xiong et al.,
2020; Vaswani et al., 2017; Baevski & Auli, 2019).

The result is shown in Figure 3. Without layer normaliza-
tion at the end (magenta line), the DEQ quickly diverges
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after 25K training iterations (reflected in both forward and
backward divergences). Similarly, without weight normal-
ization (orange line), the model becomes unstable more
quickly, with fixed-point solver collapse at around 18K it-
erations. The original DEQ-Transformer (Bai et al., 2019)
(blue line in Figure 3), although not diverged, still suffers
from the same increased instability problem as described
in Section 3.1. These plots are strong indicators that while
equilibrium networks work on large scales, they are also
relatively inflexible, brittle, and reliant on meticulous archi-
tectural designs.

3.4. The Hidden Cost of the Choice of Solver

Although DEQ models enjoy constant memory consump-
tion during training time and can use any black-box fixed
point solvers in the forward and backward passes, a com-
monly neglected cost is that introduced by the choice of
solver. For example, in Broyden’s method (Broyden, 1965)
which Bai et al. (2019; 2020) used, the inverse Jacobian
J−1 is approximated by low-rank updates of the form
J−1 ≈ −I +∑n

i=1 u
[n]v[n]> = −I + UV >. As another

example, Anderson mixing (Anderson, 1965) stores and
uses the past m iterations (z[n−1], . . . , z[n−m]). In most
such cases, even storing these updates or past steps can be
expensive. Moreover, since we depend on the same DEQ
solvers also at inference time, we need to spend this same
memory cost even when when the trained model is served –
which conventional deep networks can avoid. We note that
this cost depends strongly on the solver; for example, the
simplest iterative “solver” z[i+1] = fθ(z

[i];x) wouldn’t
have any memory cost, but suffers from bad convergence.
This issue also highlights the value of faster and stabler con-
vergence, which entails less memory storage overall (e.g.,
fewer Broyden steps).

4. Regularizing the Jacobian of DEQs
We hypothesize that one of the fundamental factors con-
tributing to some of the problems discussed in Section 3 is
that DEQ models’ conditioning is not properly regularized
during training. Such trend for DEQ models to go unstable
is reflected in Figures 1a and 1b, where increasing training
steps leads to monotonically growing residual difference
and the Jacobian norm at the equilibrium. We now describe
how the Jacobian is related to the stability of equilibrium
networks’ forward and backward passes, and then harness
this relationship to stabilize and accelerate DEQs.

4.1. The DEQ Jacobian

We first recall that the forward pass of a DEQ network
aims to solve for the fixed-point representation z? of a layer
fθ(·;x); i.e., z? = fθ(z

?). Then in the backward pass, one
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Figure 4. Left: when the slope is less than 1, even the simplest
iterative application of fθ converges. Right: when slope > 1, the
iterative approach may diverge or oscillate, but the fixed point still
exists and can be solved for.

can differentiate directly through the equilibrium z? by

∂`

∂(·) =
∂`

∂z?
(I − Jfθ (z?))−1

︸ ︷︷ ︸
u>

∂fθ(z
?;x)

∂(·) . (1)

However, because the scale of Jfθ can be prohibitively large
and the inverse is costly to compute, we usually compute the
u> term in Eq. 1 by solving the following linear fixed-point
system that depends on the final Jacobian:

u> = u>Jfθ (z
?) +

∂`

∂z?
. (2)

Consider the spectral radius of the Jacobian Jfθ ∈ Rd×d at
the equilibrium:

ρ(Jfθ (z
?)) = ρ(Jfθ (z

?)>) = max(|λ1|, . . . , |λd|),

where λis are eigenvalues. In both the forward and back-
ward passes, this spectral radius directly affects how stable
the convergence to the fixed point z? could be in its neigh-
borhood. For instance, in the extreme case where we have a
contractive ρ(Jfθ ) < 1, by Lyapunov linearization theorem
even the simplest iterative calls to fθ(z) (in forward, as-
suming good initial estimate) or g(u) = u>Jfθ (z

?) + ∂`
∂z?

(in backward) could converge uniquely, even without ad-
vanced solvers. The linear system (2), in particular, would
enjoy global asymptotic stability. However in practice, we
don’t always, and probably shouldn’t, require such a strong
contractivity on the dynamical system, which might sig-
nificantly limit the representational capacity of the model.
For example, as shown in Figure 4, a fixed point can exist
even if ρ(Jfθ ) > 1, (the curve slope in 2D); and we are still
able to solve for them using the much stronger root solvers
(e.g., Newton or quasi-Newton) than these simplest iterative
stackings, which could oscillate or diverge.

4.2. Jacobian Regularization

These connections between Jfθ (z
?) (which characterizes

the shape of the transformation fθ around z?) and the for-
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ward/backward pass dynamics of DEQs motivate us to ap-
pend a soft and auxiliary Jacobian term ρ(Jfθ (z

?)) to the
training objective in order to regularize the model’s con-
ditioning. One way of doing this is by spectral normaliza-
tion, essentially constraining σ(Jfθ ) = max‖v‖≤1 ‖Jfθv‖2.
However, explicitly writing out the huge Jacobian and then
decomposing it (e.g., by SVD) can be computationally pro-
hibitive, and Miyato et al. (2018) proposes to use the power
method (von Mises & Pollaczek-Geiringer, 1929) to speed
up this estimation on GANs. But in the context of DEQs,
even power iterations are too expensive due to the succes-
sive vector-Jacobian product computations needed. Instead,
we propose to regularize the Jacobian through its Frobenius
norm since

ρ(Jfθ ) ≤ σ(Jfθ ) ≤
√

tr(JfθJ>fθ ) = ‖Jfθ‖F .

Importantly, ‖Jfθ‖F can be approximated via various un-
biased estimators (Hutchinson, 1989; Ubaru et al., 2017;
Meyer et al., 2021). We adopt the classical Hutchinson
estimator (Hutchinson, 1989); formally, for Jfθ ∈ Rd×d,

tr(JfθJ
>
fθ
) = Eε∈N (0,Id)[‖ε>Jfθ‖22], (3)

which we can approximate by Monte-Carlo estimation (i.e.,
sampling M i.i.d. εi ∈ N (0, Id)). Specifically, prior
works (Avron & Toledo, 2011; Roosta-Khorasani & As-
cher, 2015) have established that the relative error of this
estimation diminishes with M−

1
2 ; and if we compute the

mean estimation over a mini-batch size B, the overall rel-
ative error with respect to Ex∼p(x),ε∈N (0,Id)[‖ε>Jfθ‖22] is
expected to further diminished by a factor ofB−

1
2 (Hoffman

et al., 2019).

Indeed, empirically, we find that M = 1 already works
well since we use relatively large batch sizes. Since our
backward iterations already involved computing multiple
vector-Jacobian products u>Jfθ (see Eq. (2)), computing
Eq. (3) only adds a cost equivalent to that of M = 1 back-
ward steps. The eventual training objective is thus

Ltotal(z
?) = Lorig(z

?) + γ
‖ε>Jfθ (z

?)‖22
d , ε ∈ N (0, Id) (4)

As we observed in Figure 1a, without regularization, a DEQ
model that stops after a fixed number T of solver iterations
exhibits increasingly poor convergence, accompanied by a
growing ‖Jfθ‖F at these fixed points that empirically sig-
nals the growing instability. Therefore, by constraining the
Jacobian’s Frobenius norm, we encourage DEQs to opti-
mize for stabler and simpler dynamics whose fixed points
are easier to solve for.

4.3. Memory Considerations

Although the loss objective (4) only adds minimal computa-
tion cost, the need to backpropate through ‖ε>Jfθ‖22 means
we also spend more memory during training to store the

computation graph of this vector-Jacobian product. But at
the same time, our hidden memory cost due to the solver
choice is smaller (e.g., Broyden’s method; see Section 3.4)
as we can lower the number of iterations. As a result, em-
pirically we notice a roughly 30% net growth in memory
consumption compared to the unregularized DEQs at train-
ing (and thus saving 50%-60% memory compared to ex-
plicit deep networks). The regularized DEQ still consumes
O(1) memory relative to the “depth” of the model, as the
backpropagation depends only on z?.

5. Experiments
We validate the proposed regularization of DEQ models
on multiple fronts. First, we visualize the effect of the
proposed Jacobian regularization on a tiny DEQ trained on
a synthetic 1D dataset. Second, importantly, we focus on
how our method alleviates some of the core problems with
DEQs outlined in Section 3. Then we show that our method
scales to challenging high-dimensional tasks: word-level
language modeling with the WikiText-103 dataset (Merity
et al., 2017) and image classification with CIFAR-10 and
ImageNet (Deng et al., 2009). We specifically compare
our model with both prior DEQ networks and competitive
explicit models (e.g., ResNet-101, Transformers), in terms
of both efficiency (in space and time) and performance. We
also explore how Jacobian regularization helps stabilize
DEQs over a wider range of architectural choices. Lastly,
we perform some ablative studies.

The set of tasks used in our experiment is built directly
on top of Bai et al. (2019; 2020). As we found the Ja-
coabian regularization could sometimes hurt performance
(see Sec. 5.3), we only apply the proposed loss stochastically
with a probability p, and gradually increase this p or the reg-
ularization strength γ (see Eq. (4)) over training steps. We
also use cosine learning rate schedule (Loshchilov & Hutter,
2017) for all tasks, including the synthetic one. The mem-
ory and speeds reported are benchmarked across different
models on the same setting (e.g., same batch size, sequence
length, number of steps, etc.) with the same GPU. We
provide more details regarding the tasks, hyperparameters,
datasets, and hardware in Appendix A, and extra experimen-
tal results in Appendix B. Our code and pretrained models
are provided here.

5.1. Visualization with Synthetic Data

We start by empirically verifying the validity of the ap-
proach and visualizing its effect on a synthetic dataset.
We generated 5096 scalar data pairs (x, y) using function
y = h(x) = 3

2x
3 + x2 − 5x + 2 sin(x) − 3 + δ (where

δ ∈ N (0, 0.05)), and split them into 4096 and 1000 training
and validation samples, respectively. We then train a tiny

https://github.com/locuslab/deq
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Figure 5. Top: the surface of the fθ(z;x) layer, and the eventual learned equilibria z?(x) as a function of x. As γ grows, the surface is
“lifted up” and becomes flat in the z-direction. Bottom: each unique input x defines a slice of the surface, and we perform fixed-point
solving on this slice; larger γ values flatten the curve and significantly accelerate the convergence to equilibrium.

DEQ with 200 parameters with the following structure:

fθ(z;x) =W>2 ReLU(W1z+ Ux+ b), ŷ = z?

where we used z,x ∈ R and W1,W2, U ∈ R50×1. The vi-
sualizations of the effect of the Jacobian regularization, with
different weights γ, are shown in Figure 5. In particular,
each input x defines a slice (i.e., cross-section) of the 3D
surface zout = fθ(z;x); for example, layer fθ(z;x) when
input x = −1 is highlighted in blue. After training, all three
settings succesfully learned the (almost) identical equilib-
rium function z?(x) (highlighted by the red dashed line) that
perfectly fits the target function h(x); but note that surfaces
of fθ with γ = 2, 4 are “lifted up” significantly compared
to the unregularized (γ = 0) DEQ, which has a steep slope
(i.e., large spectral radius in 2D). This slope slows down the
fixed-point convergence, as reflected by the zigzag patterns
in lower Figure 5a. In contrast, the convergences for the
γ > 0 cases are much faster, and larger γ typically yields
flatter surfaces around the equilibrium point.

5.2. WikiText-103 Language Modeling

One of the very first successes of large-scale DEQs was its
Transformer instantiation (Bai et al., 2019), which uses a
multi-head self-attention (Vaswani et al., 2017) layer as the
underlying fθ(z;x) function. Although a DEQ-Transformer
is able to perform competitively with a deep Transformer-
XL (Dai et al., 2019) in terms of test perplexity, and con-
sumes 60-70% less memory, it is also much slower (about
3×; see Figure 1c) and borders on instability. In Table 1, we
demonstrate how the Jacobian regularization alleviates this.

Table 1. Evaluation on WikiText-103. PPL stands for Perplexity.
All Transformer models are trained for 250K steps. ttrain stands for
relative training time. JR stands for Jacobian regularization. NFEs
are measured at inference time. † indicates unregularized model
hard-stopped at inference time.

Size PPL NFEs ttrain

AWD-QRNN (Bradbury et al., 2017) 159M 33.0 - -
Rel. Memory Core (Santoro et al., 2018) 195M 31.6 - -
18L-Transformer-XL (Dai et al., 2019) 110M 24.1 - 1×
DEQ-Trans. (Pre-LN) (Bai et al., 2019) 98M [div.] 30 3.1×
DEQ-Trans. (Post-LN) (Bai et al., 2019) 98M 24.0 30 3.1×
DEQ-Trans. (Post-LN) early stopped† 98M 29.2 12† 3.1×
DEQ-Trans. (Pre-LN) + JR (ours) 98M 24.5 14 1.6×
DEQ-Trans. (Post-LN) + JR (ours) 98M 24.9 12 1.5×

Compared to the original DEQ models, there are two ma-
jor improvements. First, we significantly reduce the NFEs
required for DEQ-Transformer models while maintaining
competitive accuracy. Using the Transformer-XL as a time
benchmark (1×), the speed of a DEQ-Transformer is signif-
icantly accelerated: training time goes from 3.1× to 1.5×.
Second, the regularized DEQ model is more flexible with
architectural choices. Whereas a Pre-LN DEQ-Transformer
(see Figure 2) quickly diverges in training even in the pres-
ence of a large NFE threshold, the Jacobian regularization
resolves this issue and stabilizes the forward/backward con-
vergences consistently (see Figure 3 and Table 1), eventually
reaching 24.5 perplexity. Moreover, while we can early-stop
a well-trained unregularized DEQ model at inference time,
it hurts generalization performance significantly (e.g., 29.2
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Table 2. Results on CIFAR-10 and ImageNet classfication. The
CIFAR-10 accuracy standard deviation is calculated with 5 runs.
JR stands for Jacobian regularization. † indicates unregularized
model hard-stopped at inference time.

CIFAR-10 classification
Size Accuracy NFEs

ResNet-18 (He et al., 2016) 10M 93.0 (± 0.1)% -
ResNet-101 (He et al., 2016) 40M 93.8 (± 0.3)% -

DenseNet-121 (Huang et al., 2017) 8M 95.0 (±0.1)% -
monotone DEQ (Winston & Kolter, 2020) 1M 89.4 (± 0.2)% 24

MDEQ (Bai et al., 2020) 10M 93.6 (± 0.2)% 17
MDEQ early stopped† 10M 89.1% 6†

MDEQ + JR (ours) (Bai et al., 2020) 10M 93.1 (± 0.3)% 6

(Full) ImageNet classification
Size Top-1 Acc. NFEs

ResNet-18 (He et al., 2016) 13M 70.2% -
Inception-V2 (Ioffe & Szegedy, 2015) 12M 74.8% -

ResNet-50 (He et al., 2016) 26M 75.1% -
ResNet-101 (He et al., 2016) 52M 77.1% -

DenseNet-264 (Huang et al., 2017) 74M 79.7% -
MDEQ-small (Bai et al., 2020) 18M 75.4% 27
MDEQ-large (Bai et al., 2020) 63M 77.5% 30

MDEQ-small + JR (ours) 17M 74.5% 14
MDEQ-large + JR (ours) 62M 76.8% 15

ppl with 12 NFEs). Similarly, we find training with NFEs
< 30 leads to increasingly bad generalization performance,
and when NFEs drops below 20, model training frequently
diverge as a result of extremely noisy gradients. We provide
more comprehensive results in Table 5 in the Appendix.

Like DEQs, the regularized DEQs are memory efficient, con-
suming about 45% less training memory than Transformer-
XL. Moreover, we find the Jacobian-regularized DEQs re-
duce over 50% memory consumption of the original DEQs
at inference time (when both using Broyden’s method) due
to faster/stabler convergence, suggesting its effectiveness in
addressing the hidden solver cost issue discussed in Sec. 3.4.

5.3. CIFAR-10 and ImageNet Classification

We additionally conduct experiments on vision tasks
using the recent multiscale deep equilibrium networks
(MDEQ) (Bai et al., 2020), which drive multiple feature res-
olutions to their equilibria simultaneously. Because of the
need to maintain high- and low-resolutional feature maps at
all iterative steps and generally higher channel dimensions in
fθ, MDEQs are substantially slower than conventional net-
works like ResNets (which operate on progressively down-
sampled feature maps). This makes acceleration vital to
broader adoption of multiscale implicit models.

The results of applying Jacobian regularization on multi-
scale DEQs for image classification are shown in Table 2.
On CIFAR-10, whereas the unregularized DEQ models used
17 NFEs to reach the reported competitive level of perfor-
mance, our DEQ with Jacobian regularization can converge
well even within 6 iterations (in fact, we find smaller NFE
values still trains, but significantly hurts generalization per-
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Figure 6. With the proposed regularization, DEQ models are com-
petitive with popular explicit networks in accuracy, memory, and
runtime. Lower bars are better.
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Figure 7. Empirical evidence of how our method constrains ρ(Jfθ )
(estimated by power method). In contrast, insufficient NFEs (e.g.,
T=16) at training time cause a DEQ-Transformer model to explode
early in the training phase.

formance). This improvement is also obvious in Figure 1a
and 1b, where we show that early stopping at threshold
T = 6 still yields good convergence with Jacobian regular-
ization. We also demonstrate a more stable backward pass
convergence throughout training in Appendix B. On the
much larger-scale ImageNet, where we deal with 224× 224
images, the factor of reduction in NFE is not as strong (e.g.,
from 27 to 14 iterations, due to the receptive field issue;
we’ll explain this in Section 5.5) but still yields a roughly
2× acceleration. This shows that the Jacobian regularization
is effective in large-scale computer vision tasks, and in the
presence of multiple equilibrium points. However, we also
note that as with DEQ-Transformers on WikiText-103, we
notice a small slip in accuracy, which may be a result of
constraining model parameterizations.

Figure 6 provides a visual comparison of different models
with respect to three metrics: performance, inference speed,
and training memory. These are reported on the CIFAR-
10 dataset. For the first time, we have an implicit-depth
model that runs with a competitive level of speed and accu-
racy as large explicit networks such as ResNet-101, while
consuming much less memory.
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Table 3. Controlled experiments on the strength γ of the Jacobian
regularization. The NFE value represents the “hard stop” threshold
we set for the corresponding DEQ models at inference.

NFE=1 NFE=2 NFE=3 NFE=4 NFE=5 NFE=6

γ = 0.1 82.4% 89.7% 91.9% 92.3% 92.7% 92.9%
γ = 0.6 85.8% 91.5% 92.7% 93.0% 93.0% 93.1%
γ = 1.2 84.4% 89.6% 92.2% 92.6% 92.7% 92.7%

5.4. Effect of Jacobian Regularization on ρ(Jfθ )

In addition to the synthetic study, we also verify that the Ja-
cobian regularization is indeed effectively constraining con-
ditioning of Jfθ . Note that the underlying Jacobian matrices
are large (e.g., [(B·110K) × (B·110K)] in WikiText-103,
and [(B·198K) × (B·198K)] in ImageNet with MDEQ-
small) and checking their full spectrum would be infeasible.
Therefore, we conduct a study that monitors the average
spectral radius ρ(Jfθ (z

?)) (i.e., the largest absolute eigen-
value) on the validation set, over the first 100K steps of
DEQ training on WikiText-103 using the power method (von
Mises & Pollaczek-Geiringer, 1929); see Fig. 7. Importantly,
although ‖Jfθ‖F only upper-bounds the spectral radius (see
Sec. 4.2), we verify that our proposed regularization does ef-
fectively constrain ρ(Jfθ ) (see / paths in Fig. 7), thereby
making DEQs more stable. In contrast, the unregularized
DEQ with the same few NFEs explodes in both eigenvalue
and shortly after also in perplexity (see / paths), and only
works if we increase NFE to 30 (see ×/× paths). In general,
we empirically observe that training an unregularized DEQ
with insufficient NFEs generally begets extremely noisy
gradients, thus leading to faster destabilization and even
divergence.

5.5. Ablative Analysis and Limitations of the Approach

We continue our discussion with some empirical ablative
studies. First, while Grathwohl et al. (2019) found weight
decay useful for regularizing ODE-based models’ NFEs, we
found weight decay generally not effective in stabilizing
DEQs and sometimes even counter-productive. This is illus-
trated in Figure 8, where after 50K steps the model started
to diverge to > 500 perplexity and stopped improving. In
addition, we also conduct an ablative experiment on how the

Jacobian regularization strength γ affects the performance
when we constrain NFEs to ≤ 6 at inference time, with
results shown in Table 3 (CIFAR-10 dataset). In general, we
find that if γ is too small, the final performance may be good
but entails more NFEs. When γ is too large, the accuracy
does quickly converge, but the constraint imposed on the
model class is too strong and eventually hurts performance
(e.g., since the training loss on CIFAR-10 usually overfits
to almost 0 towards the end of training, which makes the
Jacobian loss dominant instead).

We also highlight two limitations of this approach. First,
the addition of Jacobian regularization term does not fun-
damentally solve the growing instability problem, but only
empirically alleviates it. This means that we have to be
careful about balancing the main loss objective and this aux-
iliary objective (see Table 3). Second, while Jacobian reg-
ularization facilitates faster convergence, there are certain
“physical laws” that we simply cannot bypass. For example,
if we apply a shallow convolutional DEQ whose layer has
receptive field 5× 5 on a large image (e.g., 1024× 1024),
it is hard to be able to reach the fixed point with just 6 iter-
ations simply because the model’s receptive field may not
broaden sufficiently to cover valuable context. Although
one can possibly still force convergence with a large γ, it
would undoubtedly hurt the performance. This explains why
we need more NFEs on ImageNet than on CIFAR-10 (see
Table 2); it also indicates that while our approach alleviates
the brittleness to architectural choices, its effectiveness can
still depend on the architecture. This makes global-context
alternatives to ConvNets, such as self-attention-based layers
(e.g.,ViT (Dosovitskiy et al., 2020)) likely more appealing in
the implicit model setting, which we leave for future work.

6. Conclusion
We summarized the weaknesses of existing DEQ models,
including instability & inefficiency, architectural brittleness,
and hidden memory costs. We specifically discussed the
relationship between the spectral radius of the Jacobian
and the stability of forward non-linear and backward linear
systems of DEQ models, and provided empirical evidence
of the poor conditioning of the Jacobian. This motivates our
introduction of Jacobian regularization. Our experiments
show that our method significantly alleviates the weaknesses
of DEQs, yielding a > 2.5× acceleration. This is a major
step towards making implicit models more practical and
suitable for large-scale real-world applications. We hope
that our work will motivate further research that advances
our understanding and application of this class of models.
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Accelerating Equilibrium Models by Stabilizing Their Jacobians
Supplementary Material

A. Dataset Information, Experimental
Settings and Hyperparameters

We provide below a detailed description of all tasks and
settings for experiments reported in Section 5, as well as
some training specifics of the deep equilibrium network
(DEQs) we use.

A.1. 1D Synthetic Dataset

To visualize the effect of the proposed Jacobian regular-
ization on DEQ models (see Section 5), we generated a
synthetic dataset with 5096 pairs (x, y) from the target func-
tion:

y = h(x) =
3

2
x3 + x2 + 5x+ 2 sin(x)− 3 + δ

where δ ∈ N (0, 0.05) are i.i.d. noise variables added to

h(�1)

h(0.5)

h(1.9)

Target function h(x)

Figure 9. Target
function y = h(x).

each sample in the dataset. Specifi-
cally, we split the generated data into
4096 training samples and 1000 val-
idation samples.

Figure 9 shows the target function.
In the context of deep equilibrium
networks, we aim to learn a func-
tion z?(x) such that z? = fθ(z

?;x)
and z?(x) ≈ h(x). At a high level,
we should expect the intersection be-
tween the zout = fθ(z;x) surface and
the zout = z plane to be exactly like
the gray curve in Figure 9.

The learned DEQ equilibria z?(x)
are empirically demonstrated in Figure 5 in red dashed lines
for different choices of γ. As expected, all γ fit the tar-
get function perfectly, but the introduction of the Jacobian
regularization makes the surface more flat around the fixed
point.

A.2. WikiText-103 Word-level Language Modeling

Word-level language modeling tasks aim to predict the next
word of a textual sequence by integrating the semantics and
information of current and past tokens. Formally, given an
input sequence x1:T ∈ RT×p (where xi ∈ Rp and T is
the sequence length), an autoregressive sequence model G
produces output G(x1:T ) = y1:T ∈ RT×q that satisfies the

causality constraint: yt depends only on x1:t and not on the
future information xt+1:T . When each xi represents a word
(i.e., a word embedding), the task is essentially a word-level
language modeling task. This is a widely-studied problem
in the NLP community (e.g., (Merity et al., 2017; 2018; Dai
et al., 2019)), and has seen practical advancement in the last
few years with development of GPT-3 (Brown et al., 2020;
Radford et al., 2019).

A commonly used large-scale corpus for this task is the
WikiText-103 (Merity et al., 2017) dataset, which contains
103M/217K/246K words at train/validation/test time, re-
spectively. The entire corpus has a vocabulary size of 267K
(i.e., the number of rows in the word embedding). Unlike
other well-processed, much smaller datasets like Penn Tree-
bank (Marcus et al., 1993), WikiText-103 is much more
challenging as it contains many rare words and retains
punctuations, numbers, upper- and lower-cases from the
source Wikipedia articles; it has been the standard bench-
mark for many high-capacity language models in recent
literature (Merity et al., 2018; Bradbury et al., 2017; Dai
et al., 2019). We provide a shell script in our submitted code
to download this dataset.1

A.3. CIFAR-10 & ImageNet Image Classification

The CIFAR-10 (Krizhevsky & Hinton, 2009) dataset con-
tains 60,000 color images of resolution 32×32 that fall into
10 object classes (with uniformly 6,000 images per class).
We use the standard setting where 50K of these images are
used for training and the rest 10K for validation purpose.

The ImageNet (Krizhevsky et al., 2012) dataset, on the other
hand, contains over 1.28M training images and 150K test
images, distributed over 1,000 classes. All images are re-
scaled to 224× 244 resolution before they are fed into the
models (as the original images are of variable resolutions
and scales). This is a frequently used dataset for evalu-
ating large-scale vision networks, and has been used for
also pretraining many image feature extractor for use on
downstream tasks.

For both CIFAR-10 and ImageNet, each training image goes
through a canonical data augmentation process before they
are fed into the model, where we perform random cropping
and random horizontal flipping.

1Officially, this dataset can be downloaded at this link.

https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
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Table 4. Hyperparameters, optimizer choices, and model details (at training time) for all tasks reported in Section 5. The arrows in the
Jacobian regularization strength (e.g., A→ B) mean that we dynamically increase from A to B over the course of DEQ training.

Synthetic Dataset WikiText-103 language modeling CIFAR-10 classification ImageNet classification

Architecture of fθ
2-Layer ReLU block Transformer layer Multiscale DEQ layer Multiscale DEQ layer

(see Section 5) (Pre- and Post-LN) (residual block + fusion) (residual block + fusion)
# of Epochs 50 23 200 120
Batch Size 64 60 96 112
Optimizer Adam Adam Adam SGD

Start Learning rate 0.001 0.00025 0.001 0.05
Learning rate warmup No Yes, 1 epoch No No
Learning rate schedule Cosine Cosine Cosine Cosine

Weight Decay 0 0 0 5 · 10−5
Hidden dimensionality 50 700 (embedding size) [28,56,112,224] (4 scales) [32,64,128,256]
Input Sequence Length N/A 150 N/A N/A

Input Image Size N/A N/A 32× 32 224× 224

Normalization None LayerNorm (Ba et al., 2016) GroupNorm (Wu & He, 2018) GroupNorm
Recurrent Droput N/A 0.06 0.25 0.02

Weight Normalization No Yes Yes Yes
# of Input Injection Downsamplings N/A N/A N/A 2

Fixed-point Solver Anderson (Good) Broyden Anderson (Good) Broyden
Forward NFEs Threshold 6 12 7 14

Backward NFEs Threshold 6 12 8 14
Forward Threshold ε 10−3 10−3 10−3 10−3

Backward Threshold ε 10−4 10−4 10−4 10−4

Jacobian Reg. Strength γ {0,1,2,4} 1.6→ 2.5 0.5 2.0→ 3.0
Jacobian Reg. Frequency p 0.4 0.35 0.05 0.1
M for Hutchinson Estimator 1 1 or 2 1 1 or 2

A.4. Training Setting and Hardware

Our experimental protocols are intentionally set to be max-
imally consistent with prior work (Bai et al., 2019; 2020).
This includes hyperparameters (see the subsection below),
other regularization methods (e.g., recurrent dropout (Gal
& Ghahramani, 2016) & group normalization (Wu & He,
2018)), and initialization schemes (where all parameters
are initialized at the start of training by sampling from
N (0, 0.01)). For the multiscale DEQs that were used in
the image classification task, we used 4 resolutions, where
each subsequent resolution is of exactly half the height and
width of the previous resolution. Although Bai et al. (2020)
highlighted the need to train a ReLU-based network with
softplus for stability purposes, we found it not necessary
in our experiments with regularized DEQs, most likely be-
cause of the role Jacobian regularization plays in stabilizing
the network convergence.

One thing to note is that empirically, rather than applying
the proposed Jacobian regularization on all training itera-
tions, we only randomly and partially apply this auxiliary
loss. For example, when we set the auxiliary loss frequency
p to 0.5, only half of the training iterations (randomly se-
lected) are trained with the Jacobian regularization term (see
Table 4). This is motivated by the empirical observation that
Jacobian-related regularizations usually hurt performance,
e.g., as in its application in robust learning (Hoffman et al.,
2019). Therefore, such partial/random supervision with
the Jacobian regularization brings two benefits: 1) the rest
(1−p)-portion of the training iterations can pick up a further

speedup as we don’t need to compute the Hutchinson esti-
mator and backpropagate through it; and 2) it helps reduce
the likelihood of the model overfitting on this auxiliary loss
term (since, as we noted in Section 5.5, the model could be
sensitive to γ, and M is small), which we generally observe
to benefit the performance, though only slightly. Therefore,
during training, the model would still proceed in the actual
stochastic gradient direction, and only use the regularized
direction occasionally.

Formally, the training objective we highlighted in Sec-
tion 4.2 should be:

Ltotal(z
?) = Lorig(z

?) + τ · γ
∑M
m=1 ‖ε

>Jfθ (z
?)‖22

Md , εm ∈ N (0, Id)

where τ = Bernoulli(p) is a random variable and M is the
number of samples used for Hutchinson estimator.

All experiments in this paper, including the speed and mem-
ory benchmarks we provide, were conducted on RTX 2080
Ti GPUs. WikiText-103 language modeling and ImageNet
classification models (MDEQ-small) were trained with 4
GPUs in a data-parallel setting.

A.5. Hyperparameters

We report the hyperparameters used at training time in
Table 4. Except for those used in the synthetic data and
for Jacobian regularization, most of the other hyperpa-
rameters were essentially taken from the original DEQ-
Transformer (Bai et al., 2019) and MDEQ (Bai et al.,
2020) without major modifications. For both Anderson
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Table 5. A more complete version of Table 1 with more memory and efficiency comparison. Memory benchmarked on batch size 15
and excludes the embedding layer. † indicates unregularized model hard-stopped at inference time (while still trained with more NFEs).
Overall, we find that Jacobian regularization allows us to train and predict with much fewer NFEs, at a relatively small cost in performance.

Model Size Perplexity ttrain (relative) Train NFE Valid. NFE Training Memory

AWD-Quasi RNN (Bradbury et al., 2017) 159M 33.0 - - - 7.1GB
Relational Memory Core (Santoro et al., 2018) 195M 31.6 - - - -
Megatron-LM (Shoeybi et al., 2019) [SOTA] 8300M 10.8 - - - -
Transformer-XL (18-layer) (Dai et al., 2019) 110M 24.1 1× - - 9.0GB
DEQ-Transformer (Pre-LN) (Bai et al., 2019) 98M [diverged] N/A 30 N/A N/A
DEQ-Transformer (Post-LN) (Bai et al., 2019) 98M 24.0 3.1× 30 30 3.9GB

DEQ-Transformer (Post-LN) early stopped 98M 29.2 3.1× 30 12 3.9GB
DEQ-Transformer (Post-LN) (Bai et al., 2019) 98M 26.0 2.2× 20 20 3.6GB
DEQ-Transformer (Post-LN) (Bai et al., 2019) 98M [diverged] N/A 15 N/A 3.6GB

DEQ-Transformer (Pre-LN) + JR (ours) 98M 24.5 1.5× 14 14 4.8GB
DEQ-Transformer (Post-LN) + JR (ours) 98M 24.9 1.4× 13 12 4.8GB

DEQ-Transformer (Post-LN) + JR (ours) (trained on seqlen=300) 98M 23.8 2.2× 13 13 6.5GB

and Broyden fixed-point solvers, we use the relative residual
‖fθ(z;x)−z‖
‖fθ(z;x)‖ as a measure of convergence quality in forward

and backward passes. At inference time, we generally re-
duce the number of NFEs (e.g., cf. Table 4 and Table 1),
while the other hyperparameters (e.g., GroupNorm group
sizes) are kept the same.

B. Additional Experimental Results
B.1. Memory Consumption

As we noted in Sections 4 and 5, using Jacobian regulariza-
tion and thus the vector-Jacobian-product-based Hutchinson
estimator introduces some extra memory cost at training
time due to the need to differentiate w.r.t. the ‖Jfθ‖F term.
Overall, with the same batch size and sequence length, we
observe a roughly 25% increase in training memory required
(from about 3.9GB to 4.8GB, excluding embeddings). This
is less than the memory consumption of a layer, because
the reduction in NFEs needed on the other side saves the
memory used by the solver (see Section 3.4). However, this
memory footprint is still much better than the conventional
explicit Transformer-XL model, which consumes about 2×
as much GPU memory. With the Jacobian regularization,
as we can see, the DEQ models are much more efficient in
time complexity than before, while still staying competitive
on the space complexity and the performance fronts.

B.2. DEQ’s Backward Convergence with Jacobian
Regularization (CIFAR-10)

As we discussed in Section 4, the backward dynamics of
a DEQ model is a linear fixed point system that depends
directly on the Jacobian at equilibrium (i.e., Jfθ (z

?)). There-
fore, the backward pass stability is directly influenced by
the conditioning of the Jacobian that we regularize. The
stabilizing effect of the proposed Jacobian regularization
on the backward pass convergence was already shown for
WikiText-103 language modeling in Figure 3b, where we

empirically observe that the Jacobian-regularized DEQ-
Transformer’s backward pass stays at a consistent level,
which indicates a relatively more accurate gradient produced
by the implicit function theorem.

We further corroborate this finding via empirical evidence
on the CIFAR-10 dataset with a multiscale DEQ (MDEQ)
instance, shown in Figure 10a. Compared to the original
MDEQ (blue line), the Jacobian-regularized version of the
backward pass experiences much fewer fluctuations (and
thus less stochastic gradients). We also compared to an alter-
native solution that uses the simple weight decay. Although
it also alleviates the fluctuation problem, our empirical ob-
servations suggest that weight decay alone almost always
adds more difficulty to the fixed point solving. This agrees
with what we have observed in the forward pass in Sec-
tion 5.5. Such comparison can be seen in Figure 10a in
the purple line, which converged even more poorly than the
original baseline after 14 backward solver iterations (with
relative residual> 0.05 and increasing slowly over training).
In contrast, the regularized backward pass is more smooth
and stable (red line) throughout training (we used γ = 0.5).

B.3. Failure of Weight Decay to Fix the Problem

This overall inability of weight decay alone to fix the DEQ
stability issue (e.g., see Figures 8 and 10a), we believe,
exactly suggests that there is a deeper implicitness property
of the model that should be regularized than just the value
of individual weights. As DEQ networks typically rely
on a single fθ block, their complex non-linear structure
makes their stability depend as much on the linear parts of
fθ (which weight decay does regularize) as the non-linear
parts (which weight decay does not directly regularize; e.g.,
self-attention in fθ if we use a Transformer layer). On the
other hand, Jacobian regularization takes into account both
parts as it tries to constrain the overall spectral radius of the
matrix.

We also provide some additional analysis on how ‖Jfθ‖F
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ing, even when we regularize for it.

Figure 10. Additional analysis on DEQ models’ backward convergence (on CIFAR-10), Jacobian norm, etc.

evolves during training in Figure 10b and 10c. Specifi-
cally, even with weight decay, the convergence of DEQ-
Transformer models can be quite bad (see purple dots in
Figure 10b), with a clear correlation between the larger rela-
tive residual and larger ‖Jfθ‖2F . Indeed, with a non-linear
structure as complex as the multi-head self-attention, sim-
ply constraining the weights to be small is not sufficient
to ensure well-conditioned Jacobians. Moreover, while the
Jacobian regularization helps significantly stabilize the for-
ward and backward convergence (see Figure 1a, 10a and 3),
we note that a regularized DEQ model still in fact gradually
tends to “critical stability”. This can be seen in Figure 10c,
where the Jacobian norm grows slowly over training itera-
tions (red line) for a fixed γ, though at a rate much slower
than the unregularized and weight-decayed baselines. There-
fore, as we indicated in Section 5.5, the proposed Jacobian
regularization does not fundamentally fix the growing in-
stability problem, but only alleviates it. This also calls for
adaptive γ scheduling during training (which we adopt in a
simple form in our implementation and leave more advanced
schemes for future work).


