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Abstract

We present a new data-driven approach with physics-
based priors to scene-level normal estimation from a single
polarization image. Existing shape from polarization (SfP)
works mainly focus on estimating the normal of a single ob-
ject rather than complex scenes in the wild. A key barrier
to high-quality scene-level SfP is the lack of real-world SfP
data in complex scenes. Hence, we contribute the first real-
world scene-level SfP dataset with paired input polarization
images and ground-truth normal maps. Then we propose a
learning-based framework with a multi-head self-attention
module and viewing encoding, which is designed to handle
increasing polarization ambiguities caused by complex ma-
terials and non-orthographic projection in scene-level SfP.
Our trained model can be generalized to far-field outdoor
scenes as the relationship between polarized light and sur-
face normals is not affected by distance. Experimental re-
sults demonstrate that our approach significantly outper-
forms existing SfP models on two datasets. Our dataset
and source code will be publicly available at https:
//github.com/ChenyangLEI/sfp-wild.

1. Introduction

Accurate surface normal estimation in the wild can pro-
vide valuable information about a scene’s geometry and
can be used in various computer vision tasks, including
segmentation [19], 3D reconstruction [26], and many oth-
ers [22, 33]. Therefore, normal estimation is an important
task studied for a long time. However, estimating high-
quality normals in the wild is still an open problem. Var-
ious techniques such as photometric stereo [9, 10] can pro-
duce high-frequency normals, but most of them only pro-
vide short-range object-level normal maps. Active depth
sensors can be another approach to obtaining normals from
depth maps, but the corresponding depth maps are often
sparse (LiDAR) or noisy (time-of-flight, structured light)
so they can not estimate normals reliably. Also, the depth
range of active sensors is limited.
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Figure 1. Our method can estimate dense scene-level surface nor-
mals from a single polarization image. Polarization can provide
effective cues for obtaining more accurate results. In the first row,
polarization provides geometry cues for our model so that it is not
fooled by objects in the printed image on a wall. In the second
and third rows, polarization provides guidance for planes with dif-
ferent surface normals even when their materials are quite similar.
Iun: unpolarized image; ϕ: angle of polarization.

In this work, we are interested in estimating surface nor-
mal from a single polarization image for complex scenes in
the wild. Since the polarization of light changes differently
when the light interacts with the surfaces of different shapes
and materials (governed by the Fresnel equations [12]), the
polarization images can provide dense surface orientation
cues from the polarized light perceived at each pixel. Also,
compared with the active sensors and object-level normal
estimation techniques (e.g., photometric stereo), the polar-
ization camera is a passive sensor that is not constrained to a
specific depth range. Thus polarization images are promis-
ing data sources for accurate normal estimation in the wild.

However, estimating normals from a polarization image
for complex scenes (scene-level SfP) is challenging. To
the best of our knowledge, no existing SfP work focuses
on complex scenes, and several challenges are yet to be
solved. Firstly, polarization contains ambiguities from un-
known information such as object materials and reflection
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types [12]. Object-level SfP methods approach these am-
biguities by utilizing various cues (e.g., shading [44]) or
making restrictive assumptions (e.g., known albedo [35]),
which are unfeasible for multiple-object scenes because of
the variabilities of material properties and complexities of
reflections. Secondly, while some works [4, 29] demon-
strate the potential of combining convolutional neural net-
works and polarization cues in estimating normals for un-
known materials, there are only object-level [4] or synthetic
data [29] for training, which are not sufficient for scene-
level SfP. Finally, scene-level SfP brings up another chal-
lenge. The viewing direction influences the measured polar-
ization information. Previous object-level SfP approaches
ignore the impact of viewing direction since they assume
orthographic projection by placing objects at the center of
an image, which does not hold for scene-level SfP.

To solve the challenge of lacking real-world scene-level
polarization data, we construct the first real-world scene-
level SfP dataset that contains diverse complex scenes.
Building such a new dataset is necessary because the ex-
isting DeepSfP dataset [4] only contains a single object per
image and the dataset by Kondo et al. [29] is synthetic and
not publicly available.

Due to the challenges of scene-level SfP, the perfor-
mances of previous learning-based SfP works [4,29] are not
satisfactory when they are trained on our scene-level data.
To improve the performance of scene-level SfP in the wild,
we adopt three novel designs in our model. First, we intro-
duce multi-head self-attention [45] in a convolutional neural
network (CNN) for SfP. Multi-head self-attention utilizes
the global context of an image, which helps the CNN re-
solve the local ambiguities in polarization cues. Second, to
handle non-orthographic projection for scene-level SfP, the
neural network must be aware of the viewing direction of
each pixel since the convolution operation is translation in-
variant. We thus propose a simple but critical technique that
improves the performance of SfP methods on scene-level
data: providing per-pixel viewing encoding to the neural
network. Finally, as an additional contribution, we design
a novel polarization representation, which is effective and
considerably more efficient than the representations in prior
work [4].

We compare our approach with various state-of-the-art
methods. Experimental results show that our model can
generate a high-quality normal map from a single polar-
ization image (Fig. 1) and can generalize beyond the depth
range of the training data. In summary, our contributions
are as follows.

• We construct the first real-world SfP dataset contain-
ing paired input polarization images and ground-truth
normal maps in complex scenes.

• Our proposed shape-from-polarization approach is the

first one trained on complex real-world scene-level
data and also the best-performing one for normal es-
timation from polarization in the wild.

• Technically, we introduce three novel designs to scene-
level SfP: viewing encoding that can handle the chal-
lenge of non-orthographic projection in scene-level
SfP, a dedicated network architecture that adopts
multi-head self-attention for SfP, and a practical po-
larization representation that is effective and efficient.

2. Related Work
Shape from polarization. The polarization of light
changes when the light interacts with a surface, which can
be described by the Fresnel equations using the geometry
and materials of objects [12]. Shape from polarization (SfP)
works [2, 38, 42] utilize this effect to estimate the surface
normal of objects. Since the polarization state is affected
by various factors simultaneously, early SfP methods usu-
ally enforce assumptions of reflection types and materials
to constrain the problem. For example, Rahmann et al. [42]
assume pure specular reflection and some works [1, 38] as-
sume pure diffuse reflection.

Various cues and techniques have been explored to re-
solve the ambiguities in this problem. Atkinson et al. [3]
use shading from two views. Baek et al. [5] perform joint
optimization of appearance, normals, and refractive index.
A coarse depth map from a depth sensor [25], two-view
stereo [21, 56], reciprocal image pairs [16], or multi-view
stereo [13,37], can also be served to disambiguate the prob-
lem. For single-view SfP, some methods combine photo-
metric stereo [1] or shading information [35, 44] with SfP.
Also, some works try to solve this problem under specific
illumination conditions (e.g., front-flash illumination [15]
and sunlight under the clear sky [23]). Unlike these works,
our approach aims to estimate surface normal in the wild
without specific assumptions or additional tools.

Deep learning is proven effective in solving the ambigu-
ities of object-level SfP. Ba et al. [4] collect a real-world
object-level dataset and train a CNN to obtain normals from
polarization, significantly outperforming physics-based SfP.
Instead of collecting real-world data, Kondo et al. [29] cre-
ate a synthetic dataset of polarization images with a new po-
larimetric BRDF model. However, these approaches have
not studied complex scenes in the wild due to the lack of
real-world scene-level data. To address this issue, we pro-
pose the first real-world scene-level SfP dataset. Besides,
we also notice existing frameworks [4, 29] cannot achieve
satisfactory results on our dataset due to the challenges that
emerge in scene-level SfP, and we propose effective solu-
tions to these challenges.
Surface normals from an RGB image. Even though RGB
data does not directly contain geometry cues for objects
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Figure 2. The importance of polarization. Note that polarization conveys the underlying physical shape while RGB-based methods [17,
51] are distracted by the semantics in a printed picture attached to a wall.

such as polarization data, estimating the surface normal
from a single RGB image is feasible, especially with the
advent of deep learning. The related works [6, 7, 31, 48, 52]
train a neural network using a large amount of RGB-surface
normal paired data, including real-world indoor dataset [43]
or synthetic dataset [14]. However, without the guidance
of physics-based cues, these learning-based approaches
mainly rely on semantic cues in the image, which leads
to performance degradation when they are applied to data
out of the training distribution (e.g., from indoor to outdoor
data [11] and from gravity-aligned to tilted images [17]).

Some approaches attempt to utilize the relevance be-
tween surface normals and other information (e.g., depth,
semantic information and shading). It has been shown
that better surface normal estimation can be achieved by
simultaneously estimating geometric information, such as
depth [40, 41], local principal axes [22], Manhattan label
map [47], planes and edges [46]. Eigen and Fergus [18]
and Zhang et al. [53] jointly predict depth, normals, and
semantics, exploiting affinity between these three modali-
ties. Zamir et al. [51] consider the consistency of normals
and other attributes, such as shading, depth, occlusion, and
curvature. Surface normal estimation is also an essential el-
ement in inverse rendering, which aims to recover normals,
reflectance, and illumination from one image [8, 33, 50] or
multiple images [27, 54]. However, according to our exper-
iments, these approaches mainly depend on the semantic
information of images for normal estimation. As a compar-
ison, our method can better recover the physical geometry
with the polarization cues, as shown in Fig. 2.

3. SPW Dataset

We construct the SPW (Shape from Polarization in the
Wild) dataset, the first real-world dataset that contains
scene-level ground-truth surface normals for polarization
images in the wild. Table 1 provides a comparison be-
tween SPW and prior SfP datasets. The only existing real-
world SfP dataset is DeepSfP [4]; however, it only provides
ground-truth normals on masked objects. Kondo et al. [29]
built a big SfP dataset, but it is synthetic and not publicly
available.

Dataset Level Collection Size Resolution Public

DeepSfP [4] Object Real-world 263 1224×1024 ✓

Kondo [29] Scene Synthetic 44305 256×192 ×
Ours Scene Real-world 522 1224×1024 ✓

Table 1. Comparison among different datasets. DeepSfP [4] is
real-world but focuses on object-level, Konda et al. [29] has a big
dataset size, but it is synthetic and not publicly available. Ours is
the first real-world scene-level SfP dataset.

Our dataset consists of 522 sets of images from 110 dif-
ferent scenes containing diverse object materials and light-
ing conditions, and each scene includes 3-7 sets of images
with different depths and viewing directions. A polariza-
tion image and the corresponding normal map are provided
in each set. In addition to these image sets with ground
truth normals, we also capture a separate set of images in
outdoor scenes. Since most depth sensors cannot easily ac-
quire dense depth for faraway scene content, these images
are used for perceptual evaluation only, to assess general-
ization beyond the depth range of the training data.

Fig. 3 shows our data preparation pipeline. The pipeline
can be divided into the following four parts.

a) Devices. Since there is no existing polarization-depth
camera, we need to choose a depth sensor to capture dense
scene-level depth. We notice that most LiDAR cannot pro-
duce dense point clouds efficiently, and the 360-degree ro-
tating device used in [4] can only reconstruct small ob-
jects. Hence, we use a ToF sensor (Azure Kinect) to cap-
ture scene-level depth, and this depth sensor’s resolution is
640×576. For polarization, we use a PHX050S-P polariza-
tion camera that can capture four polarization images with
polarizer angles of 0◦, 45◦, 90◦, 135◦ in a single shot, and
the resolution of this polarization camera is 1224 × 1024.
We fix the two sensors with a custom mount to make sure
the camera pose between the depth sensor and polarization
camera is the same in each capture, as shown in Fig. 3(a).

b) Depth-polarization alignment. We obtain the intrin-
sic and the initial extrinsic parameters between the polariza-
tion and depth sensor from stereo calibration. We then use
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Figure 3. Our capture setup (a) fixes a polarization camera (red arrow) and a depth sensor (black arrow) with a custom mount. The
polarization camera captures polarization images (b), and the depth sensor collects scene-level depth (c). We use PCA-based normal
estimation to obtain normal maps from the depth data, as shown in (d) and (e). (d) uses a single depth map, and (e) uses a median-denoised
depth map. Post-processing the denoised normal map in (e) yields the final normal map shown in (f), there we exclude normals in areas
where the depth sensor returns the inaccurate or sparse depth (e.g., dark region).

coordinate descent to improve depth-polarization alignment
further. Specifically, we optimize the extrinsic parameters
with fixed intrinsic parameters to minimize the projection
error between the reprojected RGB image and the polariza-
tion image. The optimized extrinsic parameters are used to
produce polarization-aligned depth.

c) Depth denoising. Since surface normals computed
from a single polarization-aligned depth map are noisy, we
capture 50 depth images with a stationary setup and com-
pute the median at each pixel to reduce noise in the depth
map. Finally, we generate a point cloud from the de-
noised depth map and calculate the surface normals from
the aligned point cloud using Principal Component Anal-
ysis (PCA) from the Open3D library [55]. As shown in
Fig. 3(d,e), denoising the depth map yields much cleaner
normals.

d) Post-processing. Even though we get high-quality
normals by the above steps, we further improve the quality
by excluding normals in areas where the depth sensor re-
turns inaccurate values, such as dark and occluded regions.
We also exclude normals on thin structures where the depth
sensor only captures very sparse point clouds, such as chair
legs or wires. The final normals are shown in Fig. 3(f).

4. Method
In this paper, we consider linear polarization. A polariza-

tion camera can measure the intensity of light Iϕpol passing
a polarizer [12, 56], which is determined by the polarizer
angle ϕpol and the polarization of the light:

Iϕpol = Iun{1 + ρcos(2ϕ− 2ϕpol)}, (1)

where ϕ is the angle of polarization (AoP), ρ is the degree of
polarization (DoP), Iun is the unpolarized intensity of light.
ϕ, ρ, and Iun can be computed from images with different
polarizer angles by [30, 32].

Degree of polarization (DoP) ρ contains cues for the
viewing angle θv between surface normal n and viewing
direction v. Specifically, the DoP ρ is decided by the view-
ing angle θv, the refractive index η of the object and reflec-

tion type r (specular or diffuse reflection). More details are
provided in the supplement.

Angle of polarization (AoP) ϕ is the projection of the
polarization direction d on the image plane. In terms of
physical properties, d is always parallel or perpendicular
to the incidence plane, which is defined by surface normal
n and viewing direction v. There are two ambiguities for
the polarization angle: π-ambiguity and diffuse/specular-
ambiguity. The π-ambiguity is because ϕ is from 0 to π
and there is no difference between ϕ and ϕ + π (Eq. 1).
The reflection type causes the diffuse/specular-ambiguity:
the polarization direction is parallel or perpendicular to the
incidence plane respectively for diffuse/specular dominant
reflection.

4.1. Overview

Fig. 4 provides an overview of our approach. The raw
polarization image I ∈ RH×W×4 consists of four polariza-
tion images Iϕpol ∈ RH×W×1 under four polarizer angles
ϕpol ∈ {0, π/4, π/2, 3π/4}. We firstly compute a polar-
ization representation P for normal estimation (Sec. 4.2).
Then, to handle the perspective projection for scene-level
SfP, we provide the viewing encoding V as an extra input
(Sec. 4.3). At last, we predict the normal n̂ from all the pro-
vided information with our designed architecture (Sec. 4.4).

4.2. Polarization representation

Having a proper polarization representation P as the in-
put to a neural network can effectively improve the perfor-
mance of SfP [4, 29]. Kondo et al. [29] directly compute
AoP ϕ, DoP ρ and Iun as the polarization representation.
DeepSfP [4] calculates possible SfP solutions under the as-
sumption of orthographic projection:

n = (sinθcosα, sinθsinα, cosθ)⊺, (2)

where θ and α are the zenith angle and azimuth angle com-
puted from DoP ρ and AoP ϕ, respectively. While it is ef-
fective, computing their polarization representation is quite
time-consuming, as reported in their paper [4].
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Figure 4. An overview of our approach. The input to our network includes three parts: (1) Polarization images I0, Iπ/4, Iπ/2, I3π/4.
(2) The polarization representation Iun, ϕe, and ρ computed from polarization images. (3) The viewing encoding V is vital to handle the
perspective projection for scene-level SfP. The concatenated inputs are fed into the neural network to output an estimated normal n̂.

We propose a new polarization representation P that is
efficient and more effective compared with existing polar-
ization representations [4, 29], as shown in our experiments
(Table 4). P ∈ RH×W×4 consists of Iun, ϕe, ρ, where ϕe

is the encoded AoP:

ϕe = (cos2ϕ, sin2ϕ). (3)

The encoded AoP ϕe is designed to address a weakness
of raw AoP ϕ. For example, given two polarization an-
gles 0◦ and 179◦, the distance between them should be 1◦

in physics for polarization. However, in the calculated ϕ
space, the difference is 179◦. Encoding helps solve the
weakness of raw AoP representation since there is no dif-
ference between ϕ and ϕ+ π in the encoding space.

We input the DoP ρ as cues for solving specular/diffuse
ambiguity since the DoP ρ is usually large when specular re-
flection dominates. This strategy improves the performance
but does not fully resolve the specular/diffuse ambiguity.

Importance of polarization. Polarization contains use-
ful cues about physical 3D information of objects based on
real-world reflection. Thus, utilizing polarization can im-
prove the fidelity of estimated normals, especially for areas
with rare or wrong semantic information. Fig. 2 shows an
example about the advantage of polarization: given an im-
age printed on a flat sheet of paper, the RGB-based base-
lines are distracted by the content of the image and fail to
predict correct normals for the physical content of the scene
(i.e., the flat paper). Polarization provides an alternative
modality that can convey the true shape of objects in the
scene. Hence, the polarization can give a robust cue to dis-
tinguish that the wall (paper) is exactly flat.

4.3. Viewing encoding

We introduce the viewing encoding V to account for
non-orthographic projection in scene-level SfP, which con-
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Figure 5. An analysis of our proposed viewing encoding V. The
polarization representation is affected by spatial-varying viewing
directions in scene-level SfP. Enforcing the viewing encoding V
can effectively calibrate the impact of viewing direction on the
polarization representation.

tains the viewing direction cues for every pixel of the po-
larization representation. Previous object-level SfP ap-
proaches [3, 4] assume viewing directions are (0, 0, 1)⊺ for
all pixels (i.e., orthographic projection) since an object is
always put at the image center. However, the viewing di-
rection is spatially varying in scene-level SfP, and the po-
larization representation is heavily influenced by the view-
ing direction. As shown in Fig. 5, for pixels with the same
material and surface normal, their polarization representa-
tions are quite different. Also, since the CNN is translation-
invariant, it is hard for CNN to know the viewing direction
without explicitly providing it to the CNN. We thus propose
to input the viewing encoding to the CNN.

A direct representation of viewing encoding is the view-
ing direction, which is computed from the intrinsic param-
eters of the polarization camera. If the intrinsic parameters
of the camera are not available, we can also use the 2D co-
ordinate (u, v) of each pixel and normalize it to [−1, 1] as
input [34]. Fig. 5 presents an example for the effectiveness
of our viewing encoding.

Discussion. Note that our viewing encoding is different
from the positional encoding used in NeRF [36] or trans-
formers [45]. Our design is inspired by the fact that per-



Method Task Angular Error ↓ Accuracy ↑
Mean Median RMSE 11.25◦ 22.5◦ 30.0◦

Miyazaki et al. [38] Physics-based SfP 55.34 55.19 60.35 2.6 10.4 18.8
Mahmoud et al. [35] Physics-based SfP 52.14 51.93 56.97 2.7 11.6 21.0
Smith et al. [44] Physics-based SfP 50.42 47.17 55.53 11.0 24.7 33.2
DeepSfP† [4] Learning-based SfP 28.43 24.90 33.17 18.8 48.3 62.3
Kondo et al.† [29] Learning-based SfP 28.59 25.41 33.54 17.5 47.1 62.6
Ours Learning-based SfP 17.86 14.20 22.72 44.6 76.3 85.2

Table 2. Quantitative evaluation on the SPW dataset. Our approach outperforms all baselines by a large margin on all evaluation metrics.
†: our implementation.

Method Mean Angular Error↓

Miyazaki et al. [38] 43.94
Mahmoud et al. [35] 51.79
Smith et al. [44] 45.39
DeepSfP [4] 18.52
Ours 14.68

Table 3. Quantitative evaluation on the DeepSfP dataset [4].
Our approach obtains the best score. The results of other baselines
are collected from the official results in DeepSfP [4].

pixel viewing directions influence polarization. Besides,
viewing encoding yields better performance than the posi-
tional encoding in our experiments.

4.4. Network architecture and training

To handle the ambiguities that exist in polarization cues,
we introduce multi-head self-attention [45] to SfP for uti-
lizing the global context information. As shown in Fig. 4,
the self-attention block is added in the bottleneck of an
Encoder-Decoder architecture [39]. Different from sim-
ilar architectures that combine CNN encoder with trans-
former [24,49], we remove the linear projection layer since
the CNN encoder already extracts the embeddings. Besides,
similar to position embedding of transformer [24, 49], our
viewing encoding can provide the position information to
self-attention, and we thus remove the position embedding.
Finally, we add instance normalization to the encoder since
we notice it helps convergence.

We adopt a cosine similarity loss [4] for training. We
implement our model in PyTorch. The model is trained for
1000 epochs with batch size 16 on four Nvidia Tesla V100
GPUs, each with 16 GB memory. We use the Adam op-
timizer [28] with initial learning rate 1e-4 and we adopt a
cosine decay scheduler for the learning rate. The learning
rate is linearly scaled with the batch size. We crop images
to 512×512 patches in each iteration for data augmentation.

5. Experiments
5.1. Experimental setup

Evaluation metrics. Following previous surface normal es-
timation works [6, 48], we adopt six widely used metrics.
The first three are Mean, Median, and RMSE (lower is bet-
ter ↓), which are the mean, median, and RMSE of angular
errors. The last three are 11 .25 ◦, 22 .5 ◦, and 30 .0 ◦ (higher
is better ↑), and each shows the percentage of pixels within
a specific angular error.
Datasets. We use two datasets in the experiments.

• DeepSfP [4]. DeepSfP is the only publicly available
SfP dataset that contains real-world ground-truth sur-
face normals. There is only one object in each im-
age, but the surface normal is high-quality. We use the
train/test split provided in the original paper [4].

• SPW. We use our SPW dataset, presented in Sec. 3.
We use 403 and 119 images for training and evalua-
tion, respectively. Train and test sets do not include
the images from the same scene to avoid overfitting.
We also use the far-field data for perceptual evaluation.
randomly divided based on scenes (instead of images).

5.2. Comparison to SfP baselines

Our approach is compared with three physics-based SfP
methods (Miyazaki et al. [38], Mahmoud et al. [35], and
Smith et al. [44]) and two learning-based SfP methods
(DeepSfP [4] and Kondo et al. [29]). The source code and
results of DeepSfP [4] and Konda et al. [29] are not avail-
able. We reimplement these two approaches and retrain
their models on our SPW dataset.

Table 2 presents the quantitative results of all the meth-
ods on our SPW dataset. Our approach outperforms all
baselines by a large margin on all metrics.

Fig. 6 provides a qualitative comparison on images from
the SPW dataset. Our estimated surface normal maps are
more accurate. Besides, Our approach can produce high-
quality normals while other methods do not.
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Figure 6. Qualitative comparison between our approach and other shape from polarization methods baselines [4, 29, 38, 44] on the SPW
dataset [4].

Table 3 presents the quantitative results on the public
DeepSfP dataset [4], in which we also achieve the best
performance. Our approach reduces the mean angular er-
ror by 20% compared to the second-best result reported by
DeepSfP [4].

For physics-based SfP [35,38,44], since the assumptions
of these methods do not hold in the wild, the quantitative
accuracy of these approaches is low on the SPW dataset.
They cannot obtain satisfying performance on the DeepSfP
dataset, either. For example, Mahmoud et al. [35] assume a
distant light source, which is not common in the real world
(e.g., multiple light sources can exist in a room). As for
the learning-based SfP methods [4, 29], our approach is the
best-performing one and we analyze the designs (i.e., polar-
ization representation, viewing encoding and architectures)
that contribute to our model in Sec. 5.4.

5.3. Generalization to outdoor scenes

Although our model is trained on near-field depth es-
timated by a Kinect camera, it can generalize to outdoor
scenes with distances far beyond the Kinect depth range.
This is illustrated qualitatively in Fig. 7. Quantitative results
are not provided due to the lack of ground-truth normals in
this regime. This generalization is possible because the rela-
tionship between polarized light and surface normals is not
affected by distance. Thus our model that learns to estimate
normals from near-field polarization data can generalize to
outdoor scenes.

5.4. Controlled experiments

5.4.1 Polarization representation

The experiments are conducted on both DeepSfP dataset [4]
and SPW dataset. We remove the polarization information
or replace our proposed polarization representation with
other representations as input to our model. Table 4 pro-
vides the quantitative results of various polarization repre-
sentations. Utilizing our polarization representation reduces
the mean angular error by 9 ◦. Besides, we obtain the lowest

Figure 7. Our results on outdoor scenes. Although our model is
trained on near-field content, it appears to successfully generalize
to large-scale outdoor scenes.

Polarization Mean Angular Error↓ Time(s)
representation P SPW DeepSfP [4]

Without polarization 27.52 19.14 0.000

Raw polarization 21.77 14.89 0.000
P from Kondo et al. [29] 18.26 15.44 0.203
P from DeepSfP [4] 18.05 14.82 1.514
P from our approach 17.86 14.68 0.281

Table 4. Controlled experiments for polarization representa-
tions on SPW and DeepSfP [4] datasets. Please check Sec. 4.2
for the details of various representations. We test the preprocess-
ing time of a raw image with resolution 1024×1224 using a single
thread on Intel Xeon Gold CPU with 2.30GHz frequency.

MAE on both datasets and the running time of our represen-
tation is much shorter than DeepSfP [4].

5.4.2 Viewing encoding

Since the DeepSfP dataset is not designed for scene-level
SfP, we only conduct the controlled experiments on the



Viewing encoding Angular Error ↓ Accuracy ↑
Mean Median RMSE 11.25◦ 22.5◦ 30.0◦

Ours without V 22.12 18.00 27.03 32.2 66.9 77.8
Ours with Vp 20.31 16.02 25.68 40.4 71.0 80.5
Ours with Vc 18.44 14.62 23.46 43.7 76.1 84.8
Ours with V 17.86 14.20 22.72 44.6 76.3 85.2

Table 5. Controlled experiments for the viewing encoding on
the SPW dataset. Previous learning-based SfP methods [4,29] do
not input any viewing encoding. In addition to our viewing encod-
ing V, we also try to use the positional encoding of NeRF [36] Vp

and normalized coordinates Vc as the viewing encoding.
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Figure 8. An analysis of the viewing encoding. We calculate the
mean angular error (MAE) for each pixel on the test set. We notice
that the improvement brought by viewing encoding increases with
the distance to the image center. We believe this is because the im-
pact of non-orthographic projection is more severe in the corners
of images.

SPW dataset. For each model, we remove the viewing en-
coding from the input or use different types of viewing en-
coding. In Table 5, using viewing encoding improves our
model in all the metrics effectively by a large margin. The
model that uses raw viewing directions achieves the best
performance. The model that uses positional encoding of
NeRF [36] also improves the performance but is not as good
as ours. When the images in a dataset are captured with the
same intrinsic parameters, using normalized coordinates as
viewing encoding also obtains satisfying performance. We
further analyze the impact of viewing encoding in Fig. 5 and
Fig. 8.

5.4.3 Network architectures

We study different network architectures in this section. In
addition to networks of previous SfP methods (DeepSfP [4]
and Kondo et al. [29]), we also compare with two RGB-

Network Angular Error ↓ Accuracy ↑
Mean Median RMSE 11.25◦ 22.5◦ 30.0◦

Kondo et al.† [29] 26.43 22.69 31.80 23.8 54.1 67.6
DeepSfP† [4] 24.97 20.83 30.13 25.6 58.4 70.9
U-Net [39] 26.35 22.45 31.97 25.4 54.5 67.6
DORN [20] 20.16 15.60 25.47 39.8 71.3 81.1
TransDepth [49] 22.05 17.46 27.77 33.0 66.6 77.9

Ours without IN 20.74 16.63 25.98 38.5 69.3 79.0
Ours without SA 21.08 16.54 26.62 36.1 68.5 79.3
Ours 17.86 14.20 22.72 44.6 76.3 85.2

Table 6. Controlled experiments for network architectures on
the SPW dataset. We retrain Kondo et al. [29], DeepSfP [4] and
other networks with the same representation as ours (e.g. viewing
encoding and our novel polarization representation) for fair com-
parison. SA: self-attention. IN: instance normalization. †: our
implementation.

based normal estimation methods: TransDepth [21] and
DORN [20]. For all the experiments, we provide the
same polarization representation and viewing encoding to
these compared network architectures. Table 6 presents
the quantitative results of different architectures. Our ar-
chitecture obtains the best performance. Besides, remov-
ing self-attention or replacing instance normalization with
batch normalization leads to performance degradation.

6. Conclusion

We present the first approach dedicated to scene-level
surface normal estimation from a single polarization image
in the wild. The accuracy of our model is demonstrated
on SPW, the first scene-level dataset for real-world SfP. By
introducing the viewing encoding, a self-attention module
and a novel polarization representation to SfP, our model
substantially outperforms prior work on both SPW and the
object-level DeepSfP dataset. In addition, our model can
generalize from near-field scenes (used during training) to
far-field outdoor scenes. This is possible because the po-
larization sensor is based on passive sensing, so our trained
model is expected to generalize to distant scenes. We hope
our work including the proposed SPW dataset and our tech-
nical designs can contribute to high-quality normal estima-
tion, especially shape from polarization.

Limitations. One of the limitations of our work is
the lack of quantitative evaluation in outdoor scenes.
Note that the quantitative experiments in outdoor
scenes will require long-range high-resolution depth
and normal estimation with high-end depth sensors.
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