Pattern-Aware Shape Deformation Using Sliding Dockers

Martin Bokeloh™ Michael Wand*

MPI Informatik

—
=
==
:Q/

=

Saarland University and MPI Informatik

Vladlen Koltun'
Stanford University

Hans-Peter Seidel*
MPI Informatik

Figure 1: Edit example (left to right): The user places constraints (blue) and manipulates the object by moving constraints. Our deformation
model maintains continuous and discrete patterns and adapts the repetition count of discrete patterns, inserting and deleting elements as
needed to minimize distortion. Discrete changes are highlighted in orange.

Abstract

This paper introduces a new structure-aware shape deformation
technique. The key idea is to detect continuous and discrete regular
patterns and ensure that these patterns are preserved during free-
form deformation. We propose a variational deformation model
that preserves these structures, and a discrete algorithm that adap-
tively inserts or removes repeated elements in regular patterns to
minimize distortion. As a tool for such structural adaptation, we
introduce sliding dockers, which represent repeatable elements that
fit together seamlessly for arbitrary repetition counts. We demon-
strate the presented approach on a number of complex 3D models
from commercial shape libraries.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;

Keywords: shape deformation, shape analysis, symmetry, struc-
tural regularity

Links: ©DL T PDF

1 Introduction

Content creation is one of the main bottlenecks in contemporary
computer graphics. While sophisticated methods for processing
and rendering three-dimensional content are widely available, the
creation of detailed custom 3D geometry still requires significant
expertise. The issue is not merely of creative ability, but also with
the process of directly manipulating detailed 3D models. Such

*e-mail: {mbokeloh,mwand,hpseidel } @mpi-inf.mpg.de
Te-mail:vladlen @stanford.edu

3D models often feature structural relationships on multiple scales,
which need to be manually restored whenever a significant manip-
ulation is performed on the model. Tedious adjustment is often
required multiple times in a single modeling session.

Consequently, recent research has begun to investigate structure-
aware shape editing tools that aim to automate the detailed manip-
ulation required to preserve the structural relationships in a shape
as it undergoes manipulation [Kraevoy et al. 2008; Gal et al. 2009;
Huang et al. 2009; Wang et al. 2011; Zheng et al. 2011]. Such algo-
rithms analyze the input shape to extract structural features and use
the learned structure to assist interactive 3D modeling. They can
improve the efficiency of content creation professionals and can as-
sist inexperienced users in adapting existing content to their needs.

In this paper, we present a structure-aware shape editing technique
that detects discrete and continuous patterns in the shape and pre-
serves these patterns under free-form deformation. A key distin-
guishing feature of our approach is that it can change the structure
of the object by adding or removing local elements along regular
patterns. This structural adaptation is integrated into a global free-
form deformation framework that minimizes the overall stretch of
the object.

In our approach, the user specifies a small set of constraints and the
system computes a new shape that meets these constraints while
preserving structural properties of the original model, as shown in
Figure 1. As invariants, we extract 1-parameter groups of partial
symmetries. In other words, we detect geometry that is replicated
in regular patterns. This includes continuous symmetries such as
straight lines as well as repeated discrete elements such as windows
in a building. We formulate non-local rigidity constraints to main-
tain these symmetry properties in the output, and allow for adapting
the number of discrete repetitions in order to reduce distortions.

In order to add and remove elements along discrete patterns with
minimal distortion, we introduce sliding dockers. A sliding docker
is an element in a local, repeated structure that interfaces with the
rest of the model in such way that the structure can be independently
replicated with minimal distortion. We develop an algorithm that
automatically finds collections of sliding dockers that repeat in one
common translational direction and adapts the replication count in
a way that minimizes distortions in the overall object.

We evaluate the presented technique on models taken from com-
mercial 3D model libraries and demonstrate that the presented tech-

http://doi.acm.org/10.1145/2024156.2024157
http://portal.acm.org/ft_gateway.cfm?id=2024157&type=pdf

ey
rrri

(a) input object

H"!’!m'!!n
=1

(b) elastic deformation

P rPrr] e
I rryrly I rirrl}

(c) maintaining continuous patterns

Figure 2: Overview of our approach. Given an input shape (a) and a free-form deformation applied by the user (b), our deformation model
preserves continuous patterns in the shape (c) and adapts the repetition counts of discrete patterns to minimize distortion (d).

nique is able to naturally adapt the discrete structure of regular pat-
terns in the objects in response to free-form manipulation. In sum-
mary, this work makes the following key contributions:

e We develop a new deformation model formulated in terms of
regular patterns on the shape.

e We introduce the concept of sliding dockers for analyzing par-
tial regularity. This allows for the first time to automatically
insert and delete repetitive elements within a free-form shape
deformation tool.

e We develop a robust and efficient numerical framework for
implementing the technique for real-time shape editing.

2 Related Work

In our approach, the user interacts with 3D shapes in a free-form
deformation system, which has a long tradition in computer graph-
ics. Early techniques use smooth basis functions for interpolation
[Sederberg and Parry 1986; Coquillart 1990]. Recent work con-
structs bases specific to a set of control points or a control cage [Ju
et al. 2005; Joshi et al. 2007; Lipman et al. 2008; Ben-Chen et al.
2009]. Many of the techniques are based on variational calculus:
local regularizers are traded off against the user’s constraints. The
regularizers aim to maintain local similarity to the input. Elastic
deformation models [Terzopoulos et al. 1987], which minimize the
non-rigidity of the deformation, are particularly popular [Botsch
and Sorkine 2008]. Variants include volume preservation [von
Funck et al. 2006], similarity transforms [Liu et al. 2008], and thin-
plate splines [Allen et al. 2003]. We use elastic deformation as a
“base regularizer” to diffuse stretch and to preserve geometry for
which no structural information could be inferred. Our implemen-
tation adopts the technique of Sorkine and Alexa [2007] that pre-
serves co-rotated distance vectors in a least-squares sense. We ex-
tend this to a volumetric subspace formulation [Zhou et al. 2005;
Huang et al. 2006; Sumner et al. 2007; Adams et al. 2008]. This
allows interactive handling of large meshes and provides robustness
against unfavorable mesh topology so that we can handle “triangle
soup.”

Local regularizers do not recognize higher-level structural proper-
ties in the shape. Consequently, these techniques still expose a large
number of degrees of freedom to the user, who has to manually
ensure that important structural properties are maintained. This is
acceptable for many organic shapes such as creatures, but highly
structured objects, such as many man-made objects, are difficult to
handle. Kraevoy et al. [2008] use an elastic-type model that adapts
to the vulnerability of the local content. Three global stretch axes
are fixed, which avoids bending artifacts but also limits the appli-
cability of the technique to axis-aligned stretching. The continuous
part of our deformation model could be regarded as an extension
of their approach. The major difference is that we determine lo-
cal stretch directions automatically, based on continuous patterns,
rather than fixing them to the global coordinate system.

Xu et al. [2009] introduce slippage analysis for free-form shape de-

formation, using it to construct a joint-aware deformation model.
We also use slippage analysis, but employ it to discover continu-
ous symmetries that are used to maintain the pattern structure of
the input. The influential iWires system [Gal et al. 2009] maintains
global structural properties of the shape by building constraints that
preserve similarity of symmetric parts [Mitra et al. 2006; Podolak
et al. 2006; Simari et al. 2006], as well as parallelity and orthog-
onality of salient feature lines. Huang et al. [2009] apply simi-
lar ideas to 2D vector graphics, and Zheng et al. [2011] propagate
editing operations based on similarity of components. Using such
global knowledge greatly facilitates shape editing, but a key limita-
tion remains: The deformation function is still a continuous, bijec-
tive map between input and output. This does not allow the inser-
tion or removal of elements, which can be desirable in response to
significant stretch. This issue is the main motivation for our work.
A further contribution of our work is that it is based on a single,
low-level assumption of preserving partial 1-parameter symmetry
groups, rather than a complex set of rules.

A number of approaches have been developed for recombining
shapes out of parts. Approaches that utilize manual part compo-
sition have been described [Funkhouser et al. 2004; Pauly et al.
2005; Kraevoy et al. 2007], as well as automatic methods for detect-
ing structural regularity [Pauly et al. 2008]. Recently, techniques
have appeared that compute rules for discrete changes automati-
cally [Mitra and Pauly 2008; Bokeloh et al. 2010]. However, none
of the automatic techniques provides free-form deformation edit-
ing. In addition, structural relationships treated in previous work
are often limited: The technique of [Bokeloh et al. 2010] can de-
tect regular patterns in 3D geometry and create shape variations by
inserting or removing pieces, but the detected dockers must parti-
tion the model globally into two disjoint pieces by a symmetric cut.
The technique thus cannot handle 3D models with local patterns
that do not globally partition the shape. We extend the docking
approach of Bokeloh et al. [2010] and introduce sliding dockers,
which require only a partial partitioning and are designed to oper-
ate as part of a structure-aware free-form deformation framework.
The recent method of Wang et al. [2011] infers a scene graph struc-
ture for an unannotated 3D mesh to allow for both continuous and
discrete parameter variations. However, the method does not pro-
vide a constraint-based free-form deformation interface.

Wu et al. [2010] describe an image resizing method that summa-
rizes symmetry structure in the image and uses it to add or re-
move columns or rows of repeated elements in response to resiz-
ing operations. Their method tackles challenges that arise in image
processing, such as perspective distortion or illumination changes.
Our work focuses on manipulation of three-dimensional geometry,
which imposes challenges such as producing seamless surfaces af-
ter adding or removing geometric elements, and dealing with gen-
eral deformation and multiple independent resizing directions.

3 Overview

Our technique is designed to preserve regular patterns in the input
shape. We detect such patterns in a preprocessing step, described in

(d) discrete patterns, adapted repetition counts

Section 4. We then apply a continuous deformation model that tries
to maintain the detected structure, as described in Section 5. In or-
der to reduce distortions, we automatically insert or delete repeated
elements using sliding dockers, developed in Section 6. In this sec-
tion we give a brief overview of each component of our approach.
These components are illustrated in Figure 2.

Input: Our technique accepts a general triangle mesh S C R?
as input (Figure 2a), with no restrictions on geometry or topology
(in other words, “triangle soup”). In addition, the user can select
an arbitrary number of handles H; C S and can move and rotate
them to new positions (this is an interactive process, with real-time
feedback by the system). In the following, we will use {(S) to
denote the maximum side length of an axis aligned bounding box
of S; this value is used to scale relative parameters automatically.

Deformation model: The basis of our technique is a standard elas-
tic shape deformation model [Terzopoulos et al. 1987; Sorkine and
Alexa 2007]. It computes a deformation field f that minimizes the
deviation from the user’s constraints and tries to keep the object as
rigid as possible. In other words, the model diffuses stretch (stress
tensors) as uniformly as possible across the object surface under
the given constraints (Figure 2b). We use this behavior as a “base
regularizer” with low weight, aiming at just dissipating the stretch
induced by the constraints.

Shape analysis: We perform a shape analysis step in preprocess-
ing, in order to identify regular patterns in the input geometry. We
model regular patterns as one-parameter partial group structures in
the symmetry structure of the object: We find parts P C S that
show up multiple times, replicated by a series of transformations
T*, where = ranges over a continuous or integral range Z C R,
leading to continuous and discrete patterns.

Sliding dockers: For discrete patterns, we find sliding dockers,
which are building blocks that can be replicated when the object
is locally stretched. Sliding dockers are cut out of the input surface
in a way that the boundaries fit seamlessly when multiple pieces
are attached to each other regularly. In addition, the boundaries
of this repeated region are slippable, such that any repetition count
yields closed geometry. In our current approach, discrete changes
are limited to pattern with one degree of freedom only.

Continuous, structure-aware deformation: Using the structural
knowledge gained in preprocessing, we add constraints to our de-
formation model that aim at preserving the patterns in the shape.
These constraints are given a higher weight than the elastic regular-
izer, thus dominating the deformation results (Figure 2c).

Discrete relaxation: We measure the stretch in the continuously
deformed model and automatically insert or delete sliding dockers
to relax the stretch in the model. Such automatic structure adapta-
tion allows a broader range of deformations to be applied without
violating the natural appearance of the object (Figure 2d).

4 Pattern-Based Structure Model

Our approach begins with a preprocessing phase, which analyses
the input geometry to detect structural regularity in the form of par-
tial regular patterns. These patterns will be kept invariant in the
later editing process. Regular patterns are defined with respect to a
group of admissible transformations:

Transformations: Let G be a group of bijective, continuous map-
pings R® — R3. Throughout this paper, we will restrict our con-
sideration to translations.

Replications: For a transformation T € G, let T* denote the x-
fold application of T, where « € R is a continuous value. As we

are dealing with translations, which form a linear space, this cor-
responds to a multiplication by x. However, we will stick to the
more general group notation because this shows more clearly the
conceptual structure. It also indicates how our framework could
be generalized to more complex groups of transformations (for ex-
ample, including rotation). For a set A C R, we will use the the
notation T# := {T%|x € A} in order to denote the set of powers
of T. Furthermore, for P C R®, we write T*(P) := U,caT*(P)
to denote replications of P. In particular, T (7) denotes the extru-
sion surface that replicates P continuously.

4.1 Partial Regular Patterns

Our goal is to preserve the symmetry structure of the input S under
deformations while admitting insertions and deletions of parts. The
first step is to look at the global symmetries of S:

Symmetry groups: The set of all operations T € G that maps S
to itself, i.e., T(S) = S forms a subgroup of G. For commuta-
tive groups, such as the translations we are considering, symmetry
groups are isomorphic to infinite (potentially continuous) regular
lattices [Pauly et al. 2008]. To deal with finite models and partial
regularity, we include symmetric structures that are only excerpts
of a larger grid. Due to commutativity, we can factor more general
patterns into overlapping 1-parameter grids. Overall, this leads to
the following model of a regular regular pattern:

Partial 1-parameter symmetry groups (‘“patterns”): Consider
P C S and a generator transformation T € G, andlet Z C R be a
real interval. If we have T (P) C S, we have found a continuous
partial 1-parameter symmetry group of S. If Z C 7 is an integer
interval with at least three elements, we have found a discrete par-
tial 1-parameter symmetry group. For brevity, we will call these
structures continuous and discrete (regular) patterns, respectively.

4.2 Computational Framework

Discrete Patterns: We compute the discrete patterns by a symme-
try analysis similar to Bokeloh et al. [2010] (see their paper for de-
tails): We detect sharp creases in the input mesh and combine pairs
of adjacent, non-collinear creases to form “bases”. Two base pairs
are potentially corresponding if they have matching length and en-
close the same angle. Very small feature lines (below 2.5% {(S))
are removed for efficiency reasons. We now use a RANSAC pro-
cedure to compute regular patterns: Random pairs of potentially
corresponding bases are chosen and the relative transformation T
is computed. We search for all potentially corresponding bases that
are located at positions T” for some € R. This gives us initial
pattern candidates. The next step is to extract generator transfor-
mations T that generate the 1-parameter groups T',i € 7T C Z:
We look at all pairwise transformations between candidate bases.
For each pair, we compute the number of bases that lie on the grid
TZ induced by the two bases. We output the choice of generator
that yields the largest integer interval Z of matching bases and ex-
clude these from further processing. We iterate until no more valid
patterns are found.

Continuous patterns: Continuous symmetries are detected by
slippage analysis, following the algorithm of [Gelfand and Guibas
2004], which can be trivially restricted to translational motions.
Parts P that have the same continuous symmetry properties are ex-
tracted by simple region growing (see [Gelfand and Guibas 2004]
for implementation details).

Normalization: To remove overlapping, partial patterns, we al-
ways choose maximal sets P for the geometry involved and the
smallest possible generating transformation (shortest translation

vector). In the discrete case, this is straightforward. In the continu-
ous case, patterns are computed with a segmentation using slippage
analysis [Gelfand and Guibas 2004]. Thus, the maximal surface
parts P are regions with the same slippage properties. Using this
representation, the interval Z in the definition above vanishes and
will be omitted for continuous symmetries in the following.

Regular Patterns of S: Using these conventions, we
obtain a finite set of discrete regular patterns Rp =
{(P1,T1,Z1),...,(P~,Tn,Zn)} and another finite set of
continuous regular patterns Rc = {(P1,T1), ..., (Pm, Tam)}-

5 Deformation Model

In this section, we describe the global continuous deformation
model that serves as the basis for our deformation framework.
First, we describe the representation of the deformation function
(Section 5.1). Second, we review the standard elastic deformation
model, which serves as our base regularizer (Section 5.2). Third,
we introduce additional structure-aware constraints in order to pre-
serve regular patterns (Section 5.3).

5.1 Representation

In order to compute a deformation, we embed the surface S into
a volume V C R* S C V, and deform this volume using a de-
formation field f : V — R3. This approach has the benefit of
making the deformation independent of the representation of S so
that arbitrary types of input geometry and general surface topology
can be handled easily. Following [Huang et al. 2006; Sumner et al.
2007], we use a subspace method to discretize f, i.e., we use a low-
dimensional basis for representing the deformation: We create a
number of nodes X1, ..., x; C R and center radial basis functions
b; around them to define the deformation field:

K
x) = Zuibi(x) (1
i=1

Here, u; € R® are the deformed target positions of the nodes x;.
As basis functions, we employ moving-least-squares (MLS) mesh-
less basis functions of linear precision, based on a finite support
Wendland kernel, as proposed in [Adams et al. 2008]. These func-
tions are able to represent smooth deformation fields with a small
number of nodes. We place the nodes by discretizing V to a regular
grid of user specified spacing h. We set the support of the basis
function to 2h to make sure that at least two basis functions overlap
each surface point in x-, y-, and z-direction. The volume V itself
is created by offsetting S by h in all directions (i.e., a Minkowski
sum of a sphere of radius h and S). This guarantees that the basis
functions and their derivatives are well defined on S.

Remark: In the following, we use two basic numerical discretiza-
tion constants. The first, h, determines the resolution of the defor-
mation field, which is typically in the range of 5% I(S). In addi-
tion, we also use smaller constant € (in the range of 1% I(S)) for
discretizing other functions, such as symmetry information and to
form neighborhoods for slippage analysis.

f is determined by a variational approach: We set up an energy
function E(f) that is minimized by an optimal f:

FE = Eu +)\TET + AcE‘c +)\(iEd (2)

E,, describes user constraints and E,. is the base-regularizer that
creates elastic behavior. These two terms correspond to a standard
elastic shape deformation approach. We then add two additional
terms to preserve the pattern structure: [, preserves continuous

patterns such as straight lines, and F4 preserves discrete patterns.
The A control the influence of the different regularizers relative to
the user constraints. We typically use A\, = 0.0l and A\c = A\g = 1.

5.2 Elastic Deformation

The first energy term E, accounts for user constraints. We use the
standard “handle” model where parts H; C S of the input surface
can be translated and rotated in space:

=3 [(e

H,€H

— (RMx + ™)) dx (3)

The second term FE. is the elastic deformation energy. We employ
a standard formulation based on a Poisson system [Sorkine et al.
2004] with co-rotated local frames [Miiller et al. 2002; Sorkine and
Alexa 2007], adapted to the volumetric settings [Zhou et al. 2005]:
We connect all pairs of nodes with overlapping shape functions and
preserve their distance vectors:

“3 % (s R R o))

=1 jEN(¢
(C))

Here, N (4) denotes accordingly the set of indices of nodes adjacent
to node x;. The w;, ; are the weights of their coupling, which we
set according to the Wendland kernel of the MLS basis (see [Zhou
et al. 2005] for a more sophisticated scheme). The variables R; are
rotation matrices at each node x; that are optimized along with the
node displacements.

Numerical solution: In order to solve for a minimum of the en-
ergy, we determine the derivative with respect to the u;, which is a
linear, Laplacian-type system, and set it to zero. Next, we update
the rotation R; by estimation from their neighbors. This procedure
is iterated until convergence. Details can be found in [Sorkine and
Alexa 2007]. Because of the special structure of this system, only
the right-hand side changes during the iterations. Therefore, it is
possible to prefactor the matrix so that the inversion can be solved
by sparse matrix-vector products, leading to a substantial speed-up.
As suggested in [Sorkine and Alexa 2007], we employ the TAUCS
library for sparse Cholesky factorization [Toledo 2003].

5.3 Structure Aware Deformation

We now augment our deformation model so that it better preserves
the structure of the deformed geometry. We first employ a general
anisotropic deformation model in order to favor a local preserva-
tion of pattern structures. Secondly, we add global constraints that
preserve continuous and discrete patterns.

5.3.1 Local Constraints

Locally, we would like geometry to deform in a way that preserves
continuous symmetries. If we look at this from the local perspec-
tive of the elastic regularizer, this means that we would like the
deformation to happen along slippable motions rather than orthog-
onal to them, because this will only change the parametrization,
but not the geometric shape. Accordingly, we augment Equation 4
by using an anisotropic error quadric in order to weight deforma-
tions. We replace the isotropic error term (u; — u; — %(RZ +

R;) (xi —x;))* =: (df};)? by:
(a5)" 5 (@Qux) + Qu)) (a2 ¥

where Q,(x) is computed by a translational slippage analysis:

Q:(x) = / n(y) -n(y)"dy +0.01 -1 (6)
Np (%)

M(yr)

M (Y3) Y1

M(yz)
Y3

Ya M(ya)

Figure 3: Constraint manifolds are constructed to preserve discrete
(purple) and continuous (blue) pattern structures.

Here, n(x) is a unit surface normal at x € S, and Nj(x) is the
Euclidean h-neighborhood of x in §. Intuitively, this can be ex-
plained as an average of planar constraints: At each point, the outer
products create quadrics that penalize deviations in normal direc-
tion only; tangential motions have zero cost. For complex geome-
try, the costs in different directions are averaged. Thus, a straight
line will penalize anything but motions in its tangential direction
and irregular geometry will resist any deformation. As we still need
a base regularizer that diffuses stretch, even along perfectly straight
lines, we add 1% of the identity matrix.

5.3.2 Global Constraints

The effect of the local model weakens with distance: Extended ob-
jects such as straight lines or flat planes can still show significant
global bending. Increasing the weights could in principle solve this
problem but would lead to an impractically ill-conditioned numer-
ical system. Therefore, we introduce explicit global constraints to
maintain general patterns globally.

We address the continuous patterns first. The discrete case is dis-
cussed afterwards and requires only a few minor modifications. Let
‘P be a part of constant slippage, which can have one or two trans-
lational degrees of freedom T, T2. For each point y € P we then
consider the line or plane

M(y) = TiT5(y), ©)

which is the affine constraint subspace M (y) for point y (see Fig-
ure 3). Let t1,t2 be tangent vectors of this space. We form the
quadric

Qum(y) =I—t1(y)ts(y)” + ta(y)ta(y)”, (8)

which penalizes displacements that would take point y out of the
constraint subspace. For the 1-slippable case, the same construction
is made with a single tangent vector.

During editing, only the orientation of the constraint spaces M(y)
is fixed and translations of the complete pattern as a whole not pe-
nalized. This is obtained by expressing the constraints in terms of
difference vectors, as described below.

Numerical implementation: Given k slippable parts P, ..., Pk
and corresponding sets of motions, we now build a global constraint
energy that preserves continuous symmetries but nevertheless per-
mits moving the patterns freely in space.

We identify the region P; of each slippable part and sample them
uniformly with points qg.i), j =1,...,n; of spacing h using Pois-
son disc sampling. We then connect the points with their centroid
¢ and form distance vectors between the centroid and all other

sample points, which yields a star geometry.

The original, constant distance vectors are d;i) = q;.i) — ¢, The
distance vectors in the deformed model are given by f (d;i)) =

I (qg.i)) —f (c(i)). We then minimize the differences in a least
squares sense:

g

1@ -] Qua”) [£@) - a!’]
(€]

EC:Z

i=1 j=1

Weighting by the error quadric Qg (qg.l)) constrains the deviation
to the tangent space of the constraint manifolds. Again, only con-
stants in Equation 9 change, so that only the right-hand side of the
linear system needs to be updated. This permits prefactorization,

which is crucial for achieving real-time performance.

Discrete patterns: In the discrete case, we use almost exactly the
same constraints. We obtain 1-dimensional constraint manifolds as
M(y) = TE(y), where T is the transformation that links two ele-
ments in the discrete pattern. For continuous patterns, moving sur-
face points along their constraint manifold usually does not change
the geometry substantially. In the discrete case, however, tangential
drift is clearly noticeable because we have complex, non-slippable
geometry being replicated. We therefore modify the constraints to
enforce a constant step size: We use quadrics Qaq(y) = I of full
rank and use an equidistant stepping TZ () to constrain difference
vectors between corresponding parts.

6 Sliding Dockers

In this section, we describe how our framework adapts the repeti-
tion count of discrete patterns in order to reduce stretch. In Sec-
tions 6.1 and 6.2, we examine the discrete patterns more closely
and try to decompose their geometry into sliding dockers that al-
low changing the repetition count seamlessly. In Section 6.3, we
describe how sliding dockers are integrated into the deformation
framework.

The interactive deformation proceeds in two steps. First, we let the
user deform the object. In areas covered by discrete patterns, the
anisotropic deformation weights (Equation 6) are changed such that
deformation along motion field 9, T® incurs minimal penalties. In
this step, the pattern area acts as a placeholder, allocating space for
sliding dockers along the pattern’s motion direction. In the second
step, we compute the stretch within the placeholder, round it, and
insert an adapted number of instances. Then the deformation is re-
computed for the new composition of the object. The two deforma-
tion steps are always performed in sequence and only the adapted
shape is presented to the user.

6.1 Defining Sliding Dockers

Our first task is to identify pieces of geometry that can be repli-
cated. Let TZ(P) C S be a discrete pattern, as computed in Sub-
section 4.2. We now need to determine whether it contains ele-
ments that can be replicated while continuously interfacing with
each other and with existing geometry.

As shown in Figure 4, such elements have to meet two types of
boundary conditions. First, boundaries orthogonal to the motion
field have to match each other; we therefore require symmetry of
this geometry with respect to T. Second, in direction tangential to
the motion, we require slippability with respect to T; by changing
the repetition count, the boundaries of the pattern and the rest of the
geometry will slide with respect to each other, and slippability will
ensure that we always have matching geometry.

A A N g Colors:
[1 1l Il

[] non-symmetric

[symmetric Sp(T)
" | [symmetric Sp(T")
| I Sp(T) and Sp(T™)
O SN (] fully slippable So(T)
T T° T’

sliding

docker D

sliding docker group —

Figure 4: Boundary conditions for sliding dockers.

We perform symmetry analysis to find all geometry within S that is
symmetric with respect to T. We denote this geometry by Sp (T):

Sp(T) :={x € S|T(x) € S} (10)

It is easy to see that the image of Sp(T) under T is Sp(T™'); in
other words, this is the area the symmetry transform maps to. By
slippage analysis, we obtain the subset of S that is slippable with
respect to T. We denote this set by S¢(T).

Consider a piece of geometry D C S. We say that D is a slid-
ing docker with respect to T if the following two conditions hold.
First, the boundary 9D must be located entirely in either Sp(T),
Sp(T™h), or Sc(T). Second, for every point x € 9D in Sp(T),
the corresponding point T'(x) € Sp(T ') must be included in the
boundary 9D, and vice versa. In other words, we cut out a slid-
ing docker by cutting through symmetric geometry and slippable
area along the motion of the pattern; when cutting through the sym-
metric area, we need to use matching cut lines within Sp(T) and
Sp(T™) so that the pieces fit together seamlessly later (see Fig-
ure 4).

We can easily extend this definition to a whole array of slid-
ing dockers. In order to find n matching dockers simul-
taneously, we require that the two boundary conditions are
met by n replicated pieces along the motion direction, namely
{D, T(D), T*(D),...,T" (D)}. We call such an ensemble a
sliding docker group.

6.2 Finding Sliding Dockers

In order to find sliding dockers, we first need to compute the sym-
metry information. We use the same computational framework as
Bokeloh et al. [2010]: Transformation candidates are estimated by
matching feature lines, and we obtain the slippable motions from
slippage analysis (Section 4.2).

Motion space transform: In order to simplify further computa-
tions, we perform a transformation into motion space. In this space,
one axis corresponds to the (translational) motion T%, while the
other two axes y, z are two remaining Euclidean coordinate axes.
For translations T, this is just a linear transform. As a notational
convention, we will denote the motion coordinate as the x-axis of
the motion space.

Next, we build a voxel grid in motion space to represent the symme-
try information (see Figure 5 for an illustration). The side length in
the motion dimension and Euclidean dimensions is chosen such that
the spacing in world coordinates is not larger than the discretization

X < input scene S

motion ()
X

T

T Voxel repres.:

[] non-symmetric
,%r,,,,,,,,,

[] symmetric
T
L1

[fully slippable

M selected sym.
[selected slip.
«—>¢ pattern

region growing (y,2)
—_—

t t
no docker no docker

valid sliding iy 14 1
(not slip.) (not symmetric) [} sliding docker

docker

Figure 5: Sliding dockers are extracted by region growing in mo-
tion space. Starting from a pattern base, we grow orthogonally
to the motion direction, using only symmetric voxels. We proceed
until either hitting only fully slippable voxels (success) or a non-
symmetric voxel (failure).

constant €. Furthermore, we denote by [t the (integer) number of
voxels that represent one application of the motion T.

For each discrete regular pattern (P, T,Z) € Rp , we transform
the scene into the motion space of T' (this is sped up by collecting
all patterns that have the same motion space). We now retrieve the
geometry in every non-empty voxel (4, 7, k) and match the content
against voxels (7 + I, j, k), corresponding to the transformed ge-
ometry. Matching voxels are tagged as symmetric. Next, we com-
pute the slippability of each voxel and check for each T-slippable
voxel (i,7,k) whether all voxels (3,7,k), (7 + 1,4,k),..., (5 +
I, j, k) are T-slippable as well. If so, we mark the voxel as fully
slippable. This means that the geometry at this voxel v, as well
as all geometry along the motion Tl (v) is slippable, which is
what we need to cut out a sliding docker. We perform this analysis
for all non-empty voxels, as well as for empty voxels that are di-
rect neighbors of occupied ones. Empty voxels must map to other
empty voxels in order to be fully slippable.

Extracting sliding dockers: After this precomputation, finding a
sliding docker is simple. We start at a symmetric voxel and grow
in the (y, z)-plane of the motion space until we either hit a non-
symmetric voxel, or a fully slippable voxel. If we hit a single non-
symmetric voxel, we dismiss the whole attempt. If we only end
at fully slippable voxels (including the empty fully slippable ones),
we have found a sliding docker: We can just cut out an extrusion
of the visited region in z-direction in motion space. By transform-
ing back into world coordinates, we obtain the final sliding docker.
When performing this computation, we always try to find a maxi-
mal sliding docker group by checking for symmetry and full slip-
pability with respect to T, T?, ... simultaneously (this corresponds
to testing voxels separated by multiples of /1 in the z-direction).

The whole computation is attempted for each base of a detected pat-
tern. This yields a large number of sliding dockers, most of which
overlap. In order to remove overlapping pieces, we use a simple
greedy algorithm: We take the largest sliding docker group (i.e.,
the one with the highest repetition count) and delete all overlapping
sliding docker groups. This is iterated until no more sliding docker
groups are found.

6.3 Using Sliding Dockers

We can now integrate the sliding dockers into our deformation
framework. First, we have to set up the first of the two deformation
steps. We mark all areas that are covered by a sliding docker group.

At each such point, we deactivate all regularizers except from the
elastic deformation energy. Let t(yy) be a normalized vector paral-
lel to the constant tangent 0, T (y) of the motion field. We then
set the error quadric of the elastic deformation model (Equations 5,
6) to I —tt7 4+ 0.01 - I. This makes the geometry easily stretchable
in the pattern direction. For the rest of the model, we use all energy
terms as previously described, including global and local pattern
preserving constraints.

We then solve the resulting system. In the result, we measure the
stretch of the pattern region by integrating along lines of the mo-
tion direction: We connect corresponding points in neighboring in-
stances of the pattern elements and compute the average length.
Dividing the value for the deformed and undeformed state gives us
a stretch factor F'. We multiply this factor by the number of orig-
inal repetitions and round it to the nearest integer to determine the
number of elements to insert.

For inserting elements, we again use the motion space. We scale
the elements by the inverse stretch factor in the x-direction of the
motion space, concatenate the pieces, and backtransform into world
coordinates. We then replace the original pattern with the adapted
one.

Next, we need to make sure that the elastic deformation model
undoes the stretch: If we add more elements, this means that we
squeeze smaller replicas into the original space. The energy of
Equation 4 would then try to preserve this configuration in an as-
rigid-as-possible manner. Therefore, we augment the distance vec-
tors: Instead of the distances of the squeezed elements, we employ
the original distance vectors. For basis functions that overlap re-
gions that are stretched by different factors, we compute a weighted
average according to the respective kernel function of that node.

As error quadrics, we use full rank identity matrices, aiming at pre-
serving the original shape of the inserted pattern elements. A small
detail helps at this point to improve the quality of the results: At the
boundary between prestreched and unstreched geometry, the elas-
tic deformation model tends to produce artifacts. Therefore, we set
different error quadrics for pairs of nodes that connect across nor-
mal geometry and sliding docker areas. We use a quadric T — tt7
in order to make the boundary slidable, not diffusing the errors in-
troduced by the stress discontinuity.

Assembling a new shape by inserting stretched patterns creates
shapes that are only C’-continuous at the boundaries. The elas-
tic deformation model will aim at undoing the deformation, but the
subspace model cannot represent high frequency details, which im-
plies that visible artifacts at the boundaries can remain. In order to
avoid this problem, we need to make sure that the new base shape
that we create is actually smooth and the deformation is low fre-
quency. Therefore, we use a windowing function g(z) in the direc-
tion of the motion. We transition from the constant stretch factor of
1 to a different stretch s using a smooth step function. We employ a
cosine step function (1—0.5s cos z) to transition from stretch 1 to a
new constant stretch of s, and a similar cosine step leads back to 1.
This function can be integrated analytically (to obtain the positions,
rather than their derivatives) and inverted so that we can compute
the inner stretch s that makes all instances fit into the placeholder.
We fix the support of the smooth steps to always cover a support
of at least 2h each, thereby creating a low-frequency distortion that
remains within the Nyquist limit of the deformation model.

7 Implementation and Results

We have implemented the described shape editing system in C++
and evaluated it on a commodity workstation with an Intel Core-2
Quad CPU with 2.6GHz cores and 8GB of RAM. Our implemen-

Figure 6: The effect of individual energy terms in the variational
deformation framework. Leaving out any single energy term leads
to artifacts. (a) input model, (b) no elasticity, (c) no local con-
straints, (d) no global constraints, (e) full energy.

tation is single-threaded. As benchmark data, we have collected a
number of models from commercial 3D model libraries. We use
models from the Digimation Archive (www.digimation.com) and
from Dosch Design (www.doschdesign.com). We also include ex-
amples from [Kraevoy et al. 2008] and [Bokeloh et al. 2010]. For
models with large triangles, we perform one or more 1:4 subdivi-
sion steps to obtain a sufficiently densely sampled mesh such that
even elastic deformation with bending can be accommodated. The
resulting models are output as collections of triangles that generally
do not form watertight meshes, and are thus in general “polygon
soups.”

Figures 2 and 7 show a number of example models that have been
edited using our approach. Please refer to the accompanying video
for a demonstration of interactive editing. The deformation results
produced by the technique are quite plausible; for many of the
examples, it would be challenging to identify the original model
without the highlighting. Some minor artifacts can be seen due to
small-scale irregularities in the input geometry, which cause some
patterns to only be detected in chunks, leading to a small amount of
residual deformation.

The blue examples use only the elastic energy term (Equation 2),
with discrete relaxation still enabled. Despite strong bending, our
approach reliably adapts the repetition count of the patterns without
visible seams, discontinuities, gaps, or similar artifacts. In some
models, the triangulation becomes visible; this could be resolved
by a better adaptive mesh subdivision scheme.

Parameters: Our algorithm is not very sensitive to parameter set-
tings, and we mostly use default parameters everywhere. Only one
parameter has a strong effect on the quality of the results: The error
threshold for matching approximately symmetric line features. For
complex models, we also increase the resolution of the subspace
deformation model (the Westminster Palace model uses 2.5% {(S)
instead of 5% [(S), which leads to a reduced interactive frame-rate)
and lower the minimum size of relevant features.

Timings: As shown in the video, editing can be done interactively
for all presented models. The structure analysis in preprocessing
takes up to a few minutes for each model, and prefactorization of
the linear systems adds ten more seconds.

Effect of individual energy terms: In Figure 6, we show that
all ingredients of the variational framework are necessary to ob-
tain good results. Deactivating the elastic energy means that stretch
is not diffused. The local constraints are helpful as they provide a

bench

balustrade

castle

canvas chair Westminster Palace

Figure 7: Interactive pattern-aware shape editing. The original input is shown in orange and editing results are shown in grey and blue.
The repetition counts of discrete patterns in the edited shapes were automatically adapted by the framework. For the blue models, pattern
preservation constraints were disabled and only the elastic energy was used, in order to allow for more severe deformation.

(a) original shape (b) docking sites

T—
(c) sliding dockers

(d) deformation result

Figure 8: Sliding dockers are detected where no docking sites can
be found by the technique of Bokeloh et al. [2010]. Given an input
shape, shown in (a), the existence of docking sites is contingent on
symmetric cuts that partition the shape into disconnected pieces.
As illustrated in (b), such cuts are not found in the temple due to the
shape of the roof. On the other hand, sliding dockers do not require
global symmetries and are successfully detected (c) and applied by
our technique (d).

better base regularizer for object parts where no patterns are found.
The global constraints are necessary to keep objects straight; with-
out them, global bending cannot be prevented.

Comparison to related work: Figure 7 shows the “oil tank” model
used by Kraevoy et al. [2008]. Our technique achieves compa-
rable results, while detecting the stretch axes fully automatically.
(The shape does not need to be aligned with the global coordi-
nate axes.) Since we only penalize structural deviations in a least-
squares sense, a small amount of residual bending remains. The
“castle” example in Figure 7 demonstrates that our approach is
more general: The castle can be stretched in non-orthogonal direc-
tions that are determined fully automatically by our pattern-aware
structure model.

In comparison to Bokeloh et al. [2010], our approach can adapt the
discrete structure of the model in real time in response to contin-
uous free-form deformation, instead of being driven by manually
specified rigid shape operations. Furthermore, sliding dockers are
found in examples where the analysis technique of Bokeloh et al.
fails to detect global cuts, such as the arches in Figure 2 and the
columns in Figure 8. In the latter example, the temple roof is not
partially symmetric under transformation 7" and thus no docking
sites can be detected, as shown in Figure 8(b). On the other hand,
sliding dockers do not rely on global cuts, allowing the temple to
be resized as shown in Figure 8(d).

8 Discussion

We have presented a structure-aware deformation technique that
uses the elementary assumption of preserving regular patterns,
which we model as 1-parameter partial symmetry groups. We have
developed a variational optimization technique that preserves such
structures in a least squares sense, while distributing the remaining
stretch uniformly. In addition, we introduced sliding dockers that
allow the technique to fully automatically insert or delete repeated
elements in discrete patterns in order to minimize distortions due to
free-form deformation. Furthermore, we have presented a numer-
ical framework that uses a subspace formulation with prefactored

linear systems to implement the presented approach efficiently and
robustly in a real-time system.

Limitations: One limitation of the current approach is the handling
of small-scale irregularities in the input 3D model. Objects that ap-
pear perfectly regular often have geometric inconsistencies because
the artist did not accurately align parts of the original model; er-
rors of 10% are not uncommon. While we can compensate for this
by introducing a small numerical threshold in the pattern detection
algorithm, irregularities in the input can cause the shape analysis
stage to overlook visually salient patterns. For the Westminster
Palace model, we had to manually adjust the original geometry in
one place to repair a single discrete pattern. Making the analy-
sis stage more robust to approximate regularity is a natural avenue
for future work, possibly using a feature graph matching approach
[Bokeloh et al. 2009]. A further limitation, and another interesting
avenue for future work, is that all sliding docker groups currently
need to be mutually disjoint and can thus have only a single repe-
tition parameter (one-parameter grids). Handling discrete changes
of two- and three-parameter grids as well as more general overlap-
ping and hierarchical patterns could extend the applicability of our
approach to more complex structures.

Our current implementation uses a regular sampled deformation
field, which can lead to distortions when opposing constraints are
spatially close. In Figure 9, we show the most noticeable artifacts
of the current system, caused by insufficient resolution in the de-
formation field. Here, opposing pattern constraints act on the same
deformation nodes and the system opts for an equilibrium between
the constraints, resulting in undesired distortions. This could be al-
leviated using an adaptive deformation field that increases the reso-
lution locally at difficult locations.

Another limitation of the presented approach is that it only handles
translations. In future work, we would like to investigate structure
models that utilize more invariant notions of similarity, possibly
incorporating rotation, scaling, or more general invariants such as
intrinsic isometries. Our current implementation also imposes dis-
crete constraints on individual sliding docker groups and does not
connect multiple groups that form linked patterns. Finally, the pre-
sented work focuses on 1-parameter patterns: Future work could
pursue a more comprehensive representation of the algebraic struc-
ture of partial symmetries for shape deformation. Lifting these
limitations can meaningfully advance the capabilities of interactive
shape editing tools.

Acknowledgments

This work has been supported by the cluster of excellence “Multi-
modal computing and interaction” and the Max-Planck-Center for
visual computing and communication.

References

ADAMS, B., OVSJANIKOV, M., WAND, M., SEIDEL, H.-P., AND
GUIBAS, L. J. 2008. Meshless modeling of deformable shapes
and their motion. In Symposium on Computer Animation.

ALLEN, B., CURLESS, B., AND POPOVIC, Z. 2003. The space of
human body shapes: reconstruction and parameterization from
range scans. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers,
ACM, New York, NY, USA, 587-594.

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Varia-
tional harmonic maps for space deformation. ACM Transactions
on Graphics 28, 3.

(@)

Figure 9: Undesired distortions can appear where competing con-
straints affect the same region. This is often caused by insuffi-
cient resolution of the deformation field. (a) Two neighboring pat-
terns (orange) starting at different positions result in opposing con-
straints that are not handled well with a low frequency deformation
field. (b) Undetected patterns and insufficient resolution in the de-
Sformation field can cause large distortions.

BOKELOH, M., BERNER, A., WAND, M., SEIDEL, H.-P., AND
SCHILLING, A. 2009. Symmetry detection using line features.
Computer Graphics Forum 28, 2.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
ACM Trans. Graph. 29 (July), 104:1-104:10.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics 14, 1, 213-230.

COQUILLART, S. 1990. Extended free-form deformation: a sculp-
turing tool for 3d geometric modeling. In Proc. Siggraph.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. ACM Trans. Graph. 23, 3.

GAL, R., SORKINE, O., MITRA, N., AND COHEN-OR, D. 2009.
iwires: An analyze-and-edit approach to shape manipulation.
ACM Trans. Graph. 28, 3.

GELFAND, N., AND GUIBAS, L. 2004. Shape segmentation using
local slippage analysis. In Proc. Symp. Geometry Processing.

HUANG, J., SHI, X., L1U, X., ZHOU, K., WEI, L.-Y., TENG, S.-
H., Bao, H., Guo, B., AND SHUM, H.-Y. 2006. Subspace
gradient domain mesh deformation. ACM Trans. Graph. 25, 3.

HUANG, Q., MECH, R., AND CARR, N. 2009. Optimizing struc-
ture preserving embedded deformation for resizing images and
vector art. In Pacific Graphics.

JosHI, P., MEYER, M., DEROSE, T., GREEN, B., AND
SANoOCKI, T. 2007. Harmonic coordinates for character articu-
lation. ACM Trans. Graph. 26 (July).

Ju, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value co-

ordinates for closed triangular meshes. ACM Trans. Graph. 24
(July), 561-566.

KRAEVOY, V., JULIUS, D., AND SHEFFER, A. 2007. Shuffler:
Modeling with interchangeable parts. In Pacific Graphics 2007.

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. ACM
Trans. Graph. 27,5, 1-9.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coor-
dinates. ACM Trans. Graph. 27 (August).

Liu, L., ZHANG, L., XU, Y., GOTSMAN, C., AND GORTLER,
S. 2008. A local/global approach to mesh parameterization.
Computer Graphics Forum 27, 5, 1495-1504.

MITRA, N. J., AND PAULY, M. 2008. Symmetry for architectural
design. In Advances in Architectural Geometry, 13-16.

MITRA, N. J., GUIBAS, L. J., AND PAULY, M. 2006. Partial and
approximate symmetry detection for 3d geometry. ACM Trans.
Graph. 25, 3, 560-568.

MULLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND
B., C. 2002. Stable real-time deformations. In Proc. Symp.
Computer Animation (SCA), 49-54.

PAULY, M., MITRA, N., GIESEN, J., GROSS, M., AND GUIBAS,
L. J. 2005. Example-based 3d scan completion. In Proc. Symp.
Geometry Processing.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND
GUIBAS, L. 2008. Discovering structural regularity in 3D ge-
ometry. ACM Trans. Graph. 27, 3.

PODOLAK, J., SHILANE, P., GOLOVINSKIY, A., RUSINKIEWICZ,
S., AND FUNKHOUSER, T. 2006. A planar-reflective symmetry
transform for 3D shapes. ACM Trans. Graph. 25, 3.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Proc. Siggraph, 151-160.

SIMARI, P., KALOGERAKIS, E., AND SINGH, K. 2006. Folding
meshes: hierarchical mesh segmentation based on planar sym-
metry. In Proc. Symp. Geometry Processing, 111-119.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible
surface modeling. In Proceedings of Eurographics/ACM SIG-
GRAPH Symposium on Geometry Processing, 109-116.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
ROsSsL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Symposium on Geometry processing.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded
deformation for shape manipulation. ACM Trans. Graph. 26, 3.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Proc. SSIGGRAPH 87,
ACM, New York, NY, USA, 205-214.

TOLEDO, S., 2003. Taucs: A library of sparse linear solvers. Tel-
Aviv University, http://www.tau.ac.il/ stoledo/taucs/.

VON FUNCK, W., THEISEL, H., AND SEIDEL, H.-P. 2006. Vector
field based shape deformations. ACM Trans. Graph. 25, 3.

WANG, Y., XU, K., LI, J., ZHANG, H., SHAMIR, A., LI1U, L.,
CHENG, Z., AND XIONG, Y. 2011. Symmetry hierarchy of
man-made objects. In Proc. Eurographics.

Wu, H., WANG, Y.-S., FENG, K.-C., WONG, T.-T., LEE, T.-Y.,
AND HENG, P.-A. 2010. Resizing by symmetry-summarization.
ACM Transactions on Graphics 29, 6.

XU, W., WANG, J., YIN, K., ZHOU, K., VAN DE PANNE, M.,
CHEN, F., AND GUO, B. 2009. Joint-aware manipulation of
deformable models. ACM Trans. Graph. 28, 3, 1-9.

ZHENG, Y., Fu, H., COHEN-OR, D., Au, O. K.-C., AND
Ta1, C.-L. 2011. Component-wise controllers for structure-
preserving shape manipulation. In Proc. Eurographics.

ZHoUu, K., HUANG, J., SNYDER, J., L1U, X., BAO, H., Guo, B.,
AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph laplacian. ACM Trans. Graph. 24, 3, 496-503.

