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1. Differentiability of Mean Field
Marginals

We show that the mean field marginals q(t)(θ) are con-
tinuously differentiable as a function of the parameters
θ for each iteration t. We will first show that the mean
field marginals at t = 0 are differentiable. During the
proof we rely on the strict positivity of the mean-field
marginals q(t)(θ) > 0 for proper probability distribu-
tions. We then use induction and the implicit function
theorem to proof differentiability for t > 0.

We will show differentiability for the convergent par-
allel mean field algorithm, the concave cross-entropy
relaxation can be derived analogously.

t = 0. The mean field marginals q(0) is always ini-
tialized to the unary term. This unary term is either a
constant or a linear function (logistic regression), both
of which are continuously differentiable.

Positivity. Recall that any mean field marginal is
bounded by 0 ≤ q(i,l) ≤ 1. What we will show
here is that strict positivity holds q(i,l) > 0 for any
proper probability distribution. A proper probability
distribution is a distribution with a finite Gibbs en-
ergy for any assignment. For such a distribution both
the unary and pairwise terms are finite, and equiva-
lently the result of message passing e and the label
compatibilities µ(m) in Equation 8. By rewriting the
KKT-conditions (8) we get

logqi + λ1 =

(
C∑

m=1

µ(m)

)
qi − ei,

which is guaranteed to be a finite value. At least one
label l the marginal is lower bounded by q(i,l) ≥ 1

M ,
where M is the number of labels. Which implies that
for at least one label l: logq(i,l) is finite, and hence λ
needs to be finite. A finite λ implies logqi is finite and
hence qi > 0.

Induction. We will now show that for any differen-
tiable mean field marginals q(t−1)(θ), the marginals
q(t) are differentiable. Consider the Jacobian of the
KKT conditions (8) with respect to q and λ:

J =

[
diag

(
1
qi

)
− µ 1

1> 0

]
,

where µ =
∑C
m=1 µ

(m) is by definition negative defi-
nite. The inverse of this Jacobian is

J−1 =

[
H−1 − H−111>H−1

1>H−11
H−11

1>H−11
1>H−1

1>H−11
− 1

1>H−11

]
,

where H = diag
(

1
qi

)
− µ is positive definite and in-

vertible. Now assume that the marginals q(t−1) are dif-
ferentiable. The sum of messages e(t) is differentiable,
since it is a sum of products of differentiable functions.
By the implicit function theorem, the function q(t) is
unique and continuously differentiable, since the KKT
conditions are continuously differentiable, e(t) is con-
tinuously differentiable, and the Jacobian of the KKT
conditions is invertible. This completes the proof by
induction.

2. Invertability of the linear system
(12)

We rewrite the linear system (12) in matrix form

M

[
∂q

(t)
i

∂θ
∂λ
∂θ

]
=

[
∂e

(t)
i

∂θ
0

]
,

where

M =

[
diag

(
1
qi

)
1

1> 0

]
.

In order to show that (12) is invertible, we need to
show that M is invertible. We do this by providing
the closed form solution of the inverse

M−1 =

[
diagqi − qiq

>
i qi

q>i −1

]
.
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It can easily be verified that M−1M = MM−1 = I,
since by definition 1>qi = 1.

The inverse M−1 also gives us the closed form solution

in Equation 13, with A
(t)
i = qiq

>
i −diagqi. Note that

−A(t)
i is simply the upper left block if M−1.

3. Convergence example

We present a small illustrative example, where our
previous inference algorithm (Krähenbühl & Koltun,
2011) fails, but the two convergent alternatives con-
verge.

Consider a two variable binary CRF with variables
X1, X2, features f1 = 0, f2 = 0.5, and a simple Potts
label compatibility with weight 5. The unary term is
defined as ψ(x1) = 1[x1=1] and ψ(x2) = −2[x1=1]. The
pairwise term is given by

ψ(x1, x2) = exp(−1

8
)5[x1 6=x2].

For this example (Krähenbühl & Koltun, 2011) oscu-
lates between q(1,1) = 0.96, q(2,1) = 0.09 and q(1,1) =
0.01, q(2,1) = 0.99, while every other step increases the
KL-divergence. Both our algorithm converge to the
optimal solution q(1,1) = 0.99, q(2,1) = 0.99, optimiz-
ing the KL-divergence or concave approximation re-
spectively.
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