
Supplementary Material for “Combinatorial
Optimization with Graph Convolutional Networks

and Guided Tree Search”

Zhuwen Li
Intel Labs

Qifeng Chen
HKUST

Vladlen Koltun
Intel Labs

A Problem reductions
As mentioned in the main text, the MVC, MC, and SAT problems can all be represented as instances
of the MIS problem:
MVC → MIS. Given a graph, the minimum vertex cover and the maximal independent set are
complementary. A vertex set is independent if and only if its complement is a vertex cover, and thus
the solutions of MIS and MVC are complementary to each other [6].
MC→MIS. The maximal clique of a graph is the maximal independent set of the complementary
graph [6].
SAT→MIS. Given a SAT instance, we construct a graph as follows. Each literal in a clause is a
vertex in the graph. Vertices in the same clause are adjacent to each other in the graph. An edge is
spanned between two vertices in different clauses if they represent literals where one is the negation
of the other. With this graph, if we can find an independent set with size equal to the number of
clauses, the formula is satisfiable; otherwise, it is not. The independent set also specifies the truth
assignment to the variables [3].

B Algorithms
The complete basic algorithm is summarized in Algorithm 1, the revised algorithm with diversity and
tree search is summarized in Algorithm 2, and the variant with parallelized tree search is summarized
in Algorithm 3.

C Classic elements
C.1 Local search
For local search, we adopt a 2-improvement local search algorithm [2, 4]. This algorithm iterates over
all vertices in the graph and attempts to replace a 1-labelled vertex vi with two 1-labelled vertices vj
and vk. In MIS, vj and vk must be neighbors of vi that are 1-tight and not adjacent to each other. Here,
a vertex is 1-tight if exactly one of its neighbors is labelled 1. In other words, vi is the only 1-labelled
neighbor of vj and vk in the graph. By using a data structure that allows inserting and deleting nodes
in time proportional to their degrees, this local search algorithm can find a valid 2-improvement in
O(E) time if it exits. An even faster incremental version of the algorithm maintains a list of candidate
nodes that are involved in 2-improvements. It ensures that a node is not repeatedly examined unless
there is some change in its neighborhood.

C.2 Graph reduction
For graph reduction, some efficient reduction techniques [1, 5] we adopted are given below:

• Pendant vertices: A vertex v of degree one is called a pendant, and it must be in some MIS. Thus,
v and its neighbors can be removed from G.

• Vertex folding: For a 2-degree vertex v whose neighbors u and w are not adjacent, either v is in
some MIS, or both u and w are in some MIS. Thus, we can merge u, v and w to a single vertex v′

and decide which vertices are in the MIS later.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Algorithm 1 BasicMIS
Input: Graph G
Output: Labelling of all the vertices in G

1: v← argsort(f(G;θ)) in a descending order
2: for i := 1 to ‖v‖ do
3: if vertex v(i) is already labelled in G then
4: break
5: end if
6: Label v(i) as 1 in G
7: Label the neighors of v(i) as 0 in G
8: end for
9: G′← residual graph of G by removing labelled vertices

10: if G′ is not empty then
11: Run BasicMIS on (G′)
12: end if

Algorithm 2 MIS with diversity and tree search
Input: Graph G
Output: The best solution found

1: Initialize queue Q with G
2: while execute time is under budget do
3: G′ ← Q.random_pop()
4: for m := 1 to M do
5: v← argsort(fm(Gt;θ)) in a descending order
6: for i := 1 to ‖v‖ do
7: if vertex v(i) is already labelled in G′ then
8: break
9: end if

10: Label v(i) as 1 in G′
11: Label the neighors of v(i) as 0 in G′
12: end for
13: if G′ is completely labelled then
14: Update the current best solution
15: else
16: Remove labelled vertices from G′
17: Add G′ to Q
18: end if
19: end for
20: end while

• Unconfined: Define N (·) as the neighbours of a vertex or set. A vertex v is unconfined when
determined by the following rules. First, let set S = {v}. Then, we find a u ∈ N (S) such that
|N (u) ∩ S| = 1 and |N (u) \ S| is minimized. If there is no such vertex, then v is confined. If
N (u) \ S = Φ, then v is unconfined. If N (u) \ S is a single vertex w, then add w to S and
repeat the algorithm. Since there always exists an MIS without no unconfined vertices, they can be
removed from G.

• Twin: Define G[S] as a subgraph of G induced by a set of vertices S. Let u and v be vertices of
degree 3 with N (u) = N (v). If G[N (u)] has edges, u and v must be in the MIS. If G[N (u)] has
no edges, some vertices in N (u) may belong to some MIS. In this case, we can still remove u, v,
N (u) and N (v) from G, and add a new gadget vertex w to G with edges to u’s order-2 neighbors
(vertices at a distance 2 from u). Later if w is in the computed MIS, then none of u’s order-2
neighbors are in the MIS, and therefore N (u) is in the MIS. If w is not in the computed MIS, then
some of u’s order-2 neighbors are in the MIS, and therefore u and v are in the MIS.

D Real-world graphs
Table 1 provides the statistics and descriptions of the real-world graphs used in our experiments.

2

Algorithm 3 MIS with diversity and parallelized tree search
Input: Graph G, thread number T
Output: The best solution found

1: while execute time is under budget do
2: if queue Q is empty then
3: Initialize Q with G
4: end if
5: G′ ← Q.random_pop()
6: for all thread t := 1 to T do
7: v← argsort(fm(Gt;θ)) in a descending order
8: for i := 1 to ‖v‖ do
9: if vertex v(i) is already labelled in G′ then

10: break
11: end if
12: Label v(i) as 1 in G′
13: Label the neighors of v(i) as 0 in G′
14: end for
15: if G′ is completely labelled then
16: Update the current best solution
17: else
18: Remove labelled vertices from G′
19: Add G′ to Q
20: end if
21: end for
22: end while

Name Nodes Edges Description

ego-Facebook 4,039 88,234 Social circles from Facebook (anonymized)
ego-Gplus 107,614 13,673,453 Social circles from Google+
ego-Twitter 81,306 1,768,149 Social circles from Twitter
soc-Epinions1 75,879 508,837 Who-trusts-whom network of Epinions.com
soc-Slashdot0811 77,360 905,468 Slashdot social network from November 2008
soc-Slashdot0922 82,168 948,464 Slashdot social network from February 2009
wiki-Vote 7,115 103,689 Wikipedia who-votes-on-whom network
wiki-RfA 10,835 159,388 Wikipedia Requests for Adminship (with text)
bitcoin-otc 5,881 35,592 Bitcoin OTC web of trust network
bitcoin-alpha 3,783 24,186 Bitcoin Alpha web of trust network
Citeseer 3,327 4,732 Citation network from Citeseer
Cora 2,708 5,429 Citation network from Cora
Pubmed 19,717 44,338 Citation network from PubMed

Table 1: Real-world graph statistics and descriptions.

E Network width C

We analyze the effect of the width C of the intermediate layers. Table 2 shows the fraction of
solved problems and average size of the computed MIS solution on the SATLIB validation set for
C = 16, 32, 64, 128. The performance decreases when C = 64, 128, probably because a complex
model is more computationally expensive and thus there is less time for the search algorithm. C = 32
provides the best balance of performance and efficiency.

References
[1] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in practice: A

case study of vertex cover. In ALENEX, 2015.

3

C = 16 C = 32 C = 64 C = 128

Solved 97.0% 98.8% 97.6% 97.2%
MIS 426.86 426.88 426.87 426.87

Table 2: Effect of the hyperparameter C.

[2] Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Werneck. Fast local
search for the maximum independent set problem. J. Heuristics, 18(4), 2012.

[3] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algorithms. McGraw-Hill,
2008.

[4] Thomas A. Feo, Mauricio G. C. Resende, and Stuart H. Smith. A greedy randomized adaptive
search procedure for maximum independent set. Operations Research, 42(5), 1994.

[5] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding
near-optimal independent sets at scale. J. Heuristics, 23(4), 2017.

[6] Steven Skiena. The Algorithm Design Manual. Springer, 2008.

4

	Problem reductions
	Algorithms
	Classic elements
	Local search
	Graph reduction

	Real-world graphs
	Network width C

