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Abstract

In multi-task learning, multiple tasks are solved jointly, sharing inductive bias
between them. Multi-task learning is inherently a multi-objective problem because
different tasks may conflict, necessitating a trade-off. A common compromise is to
optimize a proxy objective that minimizes a weighted linear combination of per-
task losses. However, this workaround is only valid when the tasks do not compete,
which is rarely the case. In this paper, we explicitly cast multi-task learning as
multi-objective optimization, with the overall objective of finding a Pareto optimal
solution. To this end, we use algorithms developed in the gradient-based multi-
objective optimization literature. These algorithms are not directly applicable to
large-scale learning problems since they scale poorly with the dimensionality of
the gradients and the number of tasks. We therefore propose an upper bound
for the multi-objective loss and show that it can be optimized efficiently. We
further prove that optimizing this upper bound yields a Pareto optimal solution
under realistic assumptions. We apply our method to a variety of multi-task
deep learning problems including digit classification, scene understanding (joint
semantic segmentation, instance segmentation, and depth estimation), and multi-
label classification. Our method produces higher-performing models than recent
multi-task learning formulations or per-task training.

1 Introduction

One of the most surprising results in statistics is Stein’s paradox. Stein (1956) showed that it is better
to estimate the means of three or more Gaussian random variables using samples from all of them
rather than estimating them separately, even when the Gaussians are independent. Stein’s paradox
was an early motivation for multi-task learning (MTL) (Caruana, 1997), a learning paradigm in which
data from multiple tasks is used with the hope to obtain superior performance over learning each task
independently. Potential advantages of MTL go beyond the direct implications of Stein’s paradox,
since even seemingly unrelated real world tasks have strong dependencies due to the shared processes
that give rise to the data. For example, although autonomous driving and object manipulation are
seemingly unrelated, the underlying data is governed by the same laws of optics, material properties,
and dynamics. This motivates the use of multiple tasks as an inductive bias in learning systems.

A typical MTL system is given a collection of input points and sets of targets for various tasks per
point. A common way to set up the inductive bias across tasks is to design a parametrized hypothesis
class that shares some parameters across tasks. Typically, these parameters are learned by solving an
optimization problem that minimizes a weighted sum of the empirical risk for each task. However,
the linear-combination formulation is only sensible when there is a parameter set that is effective
across all tasks. In other words, minimization of a weighted sum of empirical risk is only valid if
tasks are not competing, which is rarely the case. MTL with conflicting objectives requires modeling
of the trade-off between tasks, which is beyond what a linear combination achieves.

An alternative objective for MTL is finding solutions that are not dominated by any others. Such
solutions are said to be Pareto optimal. In this paper, we cast the objective of MTL in terms of finding
Pareto optimal solutions.
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The problem of finding Pareto optimal solutions given multiple criteria is called multi-objective
optimization. A variety of algorithms for multi-objective optimization exist. One such approach
is the multiple-gradient descent algorithm (MGDA), which uses gradient-based optimization and
provably converges to a point on the Pareto set (Désidéri, 2012). MGDA is well-suited for multi-task
learning with deep networks. It can use the gradients of each task and solve an optimization problem
to decide on an update over the shared parameters. However, there are two technical problems that
hinder the applicability of MGDA on a large scale. (i) The underlying optimization problem does
not scale gracefully to high-dimensional gradients, which arise naturally in deep networks. (ii) The
algorithm requires explicit computation of gradients per task, which results in linear scaling of the
number of backward passes and roughly multiplies the training time by the number of tasks.

In this paper, we develop a Frank-Wolfe-based optimizer that scales to high-dimensional problems.
Furthermore, we provide an upper bound for the MGDA optimization objective and show that it can
be computed via a single backward pass without explicit task-specific gradients, thus making the
computational overhead of the method negligible. We prove that using our upper bound yields a Pareto
optimal solution under realistic assumptions. The result is an exact algorithm for multi-objective
optimization of deep networks with negligible computational overhead.

We empirically evaluate the presented method on three different problems. First, we perform an
extensive evaluation on multi-digit classification with MultiMNIST (Sabour et al., 2017). Second, we
cast multi-label classification as MTL and conduct experiments with the CelebA dataset (Liu et al.,
2015b). Lastly, we apply the presented method to scene understanding; specifically, we perform
joint semantic segmentation, instance segmentation, and depth estimation on the Cityscapes dataset
(Cordts et al., 2016). The number of tasks in our evaluation varies from 2 to 40. Our method clearly
outperforms all baselines.

2 Related Work

Multi-task learning. We summarize the work most closely related to ours and refer the interested
reader to reviews by Ruder (2017) and Zhou et al. (2011b) for additional background. Multi-task
learning (MTL) is typically conducted via hard or soft parameter sharing. In hard parameter sharing,
a subset of the parameters is shared between tasks while other parameters are task-specific. In soft
parameter sharing, all parameters are task-specific but they are jointly constrained via Bayesian
priors (Xue et al., 2007; Bakker and Heskes, 2003) or a joint dictionary (Argyriou et al., 2007; Long
and Wang, 2015; Yang and Hospedales, 2016; Ruder, 2017). We focus on hard parameter sharing
with gradient-based optimization, following the success of deep MTL in computer vision (Bilen and
Vedaldi, 2016; Misra et al., 2016; Rudd et al., 2016; Yang and Hospedales, 2016; Kokkinos, 2017;
Zamir et al., 2018), natural language processing (Collobert and Weston, 2008; Dong et al., 2015; Liu
et al., 2015a; Luong et al., 2015; Hashimoto et al., 2017), speech processing (Huang et al., 2013;
Seltzer and Droppo, 2013; Huang et al., 2015), and even seemingly unrelated domains over multiple
modalities (Kaiser et al., 2017).

Baxter (2000) theoretically analyze the MTL problem as interaction between individual learners and
a meta-algorithm. Each learner is responsible for one task and a meta-algorithm decides how the
shared parameters are updated. All aforementioned MTL algorithms use weighted summation as the
meta-algorithm. Meta-algorithms that go beyond weighted summation have also been explored. Li
et al. (2014) consider the case where each individual learner is based on kernel learning and utilize
multi-objective optimization. Zhang and Yeung (2010) consider the case where each learner is a
linear model and use a task affinity matrix. Zhou et al. (2011a) and Bagherjeiran et al. (2005) use
the assumption that tasks share a dictionary and develop an expectation-maximization-like meta-
algorithm. de Miranda et al. (2012) and Zhou et al. (2017b) use swarm optimization. None of these
methods apply to gradient-based learning of high-capacity models such as modern deep networks.
Kendall et al. (2018) and Chen et al. (2018) propose heuristics based on uncertainty and gradient
magnitudes, respectively, and apply their methods to convolutional neural networks. Another recent
work uses multi-agent reinforcement learning (Rosenbaum et al., 2017).

Multi-objective optimization. Multi-objective optimization addresses the problem of optimizing a
set of possibly contrasting objectives. We recommend Miettinen (1998) and Ehrgott (2005) for surveys
of this field. Of particular relevance to our work is gradient-based multi-objective optimization, as
developed by Fliege and Svaiter (2000), Schäffler et al. (2002), and Désidéri (2012). These methods
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use multi-objective Karush-Kuhn-Tucker (KKT) conditions (Kuhn and Tucker, 1951) and find a
descent direction that decreases all objectives. This approach was extended to stochastic gradient
descent by Peitz and Dellnitz (2018) and Poirion et al. (2017). In machine learning, these methods
have been applied to multi-agent learning (Ghosh et al., 2013; Pirotta and Restelli, 2016; Parisi
et al., 2014), kernel learning (Li et al., 2014), sequential decision making (Roijers et al., 2013), and
Bayesian optimization (Shah and Ghahramani, 2016; Hernández-Lobato et al., 2016). Our work
applies gradient-based multi-objective optimization to multi-task learning.

3 Multi-Task Learning as Multi-Objective Optimization

Consider a multi-task learning (MTL) problem over an input space X and a collection of task spaces
{Yt}t∈[T ], such that a large dataset of i.i.d. data points {xi, y1

i , . . . , y
T
i }i∈[N ] is given where T is

the number of tasks, N is the number of data points, and yti is the label of the tth task for the ith

data point.1 We further consider a parametric hypothesis class per task as f t(x;θsh,θt) : X → Yt,
such that some parameters (θsh) are shared between tasks and some (θt) are task-specific. We also
consider task-specific loss functions Lt(·, ·) : Yt × Yt → R+.

Although many hypothesis classes and loss functions have been proposed in the MTL literature, they
generally yield the following empirical risk minimization formulation:

min
θsh,

θ1,...,θT

T∑
t=1

ctL̂t(θsh,θt) (1)

for some static or dynamically computed weights ct per task, where L̂t(θsh,θt) is the empirical loss
of the task t, defined as L̂t(θsh,θt) , 1

N

∑
i L
(
f t(xi;θ

sh,θt), yti
)
.

Although the weighted summation formulation (1) is intuitively appealing, it typically either requires
an expensive grid search over various scalings or the use of a heuristic (Kendall et al., 2018; Chen
et al., 2018). A basic justification for scaling is that it is not possible to define global optimality in the
MTL setting. Consider two sets of solutions θ and θ̄ such that L̂t1(θsh,θt1) < L̂t1(θ̄sh, θ̄t1) and
L̂t2(θsh,θt2) > L̂t2(θ̄sh, θ̄t2), for some tasks t1 and t2. In other words, solution θ is better for task
t1 whereas θ̄ is better for t2. It is not possible to compare these two solutions without a pairwise
importance of tasks, which is typically not available.

Alternatively, MTL can be formulated as multi-objective optimization: optimizing a collection
of possibly conflicting objectives. This is the approach we take. We specify the multi-objective
optimization formulation of MTL using a vector-valued loss L:

min
θsh,

θ1,...,θT

L(θsh,θ1, . . . ,θT ) = min
θsh,

θ1,...,θT

(
L̂1(θsh,θ1), . . . , L̂T (θsh,θT )

)ᵀ
. (2)

The goal of multi-objective optimization is achieving Pareto optimality.
Definition 1 (Pareto optimality for MTL)

(a) A solution θ dominates a solution θ̄ if L̂t(θsh,θt) ≤ L̂t(θ̄sh, θ̄t) for all tasks t and
L(θsh,θ1, . . . ,θT ) 6= L(θ̄sh, θ̄1, . . . , θ̄T ).

(b) A solution θ? is called Pareto optimal if there exists no solution θ that dominates θ?.

The set of Pareto optimal solutions is called the Pareto set (Pθ) and its image is called the Pareto
front (PL = {L(θ)}θ∈Pθ

). In this paper, we focus on gradient-based multi-objective optimization
due to its direct relevance to gradient-based MTL.

In the rest of this section, we first summarize in Section 3.1 how multi-objective optimization can be
performed with gradient descent. Then, we suggest in Section 3.2 a practical algorithm for performing
multi-objective optimization over very large parameter spaces. Finally, in Section 3.3 we propose an
efficient solution for multi-objective optimization designed directly for high-capacity deep networks.
Our method scales to very large models and a high number of tasks with negligible overhead.

1This definition can be extended to the partially-labelled case by extending Yt with a null label.
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3.1 Multiple Gradient Descent Algorithm

As in the single-objective case, multi-objective optimization can be solved to local optimality via
gradient descent. In this section, we summarize one such approach, called the multiple gradient
descent algorithm (MGDA) (Désidéri, 2012). MGDA leverages the Karush-Kuhn-Tucker (KKT)
conditions, which are necessary for optimality (Fliege and Svaiter, 2000; Schäffler et al., 2002;
Désidéri, 2012). We now state the KKT conditions for both task-specific and shared parameters:

• There exist α1, . . . , αT ≥ 0 such that
∑T
t=1 α

t = 1 and
∑T
t=1 α

t∇θshL̂t(θsh,θt) = 0

• For all tasks t,∇θtL̂t(θsh,θt) = 0

Any solution that satisfies these conditions is called a Pareto stationary point. Although every Pareto
optimal point is Pareto stationary, the reverse may not be true. Consider the optimization problem

min
α1,...,αT

{∥∥∥∥ T∑
t=1

αt∇θshL̂t(θsh,θt)
∥∥∥∥2

2

∣∣∣∣ T∑
t=1

αt = 1, αt ≥ 0 ∀t

}
(3)

Désidéri (2012) showed that either the solution to this optimization problem is 0 and the resulting
point satisfies the KKT conditions, or the solution gives a descent direction that improves all tasks.
Hence, the resulting MTL algorithm would be gradient descent on the task-specific parameters
followed by solving (3) and applying the solution (

∑T
t=1 α

t∇θsh) as a gradient update to shared
parameters. We discuss how to solve (3) for an arbitrary model in Section 3.2 and present an efficient
solution when the underlying model is an encoder-decoder in Section 3.3.

3.2 Solving the Optimization Problem

The optimization problem defined in (3) is equivalent to finding a minimum-norm point in the
convex hull of the set of input points. This problem arises naturally in computational geometry: it is
equivalent to finding the closest point within a convex hull to a given query point. It has been studied
extensively (Makimoto et al., 1994; Wolfe, 1976; Sekitani and Yamamoto, 1993). Although many
algorithms have been proposed, they do not apply in our setting because the assumptions they make
do not hold. Algorithms proposed in the computational geometry literature address the problem of
finding minimum-norm points in the convex hull of a large number of points in a low-dimensional
space (typically of dimensionality 2 or 3). In our setting, the number of points is the number of tasks
and is typically low; in contrast, the dimensionality is the number of shared parameters and can be
in the millions. We therefore use a different approach based on convex optimization, since (3) is a
convex quadratic problem with linear constraints.

Before we tackle the general case, let’s consider the case of two tasks. The optimization problem
can be defined as minα∈[0,1] ‖α∇θshL̂1(θsh,θ1) + (1− α)∇θshL̂2(θsh,θ2)‖22, which is a one-
dimensional quadratic function of α with an analytical solution:

α̂ =

[(
∇θshL̂2(θsh,θ2)−∇θshL̂1(θsh,θ1)

)ᵀ∇θshL̂2(θsh,θ2)

‖∇θshL̂1(θsh,θ1)−∇θshL̂2(θsh,θ2)‖22

]
+, 1ᵀ

(4)

where [·]+, 1ᵀ represents clipping to [0, 1] as [a]+, 1ᵀ
= max(min(a, 1), 0). We further visualize this

solution in Figure 1. Although this is only applicable when T = 2, this enables efficient application
of the Frank-Wolfe algorithm (Jaggi, 2013) since the line search can be solved analytically. Hence,
we use Frank-Wolfe to solve the constrained optimization problem, using (4) as a subroutine for the
line search. We give all the update equations for the Frank-Wolfe solver in Algorithm 2.
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Figure 1: Visualisation of the min-norm point in the convex hull
of two points (minγ∈[0,1] ‖γθ + (1− γ)θ̄‖22). As the geometry sug-
gests, the solution is either an edge case or a perpendicular vector.

Algorithm 1
minγ∈[0,1] ‖γθ + (1− γ)θ̄‖22

1: if θᵀθ̄ ≥ θᵀθ then
2: γ = 1
3: else if θᵀθ̄ ≥ θ̄ᵀθ̄ then
4: γ = 0
5: else
6: γ = (θ̄−θ)ᵀθ̄

‖θ−θ̄‖22
7: end if

Algorithm 2 Update Equations for MTL

1: for t = 1 to T do
2: θt = θt − η∇θtL̂t(θsh,θt) . Gradient descent on task-specific parameters
3: end for
4: α1, . . . , αT = FRANKWOLFESOLVER(θ) . Solve (3) to find a common descent direction
5: θsh = θsh − η

∑T
t=1 α

t∇θshL̂t(θsh,θt) . Gradient descent on shared parameters

6: procedure FRANKWOLFESOLVER(θ)
7: Initialize α = (α1, . . . , αT ) = ( 1

T , . . . ,
1
T )

8: Precompute M st. Mi,j =
(
∇θshL̂i(θsh,θi)

)ᵀ(∇θshL̂j(θsh,θj)
)

9: repeat
10: t̂ = arg maxr

∑
t α

tMrt

11: γ̂ = arg minγ
(
(1− γ)α+ γet̂

)ᵀ
M
(
(1− γ)α+ γet̂

)
. Using Algorithm 1

12: α = (1− γ̂)α+ γ̂et̂
13: until γ̂ ∼ 0 or Number of Iterations Limit
14: return α1, . . . , αT

15: end procedure

3.3 Efficient Optimization for Encoder-Decoder Architectures

The MTL update described in Algorithm 2 is applicable to any problem that uses optimization
based on gradient descent. Our experiments also suggest that the Frank-Wolfe solver is efficient and
accurate as it typically converges in a modest number of iterations with negligible effect on training
time. However, the algorithm we described needs to compute∇θshL̂t(θsh,θt) for each task t, which
requires a backward pass over the shared parameters for each task. Hence, the resulting gradient
computation would be the forward pass followed by T backward passes. Considering the fact that
computation of the backward pass is typically more expensive than the forward pass, this results in
linear scaling of the training time and can be prohibitive for problems with more than a few tasks.

We now propose an efficient method that optimizes an upper bound of the objective and requires only
a single backward pass. We further show that optimizing this upper bound yields a Pareto optimal
solution under realistic assumptions. The architectures we address conjoin a shared representation
function with task-specific decision functions. This class of architectures covers most of the existing
deep MTL models and can be formally defined by constraining the hypothesis class as

f t(x;θsh,θt) = (f t(·;θt) ◦ g(·;θsh))(x) = f t(g(x;θsh);θt) (5)

where g is the representation function shared by all tasks and f t are the task-specific functions
that take this representation as input. If we denote the representations as Z =

(
z1, . . . , zN

)
, where

zi = g(xi;θ
sh), we can state the following upper bound as a direct consequence of the chain rule:∥∥∥∥∥

T∑
t=1

αt∇θshL̂t(θsh,θt)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥ ∂Z

∂θsh

∥∥∥∥∥
2

2

∥∥∥∥∥
T∑
t=1

αt∇ZL̂t(θsh,θt)

∥∥∥∥∥
2

2

(6)

where
∥∥ ∂Z
∂θsh

∥∥
2

is the matrix norm of the Jacobian of Z with respect to θsh. Two desirable properties
of this upper bound are that (i) ∇ZL̂t(θsh,θt) can be computed in a single backward pass for all
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tasks and (ii)
∥∥ ∂Z
∂θsh

∥∥2

2
is not a function of α1, . . . , αT , hence it can be removed when it is used as

an optimization objective. We replace the
∥∥∥∑T

t=1 α
t∇θshL̂t(θsh,θt)

∥∥∥2

2
term with the upper bound

we have just derived in order to obtain the approximate optimization problem and drop the
∥∥ ∂Z
∂θsh

∥∥2

2
term since it does not affect the optimization. The resulting optimization problem is

min
α1,...,αT

{∥∥∥∥ T∑
t=1

αt∇ZL̂t(θsh,θt)
∥∥∥∥2

2

∣∣∣∣ T∑
t=1

αt = 1, αt ≥ 0 ∀t

}
(MGDA-UB)

We refer to this problem as MGDA-UB (Multiple Gradient Descent Algorithm – Upper Bound).
In practice, MGDA-UB corresponds to using the gradients of the task losses with respect to the
representations instead of the shared parameters. We use Algorithm 2 with only this change as the
final method.

Although MGDA-UB is an approximation of the original optimization problem, we now state a
theorem that shows that our method produces a Pareto optimal solution under mild assumptions. The
proof is given in the supplement.

Theorem 1 Assume ∂Z
∂θsh

is full-rank. If α1,...,T is the solution of MGDA-UB, one of the following is
true:

(a)
∑T
t=1 α

t∇θshL̂t(θsh,θt) = 0 and the current parameters are Pareto stationary.

(b)
∑T
t=1 α

t∇θshL̂t(θsh,θt) is a descent direction that decreases all objectives.

This result follows from the fact that as long as ∂Z
∂θsh is full rank, optimizing the upper bound

corresponds to minimizing the norm of the convex combination of the gradients using the Mahalonobis
norm defined by ∂Z

∂θsh

ᵀ ∂Z
∂θsh . The non-singularity assumption is reasonable as singularity implies

that tasks are linearly related and a trade-off is not necessary. In summary, our method provably finds
a Pareto stationary point with negligible computational overhead and can be applied to any deep
multi-objective problem with an encoder-decoder model.

4 Experiments

We evaluate the presented MTL method on a number of problems. First, we use MultiMNIST
(Sabour et al., 2017), an MTL adaptation of MNIST (LeCun et al., 1998). Next, we tackle multi-label
classification on the CelebA dataset (Liu et al., 2015b) by considering each label as a distinct binary
classification task. These problems include both classification and regression, with the number of
tasks ranging from 2 to 40. Finally, we experiment with scene understanding, jointly tackling the tasks
of semantic segmentation, instance segmentation, and depth estimation on the Cityscapes dataset
(Cordts et al., 2016). We discuss each experiment separately in the following subsections.

The baselines we consider are (i) uniform scaling: minimizing a uniformly weighted sum of
loss functions 1

T

∑
t Lt, (ii) single task: solving tasks independently, (iii) grid search: exhaus-

tively trying various values from {ct ∈ [0, 1]|
∑
t c
t = 1} and optimizing for 1

T

∑
t c
tLt,

(iv) Kendall et al. (2018): using the uncertainty weighting proposed by Kendall et al. (2018), and
(v) GradNorm: using the normalization proposed by Chen et al. (2018).

4.1 MultiMNIST

Our initial experiments are on MultiMNIST, an MTL version of the MNIST dataset (Sabour et al.,
2017). In order to convert digit classification into a multi-task problem, Sabour et al. (2017) overlaid
multiple images together. We use a similar construction. For each image, a different one is chosen
uniformly in random. Then one of these images is put at the top-left and the other one is at the
bottom-right. The resulting tasks are: classifying the digit on the top-left (task-L) and classifying
the digit on the bottom-right (task-R). We use 60K examples and directly apply existing single-task
MNIST models. The MultiMNIST dataset is illustrated in the supplement.

We use the LeNet architecture (LeCun et al., 1998). We treat all layers except the last as the
representation function g and put two fully-connected layers as task-specific functions (see the
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Figure 2: Radar charts of percentage error per attribute on CelebA (Liu et al., 2015b). Lower is better.
We divide attributes into two sets for legibility: easy on the left, hard on the right. Zoom in for details.

supplement for details). We visualize the performance profile as a scatter plot of accuracies on task-L
and task-R in Figure 3, and list the results in Table 3.

In this setup, any static scaling results in lower accuracy than solving each task separately (the single-
task baseline). The two tasks appear to compete for model capacity, since increase in the accuracy
of one task results in decrease in the accuracy of the other. Uncertainty weighting (Kendall et al.,
2018) and GradNorm (Chen et al., 2018) find solutions that are slightly better than grid search but
distinctly worse than the single-task baseline. In contrast, our method finds a solution that efficiently
utilizes the model capacity and yields accuracies that are as good as the single-task solutions. This
experiment demonstrates the effectiveness of our method as well as the necessity of treating MTL as
multi-objective optimization. Even after a large hyper-parameter search, any scaling of tasks does not
approach the effectiveness of our method.

4.2 Multi-Label Classification

Table 1: Mean of error per
category of MTL algorithms
in multi-label classification on
CelebA (Liu et al., 2015b).

Average
error

Single task 8.77
Uniform scaling 9.62

Kendall et al. 2018 9.53
GradNorm 8.44

Ours 8.25

Next, we tackle multi-label classification. Given a set of attributes,
multi-label classification calls for deciding whether each attribute
holds for the input. We use the CelebA dataset (Liu et al., 2015b),
which includes 200K face images annotated with 40 attributes. Each
attribute gives rise to a binary classification task and we cast this as a
40-way MTL problem. We use ResNet-18 (He et al., 2016) without
the final layer as a shared representation function, and attach a linear
layer for each attribute (see the supplement for further details).

We plot the resulting error for each binary classification task as a
radar chart in Figure 2. The average over them is listed in Table 1.
We skip grid search since it is not feasible over 40 tasks. Although
uniform scaling is the norm in the multi-label classification litera-
ture, single-task performance is significantly better. Our method
outperforms baselines for significant majority of tasks and achieves
comparable performance in rest. This experiment also shows that
our method remains effective when the number of tasks is high.

4.3 Scene Understanding

To evaluate our method in a more realistic setting, we use scene understanding. Given an RGB
image, we solve three tasks: semantic segmentation (assigning pixel-level class labels), instance
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Table 2: Effect of the MGDA-UB approximation. We report the final accuracies as well as training
times for our method with and without the approximation.

Scene understanding (3 tasks) Multi-label (40 tasks)

Training Segmentation Instance Disparity Training Average
time mIoU [%] error [px] error [px] time (hour) error

Ours (w/o approx.) 38.6 66.13 10.28 2.59 429.9 8.33
Ours 23.3 66.63 10.25 2.54 16.1 8.25

segmentation (assigning pixel-level instance labels), and monocular depth estimation (estimating
continuous disparity per pixel). We follow the experimental procedure of Kendall et al. (2018) and
use an encoder-decoder architecture. The encoder is based on ResNet-50 (He et al., 2016) and is
shared by all three tasks. The decoders are task-specific and are based on the pyramid pooling module
(Zhao et al., 2017) (see the supplement for further implementation details).

Since the output space of instance segmentation is unconstrained (the number of instances is not
known in advance), we use a proxy problem as in Kendall et al. (2018). For each pixel, we estimate
the location of the center of mass of the instance that encompasses the pixel. These center votes
can then be clustered to extract the instances. In our experiments, we directly report the MSE in
the proxy task. Figure 4 shows the performance profile for each pair of tasks, although we perform
all experiments on all three tasks jointly. The pairwise performance profiles shown in Figure 4 are
simply 2D projections of the three-dimensional profile, presented this way for legibility. The results
are also listed in Table 4.

MTL outperforms single-task accuracy, indicating that the tasks cooperate and help each other. Our
method outperforms all baselines on all tasks.

4.4 Role of the Approximation

In order to understand the role of the approximation proposed in Section 3.3, we compare the final
performance and training time of our algorithm with and without the presented approximation in
Table 2 (runtime measured on a single Titan Xp GPU). For a small number of tasks (3 for scene
understanding), training time is reduced by 40%. For the multi-label classification experiment (40
tasks), the presented approximation accelerates learning by a factor of 25.

On the accuracy side, we expect both methods to perform similarly as long as the full-rank assumption
is satisfied. As expected, the accuracy of both methods is very similar. Somewhat surprisingly, our
approximation results in slightly improved accuracy in all experiments. While counter-intuitive at
first, we hypothesize that this is related to the use of SGD in the learning algorithm. Stability analysis
in convex optimization suggests that if gradients are computed with an error ∇̂θLt = ∇θLt + et (θ
corresponds to θsh in (3)), as opposed to Z in the approximate problem in (MGDA-UB), the error in
the solution is bounded as ‖α̂− α‖2 ≤ O(maxt ‖et‖2). Considering the fact that the gradients are
computed over the full parameter set (millions of dimensions) for the original problem and over a
smaller space for the approximation (batch size times representation which is in the thousands), the
dimension of the error vector is significantly higher in the original problem. We expect the l2 norm
of such a random vector to depend on the dimension.

In summary, our quantitative analysis of the approximation suggests that (i) the approximation does
not cause an accuracy drop and (ii) by solving an equivalent problem in a lower-dimensional space,
our method achieves both better computational efficiency and higher stability.

5 Conclusion

We described an approach to multi-task learning. Our approach is based on multi-objective optimiza-
tion. In order to apply multi-objective optimization to MTL, we described an efficient algorithm as
well as specific approximations that yielded a deep MTL algorithm with almost no computational
overhead. Our experiments indicate that the resulting algorithm is effective for a wide range of
multi-task scenarios.
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Figure 3: MultiMNIST accuracy profile. We
plot the obtained accuracy in detecting the left
and right digits for all baselines. The grid-search
results suggest that the tasks compete for model
capacity. Our method is the only one that finds
a solution that is as good as training a dedicated
model for each task. Top-right is better.

Table 3: Performance of MTL algorithms on
MultiMNIST. Single-task baselines solve tasks
separately, with dedicated models, but are shown
in the same row for clarity.

Left digit Right digit
accuracy [%] accuracy [%]

Single task 97.23 95.90
Uniform scaling 96.46 94.99

Kendall et al. 2018 96.47 95.29
GradNorm 96.27 94.84

Ours 97.30 95.90

Table 4: Performance of MTL algorithms in
joint semantic segmentation, instance segmenta-
tion, and depth estimation on Cityscapes. Single-
task baselines solve tasks separately but are
shown in the same row for clarity.

Segmentation Instance Disparity
mIoU [%] error [px] error [px]

Single task 60.68 11.34 2.78
Uniform scaling 54.59 10.38 2.96

Kendall et al. 2018 64.21 11.54 2.65
GradNorm 64.81 11.31 2.57

Ours 66.63 10.25 2.54
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Figure 4: Cityscapes performance profile. We
plot the performance of all baselines for the
tasks of semantic segmentation, instance seg-
mentation, and depth estimation. We use mIoU
for semantic segmentation, error of per-pixel re-
gression (normalized to image size) for instance
segmentation, and disparity error for depth esti-
mation. To convert errors to performance mea-
sures, we use 1 − instance error and 1/disparity
error. We plot 2D projections of the performance
profile for each pair of tasks. Although we plot
pairwise projections for visualization, each point
in the plots solves all tasks. Top-right is better.
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A Proof of Theorem 1

Proof. We begin by showing that if the optimum value of (MGDA-UB) is 0, so is the optimum value
of (3). This shows the first case of the theorem. Then, we will show the second part.

If the optimum value of (MGDA-UB) is 0,

T∑
t=1

αt∇θshL̂t(θsh,θt) =
∂Z

∂θsh

T∑
t=1

αt∇ZL̂t =

T∑
t=1

αt∇θshL̂t = 0 (7)

Hence α1, . . . , αT is the solution of (3) and the optimal value of (3) is 0. This proves the first case of
the theorem. Before we move to the second case, we state a straightforward corollary. Since ∂Z

∂θsh

is full rank, this equivalence is bi-directional. In other words, if α1, . . . , αT is the solution of (3),
it is the solution of (MGDA-UB) as well. Hence, both formulations completely agree on Pareto
stationarity.

In order to prove the second case, we need to show that the resulting descent direction computed by
solving (MGDA-UB) does not increase any of the loss functions. Formally, we need to show that

(
T∑
t=1

αt∇θshL̂t
)ᵀ (

∇θshL̂t
′
)
≥ 0 ∀ t′ ∈ {1, . . . , T} (8)

This condition is equivalent to(
T∑
t=1

αt∇ZL̂t
)ᵀ

M
(
∇ZL̂t

′
)
≥ 0 ∀ t′ ∈ {1, . . . , T} (9)

where M =
(
∂Z
∂θsh

)ᵀ( ∂Z
∂θsh

)
. Since M is positive definite (following the assumption), this is further

equivalent to (
T∑
t=1

αt∇ZL̂t
)ᵀ (

∇ZL̂t
′
)
≥ 0 ∀ t′ ∈ {1, . . . , T} (10)

We show that this follows from the optimality conditions for (MGDA-UB). The Lagrangian of
(MGDA-UB) is(

T∑
t=1

αt∇ZL̂t
)ᵀ( T∑

t=1

αt∇ZL̂t
)
− λ

(∑
i

αi − 1

)
where λ ≥ 0. (11)
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The KKT condition for this Lagrangian yields the desired result as(
T∑
t=1

αt∇ZL̂t
)ᵀ (

∇ZL̂t
)

=
λ

2
≥ 0 (12)

B Additional Results

In this section, we present the experimental results we did not include in the main text.

B.1 Multi-label classification results

In the main text, we plotted a radar chart of the binary attribute classification errors. However, we did
not include the tabulated results due to the space limitations. Here we list the binary classification
error of each attribute for each algorithm in Table 5.

Table 5: Multi-label classification error per attribute for all algorithms.
Uniform Single Kendall Grad Uniform Single Kendall Grad
scaling task et al. Norm Ours scaling task et al. Norm Ours

Attr. 0 7.11 7.16 7.18 6.54 6.17 Attr. 5 4.91 4.75 4.95 4.19 4.13
Attr. 1 17.30 14.38 16.77 14.80 14.87 Attr. 6 20.97 14.24 15.17 14.07 14.08
Attr. 2 20.99 19.25 20.56 18.97 18.35 Attr. 7 18.53 17.74 18.84 17.33 17.25
Attr. 3 17.82 16.79 18.45 16.47 16.06 Attr. 8 10.22 8.87 10.19 8.67 8.42
Attr. 4 1.25 1.20 1.17 1.13 1.08 Attr. 9 5.29 5.09 5.44 4.68 4.60

Attr. 10 4.14 4.02 4.33 3.77 3.60 Attr. 15 0.81 0.52 0.62 0.56 0.56
Attr. 11 16.22 15.34 16.64 14.73 14.56 Attr. 16 4.00 3.94 3.99 3.72 3.46
Attr. 12 8.42 7.68 8.85 7.23 7.41 Attr. 17 2.39 2.66 2.35 2.09 2.16
Attr. 13 5.17 5.15 5.26 4.75 4.52 Attr. 18 8.79 9.01 8.84 8.00 7.83
Attr. 14 4.14 4.13 4.17 3.73 3.54 Attr. 19 13.78 12.27 13.86 11.79 11.29

Attr. 20 1.61 1.61 1.58 1.42 1.43 Attr. 25 27.59 24.82 26.94 24.26 23.87
Attr. 21 7.18 6.20 7.73 6.91 6.26 Attr. 26 3.54 3.40 3.78 3.22 3.16
Attr. 22 4.38 4.14 4.08 3.88 3.81 Attr. 27 26.74 22.74 26.21 23.12 22.45
Attr. 23 8.32 6.57 8.80 6.54 6.47 Attr. 28 6.14 5.82 6.17 5.43 5.16
Attr. 24 5.01 5.38 5.12 4.63 4.23 Attr. 29 5.55 5.18 5.40 5.13 4.87

Attr. 30 3.29 3.79 3.24 2.94 3.03 Attr. 35 1.15 1.13 1.08 0.94 1.08
Attr. 31 8.05 7.18 8.40 7.21 6.92 Attr. 36 7.91 7.56 8.06 7.47 7.18
Attr. 32 18.21 17.25 18.15 15.93 15.93 Attr. 37 13.27 11.90 13.47 11.61 11.19
Attr. 33 16.53 15.55 16.19 13.93 13.80 Attr. 38 3.80 3.29 4.04 3.57 3.51
Attr. 34 11.12 9.76 11.46 10.17 9.73 Attr. 39 13.25 13.40 13.78 12.26 11.95

B.2 How dynamic are the resulting weights?

One way to interpret our method is to consider the αt computed by our method as task weights that
are dynamically computed as the solution of a min-norm problem. In Figure 5, we plot the weights
computed by our method for task-L in the Multi-MNIST experiments. As shown in the figure, the
resulting weights fluctuate significantly from batch to batch. This implies that a consistent descent
direction requires highly dynamic scaling. Given that the losses and uncertainties are relatively
smooth during minibatch training, this behavior explains why heuristics like uncertainty weighting
(Kendall et al., 2018) struggle to find a consistent descent direction. This further substantiates the
case for multi-objective modeling for the multi-task learning problem.
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Figure 5: α1 that our method computes per batch in the MultiMNIST experiment. Although the loss
is typically smooth, the required scaling for a consistent descent direction fluctuates significantly.
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C Implementation Details

C.1 MultiMNIST

We use the MultiMNIST dataset, which overlays multiple images together (Sabour et al., 2017). For
each image, a different one is chosen uniformly in random. One of these images is placed at the
top-left and the other at the bottom-right. We show sample MultiMNIST images in Figure 7.
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Figure 6: Architecture used for MultiMNIST experiments.

Figure 7: Sample MultiMNIST images. In each image, one task (task-L) is classifying the digit on
the top-left and the second task (task-R) is classifying the digit on the bottom-right.

For the MultiMNIST experiments, we use an architecture based on LeNet (LeCun et al., 1998).
We use all layers except the final one as a shared encoder. We use the fully-connected layer as a
task-specific function for the left and right tasks by simply adding two independent fully-connected
layers, each taking the output of the shared encoder as input. As a task-specific loss function, we use
the cross-entropy loss with a softmax for both tasks. The architecture is visualized in Figure 6.

The implementation uses PyTorch (Paszke et al., 2017). For all baselines, we searched over the
set LR = {1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2} of learning rates and chose the model with the
highest validation accuracy. We used SGD with momentum, halving the learning rate every 30 epochs.
We use batch size 256 and train for 100 epochs. We report test accuracy.

C.2 Multi-label classification

For multi-label classification experiments, we use ResNet-18 (He et al., 2016) without the final
layer as a shared representation function. Since there are 40 attributes, we add 40 separate 2048× 2
dimensional fully-connected layers as task-specific functions. The final two-dimensional output
is passed through a 2-class softmax to get binary attribute classification probabilities. We use
cross-entropy as a task-specific loss. The architecture is visualized in Figure 8.

The implementation uses PyTorch (Paszke et al., 2017). We resize each CelebA image (Liu
et al., 2015b) to 64 × 64 × 3. For all experiments, we searched over the set LR =
{1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2} of learning rates and chose the model with the highest
validation accuracy. We used SGD with momentum, halving the learning rate every 30 epochs. We
use batch size 256 and train for 100 epochs. We report attribute-wise binary accuracies on the test set
as well as the average accuracy.

C.3 Scene understanding

For scene understanding experiments, we use the Cityscapes dataset (Cordts et al., 2016). We resize
all images to resolution 256× 512 for computational efficiency. As a shared representation function
(encoder), we use the ResNet-50 architecture (He et al., 2016) in fully-convolutional fashion. We take
the ResNet-50 architecture and only use layers prior to average pooling that are fully convolutional.
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ResNet 18:

ResNet 18 without the final fully
connected layer.

Fully Connected Layer
(2048 x 2)

Fully Connected Layer
(2048 x 2)

Input Image

64 x 64 x 3

Attribute 0: (binary)

......

Attribute 39: (binary)Fully Connected Layer
(2048 x 2)

Figure 8: Architecture used for multi-label classification experiments.

As a decoder, we use the pyramid pooling module (Zhao et al., 2017) and set the output sizes to
256× 512× 19 for semantic segmentation (19 classes), 256× 512× 2 for instance segmentation
(one output channel for the x-offset of the center location and another channel for the y-offset), and
256× 512× 1 for monocular depth estimation. For instance segmentation, we use the proxy task of
estimating the offset for the center location of the instance that encompasses the pixel. We directly
estimate disparity instead of depth and later convert it to depth using the provided camera intrinsics.
As a loss function, we use cross-entropy with a softmax for semantic segmentation, and MSE for
depth and instance segmentation. We visualize the architecture in Figure 9.

We initialize the encoder with a model pretrained on ImageNet (Deng et al., 2009). We use the
implementation of the pyramidal pooling network with bilinear interpolation shared by Zhou et al.
(2017a). Ground-truth results for the Cityscapes test set are not publicly available. Therefore, we
report numbers on the validation set. As a validation set for hyperparameter search, we randomly
choose 275 images from the training set. After the best hyperparameters are chosen, we retrain with
the full training set and report the metrics on the Cityscapes validation set, which our algorithm
never sees during training or hyperparameter search. As metrics, we use mean intersection over
union (mIoU) for semantic segmentation, MSE for instance segmentation, and MSE for disparities
(depth estimation). We directly report the metric in the proxy task for instance segmentation instead
of performing a further clustering operation. For all experiments, we searched over the set LR =
{1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2} of learning rates and chose the model with the highest
validation accuracy. We used SGD with momentum, halving the learning rate every 30 epochs. We
use batch size 8 and train for 250 epochs.

Convolutional ResNet 50:

ResNet 50 without final average
poling and fully connected layer.

Pyramid Pooling Network

Pyramid Pooling Network
Input Image

256 x 512 x 3

Semantic Segmentation

Instance Segmentation

Disparity Estimation

(256 x 512 x 19)

(256 x 512 x 2)

(256 x 512 x 1)Pyramid Pooling Network

Figure 9: Architecture used for scene understanding experiments.
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