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Procedural representations provide powerful means for generating complex
geometric structures. They are also notoriously difficult to control. In this
paper, we present an algorithm for controlling grammar-based procedural
models. Given a grammar and a high-level specification of the desired pro-
duction, the algorithm computes a production from the grammar that con-
forms to the specification. This production is generated by optimizing over
the space of possible productions from the grammar. The algorithm sup-
ports specifications of many forms, including geometric shapes and analyti-
cal objectives. We demonstrate the algorithm on procedural models of trees,
cities, buildings, and Mondrian paintings.
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1. INTRODUCTION

Compelling 3D content is a prerequisite for the development of
immersive games, movies, and virtual worlds. Unfortunately, the
creation of high-quality 3D models is a notoriously difficult task,
often requiring hundreds of hours of skilled labor. This problem
is exacerbated in models that exhibit fine detail at multiple scales,
such as those commonly encountered in biology and architecture.

Procedural modeling encompasses a class of powerful tech-
niques for generating complex structures from a small set of formal
rules. Intricate phenomena can be simulated by repeatedly apply-
ing the rules to each generated component of the structure. As a
result, procedural representations have been used to model plants
and trees, landscapes, ecosystems, cities, buildings, and ornamental
patterns [Prusinkiewicz and Lindenmayer 1990; Wong et al. 1998;
Deussen et al. 1998; Parish and Müller 2001; Ebert et al. 2002;
Müller et al. 2006].

Some of the most common procedural representations are based
on formal grammars, such as L-systems [Lindenmayer 1968] and
shape grammars [Stiny and Gips 1971]. These languages con-
sist of an alphabet of symbols, an initial symbol, and a set of
rewriting rules. Each generated symbol encodes a set of geomet-
ric commands, which are executed to produce complex shapes
[Prusinkiewicz 1986].

The power of procedural representations lies in their parsimo-
nious expression of complicated phenomena. Unfortunately, con-
trolling these representations is often difficult. Models based on
formal grammars, in particular, tend to be “ill-conditioned,” in that
making slight alterations to the grammar or its parameters can re-
sult in global and unanticipated changes in the produced geometry.

The primary contribution of this paper is an algorithm for con-
trolling grammar-based procedural models. Given any parametric,
stochastic, conditional, context-free grammar, the algorithm takes
a high-level specification of the desired model and computes a pro-
duction from the grammar that matches the specification. No inter-
action with the grammar itself is required, and the input specifica-
tion can take many forms, such as a sketch, a volumetric shape, or
an analytical objective.

The key idea behind our approach is to formulate modeling op-
erations as probabilistic inference problems over the space of pro-
ductions from the grammar. Given a high-level specification of the
desired model, we define an objective function that quantifies the
similarity between a given production and the specification. Our
goal is to optimize over the space of productions and find one that
maximizes this objective.

Since the space of productions may have complex, trans-
dimensional structure, this problem is generally not amenable to
traditional optimization techniques. A natural solution is to employ
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Fig. 1: The evolution of a trans-dimensional Markov chain. The chain al-
ternates between diffusion moves within fixed-dimensional subspaces (black
arrows) and jump moves between subspaces of differing dimension (red ar-
rows).

Markov chain Monte Carlo (MCMC) methods, which reduce opti-
mization to sampling. However, the classical MCMC formulation,
due to Metropolis et al. [1953] and Hastings [1970], requires the
function of interest to be defined over a fixed-dimensional space. In
contrast, the dimensionality of productions from a given grammar
can vary widely, since applying different rewriting rules to a par-
ticular symbol may result in strings of differing lengths. Therefore,
we employ a generalization of traditional MCMC called Reversible
jump Markov chain Monte Carlo [Green 1995], which allows the
Markov chain to “jump” between spaces of varying dimension (see
Figure 1).

Our algorithm for controlling grammar-based procedural mod-
els has surprisingly simple form, combining rigorous guarantees of
correctness and convergence with implementation costs compara-
ble to greedy local search. We demonstrate the algorithm on models
of trees, cities, buildings, and Mondrian paintings.

2. RELATED WORK

Grammar-based modeling. Grammar-based procedural models
were introduced to the graphics community by Prusinkiewicz
[1986]. Early efforts demonstrated the utility of grammars for rep-
resenting complex biological structures [Prusinkiewicz and Lin-
denmayer 1990]. Further research has resulted in the development
of some of the most physically-faithful growth models for plants,
incorporating interaction with the surrounding environment and
biological mechanisms such as competition for light and space
[Prusinkiewicz et al. 1994; Měch and Prusinkiewicz 1996; Palu-
bicki et al. 2009]. Grammars have also proven effective at repre-
senting man-made structures, such as ornamental patterns [Wong
et al. 1998], street networks [Parish and Müller 2001], and building
façades [Müller et al. 2006].

Outside computer graphics, grammar-based procedural models
have seen extensive use in architecture and design. Shape gram-
mars have been developed to describe a variety of architectural
styles, including the villas of Andrea Palladio [Stiny and Mitchell
1978], Frank Lloyd Wright’s prairie houses [Koning and Eizenberg
1981], Christopher Wren’s city churches [Buelinckx 1993], and the
Medina of Marrakech [Duarte et al. 2007]. Shape grammars have
also been employed in the product design literature to describe
artifacts such as chairs [Knight 1980], coffee makers [Agarwal and
Cagan 1998], and motorcycles [Pugliese and Cagan 2002].

Markov chain Monte Carlo. MCMC methods were first de-
veloped by Metropolis et al. [1953] to solve equations of state
involving the Boltzmann distribution, and later extended by
Hastings [1970] to allow sampling from more general functions.
MCMC techniques have been used in a number of computer
graphics applications. Szeliski and Terzopoulos [1989] applied
stochastic relaxation to synthesize realistic terrain models that

conform to a given input. Veach and Guibas [1997] applied
the Metropolis-Hastings algorithm to light transport. Chenney
and Forsyth [2000] used MCMC to generate rigid-body simu-
lations that satisfy constraints. We extend this line of work to
grammar-based procedural modeling.

Outside of graphics, a number of researchers have applied
Markov chain Monte Carlo techniques to grammar-based model-
ing problems. Cagan and Mitchell [1993] discussed the application
of MCMC to guiding derivations from shape grammars. Alegre and
Dellaert [2004] parsed images of building façades using a variant
of trans-dimensional MCMC that relies on an exhaustive search for
parameter settings. Ripperda and Brenner [2006; 2009] similarly
used RJMCMC and specialized, symmetric split-grammars to rec-
ognize building façades from image data. Schlecht et al. [2007]
used a hand-tuned Reversible jump formulation to fit a particu-
lar L-system describing a species of Altenaria fungus to layered
microscopy data. Our work unifies and generalizes this line of re-
search, resulting in a robust algorithm that can be used on the com-
plex geometric structures encountered in computer graphics.

3. CONTEXT-FREE GRAMMARS

In order to describe the probabilistic inference formulation, we
must first define some basic concepts related to procedural gram-
mars. A parametric, stochastic, conditional, context-free grammar
is a tuple

G = 〈V, T,Σ, ω, P 〉,
where V is the set of variables, T is the set of terminals, Σ is the
set of formal parameters, ω ∈ ((V ∪ T )× R∗)+ is the axiom, and
P ⊂ (V × Σ∗ × B × E) × ((V ∪ T ) × E∗)∗ is a finite set of pro-
ductions. Here E is the set of all correctly constructed arithmetic
expressions with parameters from Σ and B is the set of all possi-
ble boolean expressions involving quantities from E [Prusinkiewicz
and Hanan 1990]. Each production ρ ∈ P is written as ψ → χ,
where ψ ∈ (V × Σ∗ × B × E) is called the predecessor, and
χ ∈ ((V ∪ T )×E∗)∗ is the successor. A simple example grammar
is shown in Grammar 1.

Each production p ∈ P has an associated conditional expres-
sion from B that is used to determine if the production is valid for
a given set of parameters and an associated probability expression
from E that controls the likelihood of p occurring in a derivation. In
order to determine which production to apply for a particular vari-
able, the set of productions with matching predecessors are found,
and those with false conditionals are discarded. The probability ex-
pressions of the remaining productions are evaluated and normal-
ized to create a discrete probability distribution, which is then sam-
pled to choose a production.

Simple Branching Model

V = {X} , T = {F,+,−, [, ]} , Σ = {`} , ω = X(1),

P =X(`) : ` ≤ 3
1−`/3−→ F (N (`, .2)) [−X(`+ 1)][+X(`+ 1)],

X(`) : ` ≤ 3
`/3−→ F (N (`, .2))


Grammar 1: An example grammar describing a simple branching
model. The terminal F has a single descriptive parameter sampled
from a normal distributionN (µ, σ2) that governs the length of each
branch.
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Additionally, in our formulation, each terminal symbol t ∈ T
is associated with a set of real-valued descriptive parameters
ϕt = {φi}, drawn from a symbol-specific probability distribution
Φt. These parameters are used to describe randomness in the
model that cannot be naturally expressed in terms of the gram-
mar’s stochastic productions. Since each expression from E(Σ) is
deterministic, the descriptive parameters facilitate the introduction
of continuous variation to the model without exploding the num-
ber of productions: for instance, varying the length of the termi-
nal branches in a tree without requiring a separate production for
each value. Each multivariate distribution Φ is a product of univari-
ate distributions governing the individual descriptive parameters;
in our formulation, these univariate distributions may be uniform,
Gaussian, or a mixture of Gaussians, and are allowed to depend on
expressions from E .

Furthermore, we define the set ∆(G) of all possible derivations
from G: this is the space in which we will perform inference. Each
derivation δ = (τ, ϕ) from the grammar is uniquely represented by
a derivation tree τ and the set of descriptive parameters ϕ =

⋃
t ϕt

associated with the terminal symbols in the derived string. Each τ
is rooted on ω, and every subsequent level in τ consists of a string
produced by applying a matching production to each variable in
the level above. The tree terminates once all variables in the string
have been reduced to terminals (or when a global depth limit has
been reached), and the last level of the tree contains the string rep-
resenting the produced model δ⇒. A random derivation tree from
Grammar 1 is shown in Figure 2.

Note that we define ∆(G) in terms of derivation trees, and not
the strings that these trees produce. Many stochastic context-free
grammars are ambiguous: for some strings, there may exist many
valid derivations. By searching for the optimal derivation tree in-
stead of the optimal string, we do not need to account for this am-
biguity in the probability calculations, greatly simplifying the in-
ference process.

4. PROBABILISTIC INFERENCE FOR GRAMMARS

Given a grammar G and a user-provided specification I describ-
ing a desired model, we would like to find the best derivation from
G that matches the user’s input. We formulate this as a probabilis-
tic inference problem over the space of possible derivations ∆(G).
Define a posterior

p(δ|I) ∝ L(I|δ)π(δ), (?)

where δ ∈ ∆(G),L(·|·) is the likelihood of the input given a partic-
ular model, and π(·) is the model prior. Finding the best derivation
from the grammar that matches the provided specification then re-
duces to maximizing (?).

The difficulty of performing this maximization is closely tied
to the form of p(·|·). The model prior π(·) is drawn directly from
the grammar’s stochastic production probabilities and descriptive
parameter distributions, so that

π(δ) ∝
∏
s∈δ

P (s|parent(s))
∏
t∈δ⇒

Φt(ϕt),

where s ranges over all the successors contained within δ, and
P (·|·) is the production probability given in the grammar. In this
way, the prior π(δ) is proportional to the probability of δ being
randomly drawn from G.

ω X 1

[ -1 [ ]+]F .31 X 2X 2

[ - [ - ] ]+[3 [ ]+]F .31 F .55 F .8 F .74 F .63

[ - [ - ] [ ]+2 [ ]+]X 3 X 3F .31 F .55 F .63

.31 .55 .8 .74 .63

Level 1 Level 2 Level 3

ϕ =

Fig. 2: A random derivation tree from Grammar 1. Nonterminals are shown
in blue, terminals with descriptive parameters in gold, and terminals with-
out parameters in green. The formal and descriptive parameter values are
inset in the bottom and top of each symbol, respectively. The parameter
vector ϕ corresponding to the derived string is shown in red.

The definition of L(·|·), however, necessarily depends on the
form of the user’s provided specification: different likelihood func-
tions must be developed for each of the different modes of control.
The described inference procedure is largely agnostic to the like-
lihood formulation: virtually any function can be used, provided it
can be evaluated efficiently.

In general, given the size of ∆(G) and the range of desirable
specifications, it is unreasonable to expect analytic solutions to the
inference problem to exist. Therefore, we use Markov chain Monte
Carlo techniques to efficiently maximize the posterior.

5. INTRODUCTION TO MCMC INFERENCE

MCMC methods have a long history in computational statistics and
machine learning. They operate by simulating a Markov chain that
takes a random, memoryless walk through a space of interest and
generates a set of correlated, unbiased samples from a given func-
tion defined over that space. These samples can then be used to ef-
ficiently solve integration or optimization problems involving this
function. In fact, there are many high dimensional problems for
which MCMC techniques provide the only known efficient algo-
rithms: for instance, computing the volume of a convex body in
n dimensions, sampling from truncated multivariate Gaussians, or
computing the permanent of a matrix [Andrieu et al. 2003].

A Markov chain X is a sequence of random variables
X1,X2, . . . in a domain X which possess the Markov property
P (Xn+1 = xn+1|Xn = xn, . . . ,X1 = x1) = P (Xn+1 =
xn+1|Xn = xn); that is, the value of the next sample in the chain
depends only on the value of the sample that immediately precedes
it. When the chain is constructed in such a way that these samples
come from a particular probability distribution p(·), the chain is
said to be ergodic, and p(·) is called the chain’s stationary distri-
bution. By running the chain for a sufficiently long time, we can
use the generated samples to solve expected value problems of the
form E[f(x)] =

∫
X f(x)p(x)dx ≈ 1

N

∑N
i=1 f(Xi) and inference

problems like maxX p(x) ≈ argmaxiXi.
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5.1 The Metropolis-Hastings algorithm

The most popular Markov chain Monte Carlo formulation is due to
Metropolis et al. [1953] and Hastings [1970]. Given a state spaceX
and a non-negative function p : X → R+, the Metropolis-Hastings
(MH) algorithm constructs an ergodic Markov chain whose station-
ary distribution is precisely p. In essence, the algorithm transforms
the ability to evaluate a function at a point into an efficient method
for sampling from that function. Unlike most other sampling meth-
ods, the MH algorithm does not require that p integrate to one,
making it extremely useful for problems where X is so large as to
make computing the normalizing constant for p infeasible.

The MH algorithm works as follows. First, X1 is set to some ar-
bitrary point in X . To determine the value of Xi+1 at each step, a
“tentative” sample x∗ is generated from a proposal density function
q(x|xi). In theory, q can be any function that can be sampled di-
rectly and whose support includes the support of p. In practice, the
proposal density must be carefully designed to match the shape of
p as much as possible, in order to ensure good performance. This
tentative sample x∗ ∼ q(·|xi) is either accepted into the chain as
xi+1 with probability

αxi→x∗ = min

{
1,
p(x∗)

p(xi)

q(xi|x∗)
q(x∗|xi)

}
,

or rejected, in which case xi+1 = xi. It can be shown that this
construction will produce at worst asymptotic convergence to p(·)
regardless of the initial choice of x1, and will often converge geo-
metrically if the target domain is not too large [Tierney 1994].

6. REVERSIBLE JUMP MCMC

Unfortunately, the traditional Metropolis-Hastings algorithm
breaks down when the dimensionality of the samples in the chain is
allowed to vary. Intuitively, this is because comparing the densities
of objects in different dimensions has no meaning, and the accep-
tance probability formulation is no longer valid. This is particularly
confounding for applying MCMC techniques to procedural model-
ing problems, since different derivations from a single grammar
may have drastically different lengths.

To overcome this problem, we employ a generalization of the
traditional MH framework called Reversible jump MCMC [Green
1995]. RJMCMC works by supplementing the parameter-changing
diffusion moves of MH with an additional set of dimension-altering
jump moves, which allow the chain to move between subspaces of
varying dimension. For instance, a “death” move could be used to
remove a component from a statistical model and decrease its over-
all dimensionality, while a “split” move might replace an existing
component of a model with two new components, increasing the
dimension accordingly.

While the traditional MH algorithm can only be used for parame-
ter fitting, the flexibility these jump moves impart makes RJMCMC
a useful tool for solving model selection problems. For example,
while traditional MCMC techniques could be used to fit a set of k
Gaussians to a collection of points, the value of k must be known a
priori. With RJMCMC, we can construct a chain in which k itself
is allowed to vary, and use it to find both the optimal number of
Gaussians as well as their means and variances. Essentially, RJM-
CMC is a method for inference problems in which “the number of
things you don’t know is one of the things you don’t know” [Hastie
and Green 2009].

6.1 Reversibility

Central to the application of RJMCMC techniques is the defini-
tion of the set of dimension-altering jump moves. Suppose we have
a countable family of statistical models {Mm}, each with an as-
sociated set of km parameters xm ∈ Xm ⊆ Rkm . To guarantee
ergodicity, each jump between these models must be carefully for-
mulated to satisfy several strict theoretical requirements. First and
foremost, each move must be reversible: for any move from a model
m and associated parameters xm to a model (n,xn), there must
also exist a reverse move from (n,xn) back to (m,xm). This is
necessary to ensure that the chain does not get stuck in any partic-
ular subspace of the target domain X =

⋃
m{m} × Xm.

6.2 Dimension matching

In addition, to perform a jump from a model m to a model n, a de-
terministic, differentiable, invertible dimension matching function

fm→n : Xm × Um,n → Xn × Un,m
must be defined, where Um,n ⊆ Rrm and Un,m ⊆ Rrn with
km + rm = kn + rn. The precise formulation of these dimension
matching functions is “rather obscure” [Green 1995, §3.2]. How-
ever, the intuition behind them is that we are extending both models
into a common, intermediary parameter space in which their densi-
ties can be meaningfully compared. To do this, we supplement the
parameters of the models to make their dimensions match using
two sets of additional parameters um,n and un,m drawn from pro-
posal density functions qm→n(·|m,xm) and qn→m(·|n,xn). Then,
we can define fm→n such that fm→n(xm,um,n) = (xn,un,m)
and fm→n(fn→m(xn,un,m)) = (xn,un,m). In many RJMCMC
formulations, one of rm or rn is set to zero.

6.3 Acceptance probability

With this machinery in place, the RJMCMC algorithm closely
resembles traditional MH. If the current state of the chain
is (n,xn), we perform a jump to (m,xm) by generating
un,m ∼ qn→m(·|n,xn), setting (x∗m,um,n) = fn→m(xn,un,m),
and accepting x∗m into the chain with probability

αn→m =

min

{
1,
p(m,x∗m)

p(n,xn)

j(n|m)

j(m|n)

qm→n(um,n|m,x∗m)

qn→m(un,m|n,xn)
Jfn→m

}
,

where j(·|·) is the probability of selecting the jump and Jfn→m is
the Jacobian of the transformation fn→m:

Jfn→m =

∣∣∣∣det
∂fn→m(xm,um,n)

∂(xm,um,n)

∣∣∣∣ .
Note that this formula clearly illustrates the need for guaranteeing
the invertibility of the dimension matching functions, lest the Ja-
cobian vanish and the acceptance probability collapse to zero. As
a result, constructing such jump moves for even a single problem
domain can be a tricky and time-consuming task. The difficulty of
guaranteeing reversibility and dimension matching between mod-
els is widely held to be the primary impediment to the widespread
adoption of RJMCMC techniques [Andrieu et al. 2003].
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[ - [ - ] ]+[ [ ]+]F .31 F .55 F .8 F .74 F .63

.31 .8 .74 .63.55 .31 .8 .74 .63.72ϕ� =ϕ =

Fig. 3: A derivation undergoing a diffusion move. A random terminal is
selected and its descriptive parameters resampled.

7. MCMC FOR GRAMMARS

This paper presents a robust method for inferring reversible jump
moves for any parametric, stochastic, conditional, context-free
grammar. The presented formulation has a number of advantages
over previous attempts at using trans-dimensional MCMC in pro-
cedural modeling. Unlike the method of Ripperda and Brenner
[2009], which requires symmetric shape grammars in order to guar-
antee reversibility, our method places no restrictions on the form
of the underlying grammar. In addition, the presented technique is
entirely automatic: jump moves are derived directly from the gram-
mar specification and need not be manually constructed for a par-
ticular grammar, as in Schlecht et al. [2007]. Moreover, we provide
a simple mechanism for dimension matching that scales to mod-
els with hundreds of thousands of continuous parameters, obviat-
ing the need for approximate optimization algorithms like the one
described by Alegre and Dellaert [2004].

Given an grammar G along with a user-provided model speci-
fication I and associated scoring function L(I|·), we initialize the
Markov chain to δ ≡ (τ, ϕ) ∼ π(·) by sampling from the prior. At
every subsequent iteration, we randomly choose to apply either a
jump or diffusion move in order to evolve the chain.

7.1 Diffusion moves

In a diffusion move, the topology of the derivation tree remains
fixed, and the descriptive parameters of its derived string are modi-
fied (see Figure 3). To perform such a move, we first pick a random
terminal t from δ⇒, and then resample ϕ′t ∼ Φt to generate a new
derivation δ′. Since the distribution governing these parameters is
specified a priori in the grammar, we use an independence sampler
for the proposal density, where q(δ′|δ) = q(δ′) = Φt(ϕ

′
t). The

acceptance probability for δ′ then simplifies to

αδ→δ′ = min

{
1,
p(δ′|I)Φt(ϕt)

p(δ|I)Φt(ϕ′t)

}
= min

{
1,
L(I|δ′)
L(I|δ)

}
.

7.2 Jump moves

To derive a complete set of jump moves, we leverage the set of
stochastic productions given in the grammar. In particular, to per-
form a jump on a given derivation (τ, ϕ), we first randomly select
a variable v from within τ , and then rederive the subtree τv rooted
at v by re-rolling productions for v and its children. This new sub-
tree τ ′v is evolved until it consists entirely of terminal symbols or
reaches the global depth limit; this process is illustrated in Figure 4.

We now ensure that these jump moves are reversible, and formu-
late appropriate dimension matching functions for them. To begin,
observe that sampling from a given descriptive distribution Φ is
equivalent to sampling from one or more uniform distributions U
and applying a deterministic transformation to the results [Box and

ω X 1

[ -1 [ ]+]F .31 X 2X 2

[ - [ - ] ]+[3 [ ]+]F .31 F .55 F .8 F .74 F .63

[ - [ - ] [ ]+2 [ ]+]X 3 X 3F .31 F .55 F .63

.31 .55 .8 .63.74

ω X 1

[ -1 [ ]+]F .31 X 2X 2

[ -2 [ ]+]F .31 F .63

.31 .63

F .55

.55

τ

τ �

v =

ϕ =

ϕ� =

(τ �,ϕ�)

(τ,ϕ)

Fig. 4: A derivation tree (τ, ϕ) undergoing a jump move to (τ ′, ϕ′). A ran-
dom nonterminal symbol v is selected, and the subtree rooted at v is re-
placed with a different production from Grammar 1. Here the dimension of
ϕ is reduced by the jump.

Muller 1958]. Therefore, any parameter vector ϕ ∈ Rq has a cor-
responding representation ϕ̃ ∈ [0, 1]w with q ≤ w, and sampling
ϕ ∼ Φ is equivalent to sampling ϕ̃ ∼ U[0,1].

We may now consider jumps between subtrees (τv, ϕ̃) and
(τ ′v, ϕ̃

′) where ϕ̃ ∈ Rj and ϕ̃′ ∈ Rk. Without loss of
generality, let j ≥ k and u′ be a vector of j − k uni-
form random numbers in the range [0, 1]. For the forward
move, we define (ϕ̃′, u′) = fτ→τ ′(ϕ̃) = ϕ̃. For the reverse,
ϕ̃ = fτ ′→τ (ϕ̃′, u′) = (ϕ̃′, u′). Essentially, by putting all parame-
ters on equal footing, we can copy the old values to the new state
and reinterpret them accordingly, truncating or supplementing them
with new random samples to match the target dimension.

This formulation has several desirable properties. First, it is
trivial to implement and highly efficient. Second, it is clearly re-
versible, since fτ→τ ′(fτ ′→τ (ϕ̃′, u′)) = (ϕ̃′, u′). Third, the Jaco-
bians simplify to

Jfδ→δ′ =

∣∣∣∣∂(ϕ′, u′)

∂(ϕ)

∣∣∣∣ = Jfδ′→δ =

∣∣∣∣ ∂(ϕ)

∂(ϕ′, u′)

∣∣∣∣ = 1.

To compute the final acceptance probability for the move, we
first define the jump probability of replacing the selected subtree
τv with a new subtree τ ′v

j(τ ′v|τv) = qτ (v)
∏
s∈τ ′v

P (s|parent(s)) ,

where qτ (v) is the probability of selecting a nonterminal v in τ .
Then,

αδ→δ′ = min

{
1,
p(δ′|I)

p(δ|I)

j(τv|τ ′v)

j(τ ′v|τv)

U[0,1](u
′)

1
Jδ→δ′

}
= min

{
1,
L(I|δ′) π(δ′)

L(I|δ) π(δ)

qτ ′(v)
∏
s∈τv P (s|parent(s))

qτ (v)
∏
s∈τ ′v P (s|parent(s))

}

= min

{
1,
qτ ′(v)

qτ (v)

L(I|δ′)
L(I|δ)

∏
t∈τ ′v Φt (ϕt)∏
t∈τv Φt (ϕ′t)

}
. (♦)
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This formula illustrates the behavior of the chain: it randomly
walks through the derivation space, generally preferring to move to-
wards models with higher likelihoods. Unlike greedy local search,
however, it will occasionally accept worse moves in order to avoid
becoming stuck in local maxima. The final algorithm is given in
Algorithm 1.

8. OPTIMIZATION

Although this formulation guarantees asymptotic convergence to
p(·|·), it is generally impossible to find the true global maximum
of the posterior, given the size of ∆(G) and the complexity of the
likelihood formulation. However, we can still obtain useful approx-
imations for many computer graphics applications by establishing a
reasonable computational budget and ensuring that the chain mixes
well: that is, that it explores the derivation space rapidly enough to
produce meaningful results. Guaranteeing good mixing is compli-
cated by the fact that the posterior may be highly multimodal: in
order to mix, the chain must be able to jump out of local maxima
efficiently.

8.1 Nonterminal selection

One natural way to encourage good mixing in grammar-based in-
ference is to exploit the structure of the derivation tree. While the
most straightforward policy for qτ (v) is to select a nonterminal uni-
formly at random from τ , this strategy will generally result in long
mixing times given the exponential increase in symbols between
successive levels of the derivation. While rederiving the subtree
rooted at a nonterminal symbol in the lower levels of a derivation
will produce only small changes in the current model, selecting a
nonterminal high in the tree will cause a significant portion of the
model to be replaced. To ensure that the chain proposes large and
small moves in roughly equal measure, we take

qτ (v) = b[depth(τ)−depth(v)],

where is b is an estimate of the grammar’s branching factor.

8.2 Parallel tempering

Several more general methods for improving the mixing of Markov
chain Monte Carlo methods have been proposed. The most popular
are based on tempering schemes that “melt down” the peaks of the
target distribution to minimize the role of local maxima as false at-
tractors and then “cool” back to the original distribution [Marinari
and Parisi 1992; Neal 1994]. Unfortunately, these schemes typi-
cally require a series of initial simulations to estimate distribution
parameters that cannot be known a priori, making them unattrac-
tive as components of a general system.

Instead, we employ an optimization scheme called parallel tem-
pering [Geyer 1991]. The idea behind parallel tempering is to run
a series of N independent chains at different temperatures; period-
ically, these chains propose to swap their states via Metropolis up-
dates. We define a geometric progression ofN temperature profiles
Ti = 1/tic and set one chain to sample from each stationary distri-
bution pi(·) = pTi(·). After each iteration—in which all N chains
are updated independently—we pick a random index j ∈ [1, N−1]
and propose a Metropolis move to swap the state of chains j and
j + 1. This swap is accepted with probability

αj↔j+1 =
pj(X

j+1
k )pj+1(Xj

k)

pj(X
j
k)pj+1(Xj+1

k )
,

Metropolis Procedural Modeling
Input: a grammar G, likelihood function L(I|δ), target
specification I , and computational budget N .
Output: a MAP estimate of δ.

Sample δ0 ∼ πG
Initialize δmax ← δ0,max← p(δ0|I)

for n = 1 to N
switch RANDOMMOVE()
case diffusion

t←RANDOMTERMINAL((δn−1)⇒)
Compute δ′n by sampling ϕ′t ∼ Φt

α← min
{

1, L(I|δ′n)
L(I|δn−1)

}
case jump

Sample v ∼ qδn−1
τ ′v ←REDERIVE(τv)
δ′n ←DIMENSIONMATCH(τ ′v ,τv)

α← min

{
1,

qτ ′ (v)

qτ (v)
L(I|δ′n)
L(I|δn−1)

∏
t∈τ ′v Φt(ϕt)∏
t∈τv Φt(ϕ′t)

}
Sample t ∼ [0, 1]
if t < α then δn ← δ′n

else δn ← δn−1

if max < p(δn|I)
δmax ← δn, max← p(δn|I)

return δmax

Algorithm 1: Pseudocode for the basic inference algorithm de-
scribed in Section 7.

where Xj
k is the kth iteration of the jth chain. In our implemen-

tation, we take N = 10 and set tc = 1.3 so that a move which
has a 70% acceptance probability in the warmest chain has a 1%
probability in the coldest.

In this manner, hot chains—which may freely move out of local
maxima and across the space—are able to transfer their informa-
tion to cold chains—which can efficiently find local maxima—and
vice versa. The method is particularly well-suited to our purposes
since it requires almost no parameter tuning, and can be parallelized
efficiently.

8.3 Delayed rejection

Ensuring good mixing in Reversible jump MCMC schemes is often
more difficult than in their fixed-dimensional counterparts due to
a phenomenon called persistent rejection. If the proposal function
is poorly-calibrated to the target distribution in some parts of the
space, most jump moves proposed in those regions will be rejected.
Since the dimension matching functions described in Section 7.2
lack strong semantics, our method is occasionally susceptible to
this phenomenon. Copying values from one subspace to another
may result in unlikely parameter assignments even if the target sub-
space contains better samples from the distribution of interest.

To mitigate this issue, we employ a technique called delayed re-
jection [Tierney and Mira 1999]. When a jump from a model δ to
δ′ is not accepted, we temporarily forestall the rejection and tar-
get an auxiliary diffusion move on δ′ in an effort to “clean up” the
dimension-matched parameters. We then accept or reject the two
moves in concert, with a specialized acceptance probability for-
mulated to preserve ergodicity and the Markovian property of the
chain [Green and Mira 1999]. In this way, the chain is able to mix
well even when jump proposals generate unlikely parameters.
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Suppose we propose a jump move in the usual way, choosing
a random nonterminal v, rederiving the subtree τv , dimension-
matching its parameters to produce a new model δ′, and computing
the acceptance probability αδ→δ′ . If the move is rejected, we retain
δ′ instead of discarding it, and resample ϕ′t ∼ Φt for all terminals t
in τ ′v to generate a new candidate model δ′′. This augmented model
is then accepted into the chain with probability

αδ→δ′′ = min

{
1,
p(δ′′|I)

p(δ|I)

j(τv|τ ′′v )

j(τ ′′v |τv)

[1− αδ′′→δ∗ ]
[1− αδ→δ′ ]

}
,

where δ∗ is δ with parameters dimension-matched from δ′′, and
αδ′′→δ∗ and αδ→δ′ are calculated as in (♦). In essence, this formu-
lation preserves ergodicity by weighing the utility of a path from
δ → δ′ → δ′′ against a hypothetical sequence of moves from
δ′′ → δ∗ → δ, though these latter moves are never actually at-
tempted.

8.4 Annealing

It is also important to remember that the ability to generate unbi-
ased samples from the posterior is not necessarily a prerequisite for
maximizing it. Although the global maximum of p(·) can be esti-
mated by argmaxi p(Xi), this approximation is inefficient for pos-
teriors in which the bulk of probability mass lies far from the modes
of the distribution. Instead, we can employ a simple annealing tech-
nique to simulate an inhomogeneous Markov chain whose station-
ary distribution at iteration i is p1/Ti(·), where Ti is a decreasing
cooling schedule with limi→∞ Ti = 0. Under weak regularity as-
sumptions this chain will concentrate itself on the global maxima
of p(·), saving much unnecessary computation [White 1984].

9. IMPLEMENTATION

To evaluate the presented inference framework, we implemented
a modular procedural modeling system in the C++ programming
language. Grammars are written in a domain-specific language de-
fined by a parsing expression metagrammar, translated into C++
classes by a Ruby frontend, and compiled into dynamic plugin li-
braries. This architecture allows the inference framework to oper-
ate exclusively on primitive data types, an important feature given
the high overhead of string operations in Monte Carlo simulations.
These plugins can then be loaded by the main application, which
implements the inference framework described in Section 7 as well
as the optimizations described in Section 8. The framework also
exposes an extensible interface for likelihood computations. This
simple design allows grammars and targeting functions to be mixed
and matched. The implementation and all the grammars used in this
paper are available online at http://graphics.stanford.edu/
projects/mpm.

10. GRAMMARS

We tested the implemented modeling system on stochastic gram-
mars for several classes of procedural models, including trees,
buildings, and the paintings of Dutch artist Piet Mondrian. Random
derivations from these grammars are shown in Figure 5.

Trees. We developed tree grammars that simulate sympodial
(as in the young oak, old oak, willow, and acacia) and monopodial
(for the conifer and poplar) growth. To achieve different growth
patterns within each branching class, we adjust the probability
distributions that control branching angles, tropisms, and leaf
patterns. To simulate the effects of competition for light in the

absence of Open L-systems [Měch and Prusinkiewicz 1996], we
use a budget-based approach. Each tree starts with a budget of
branches that is depleted during growth. This budget controls
the probability of creating new geometry at each stage of the
derivation.

Architecture. We developed two architectural grammars: a
spatial subdivision grammar for building generation, and an incre-
mental growth grammar for city modeling. The building grammar
can be used to target edifices with complex, irregular mass models.
It functions by applying a sequence of split and shrink operations
to an initial box. The city grammar is more restrictive, producing
a sequence of rectangular buildings laid out in city blocks. To
approximate urban sprawl, the size of each building decreases
probabilistically with distance from city center.

Mondrian art. We also constructed a grammar for the dis-
tinctive grid-based paintings of Piet Mondrian, a Dutch painter
who co-founded the De Stijl art movement in early twentieth
century. The Mondrian grammar is a probabilistic two-dimensional
discrete kd-tree with bounded depth and a random color assigned
to each leaf node.

11. LIKELIHOOD FORMULATIONS

We implemented image- and volume-based likelihood functions,
as well as a special likelihood function for Mondrian art. Wherever
possible, these computations are performed via CUDA on the GPU
to exploit parallelism.

11.1 Image- and volume-based modeling

For image- and volume-based modeling, we employ a discretized
likelihood formulation which takes as input a target image or vox-
elization I , and treats each pixel or voxel element as being indepen-
dently and identically Gaussian distributed. For a particular deriva-
tion δ, we rasterize δ⇒ into a buffer Iδ and calculate

logL(I|δ) = − 1

2σ2

∑
x∈D
‖I(x)− Iδ(x)‖2,

whereD is the domain of I , and σ2 is a tunable variance parameter.
In our implementation, σ2 ≈ .22 n

√
|D| where n = dimD, so

that a scanline-sized degradation in model representation results in
roughly a 10% acceptance rate in the chain.

11.2 Mondrian modeling

Piet Mondrian was a Dutch painter in the early twentieth century,
famous largely for pioneering a distinctive non-representational art
form which he called neoplasticism. Mondrian’s iconic paintings
depict two-dimensional, axis-aligned subdivisions, with cells col-
ored in yellow, white, red, blue, or black. The paintings are charac-
terized by a careful balance of geometric structure and color, which
Mondrian said was led by “high intuition” rather than “calculation.”
It is therefore difficult to manually construct a set of rules that re-
produce Mondrian’s style [Andrzejewski et al. 2010].

Many of Mondrian’s compositions live within the space of two-
dimensional kd-trees: a space that can be compactly described by
a stochastic, parametric, context-free grammar. We developed a
likelihood function that rewards tree configurations with aesthetic
balance, rhythm, and symmetries that are evocative of Mondrian.
Distinct modes of this function can then be sampled to produce
Mondrian-like paintings.
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Fig. 5: Illustrations of the models used in this paper. From top left to lower right: random derivations from the building, city, poplar, young
oak, conifer, acacia, old oak, willow, and Mondrian grammars. Zoom in for detail.
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Fig. 6: (left) Derivations from the city grammar targeted to skylines of a whale (top) and shoe (bottom). (right) The same derivations from
different viewpoints, highlighting the urban structure enforced by the grammar.

To construct this function we examined nine of Mondrian’s rep-
resentative works painted between 1920 and 1930 and assembled
a set of terms that account for some of the variation within this
set. These terms include number of cells, average cell size, aver-
age aspect ratio, and average area of horizontally- and vertically-
dominant cells. Since grid lines in Mondrian’s art tend to align
across kd-tree boundaries, we added the minimum non-negative
distance between parallel edges. To account for the distinctive spa-
tial color distributions of Mondrian paintings, we also included the
average area occupied by each color in Mondrian’s palette and the
number of adjacent cells with the same non-white color.

The form of the likelihood function follows directly from this set
of terms. Given a derivation δ from the grammar, we compute each
term s on the derivation and calculate a penalty value

D(sδ) = erf
( |sδ − µs|

σs
√

2

)
,

where erf(·) is the Gauss error function, and µs and σs are the mean
and standard deviation of s in the training data. L(δ) is defined
simply as

L(δ) = exp

(
−
∑
s∈S

wsD(sδ)

)
,

where the weights ws are set manually to approximate the relative
importance of the statistics.

12. RESULTS AND DISCUSSION

Figure 8 shows eight young oak trees targeted to the word SIG-
GRAPH using the image-based likelihood formulation. Figure 9
shows two different grammars—acacia and willow—targeted to
identical specifications. Figure 10 shows conifer, old oak, and
poplar trees targeted to a set of sketches.

These examples highlight several advantages of the presented
technique over prior work. Since our method functions on arbi-
trary grammars—which are among the most faithful and general
representations for botanical structures—it can be used to control
tree models with complex, realistic growth patterns, accounting
for physical variation in apical dominance and photo- and gravit-
ropism, and rigidly enforcing monopodial and sympodial branch-
ing structures. This obviates the need for special purpose algo-
rithms that only loosely approximate the growth of real trees, such
as those described by Neubert et al. [2007] and Chen et al. [2008].

Furthermore, the presented technique is not restricted to gram-
mars based on biological growth. Figure 6 demonstrates sketch-
based modeling applied to the city grammar. Figure 11 illustrates
volume-based targeting applied to the building grammar. Figure 15
shows several modes of the Mondrian likelihood function.

The success of any grammar-based inference procedure neces-
sarily hinges on the precise form of the chosen grammar. If a user
provides a specification that the grammar simply cannot achieve,
the results can be unsatisfactory, as shown in Figure 7. Moreover, it
can be difficult to predict a priori if a particular grammar is capa-
ble of producing a good match for a provided specification: some
experimentation may be required.

Fig. 7: The grammar in these examples supports only bipodial branching.
Thus, it produces a good fit for one sketch (left), but not the other (right).
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Fig. 8: A set of young oak trees from a single grammar, produced with the algorithm described in this paper. The trees exhibit natural,
realistic structure (top) and spell “SIGGRAPH” when viewed from above (bottom). Zoom in for detail.

Fig. 9: Acacia trees (left) and willows (right) targeted to the SIGGRAPH logo. Zoom in to see the small branches supporting the thin edges
of the crescent shapes.

Fig. 10: Conifer, old oak, and poplar grammars targeted to sketches. The inference technique successfully models details in the sketches,
such as silhouettes and the low-density hole in the oak.
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example symbols params depth vertices N time
City (6) 850 1,154 120 1,432 75k 14m
Young Oak (8) 12,152 18,937 15 176,520 110k 2h
Acacia (9) 21,176 29,909 29 50,862 265k 4h
Willow (9) 70,754 164,823 34 166,328 385k 10h
Conifer (10) 31,319 35,639 27 221,941 350k 9h
Old Oak (10) 53,624 71,738 30 66,191 560k 6h
Poplar (10) 11,019 12,836 32 193,016 90k 2h
Building (11) 9,673 16,805 28 1,660 850k 30m
Mondrian (15) 74 134 21 38 6k 5s

Table I. : Performance figures for the examples, showing the number of
symbols and descriptive parameters in each derived model, the depth of the
derivation tree, the number of iterations N used to produce the result, and
the total simulation time on a 2GHz Intel Core 2.

On the other hand, the presented technique affords users in-
creased flexibility in writing and developing grammar-based proce-
dural models. Properties that are difficult to impose via generative
rules are often easier to specify as terms in a likelihood function. As
a result, the presented technique alleviates the need to painstakingly
construct grammars for which every derivation possesses all of the
desired characteristics. Contrast, for instance, the random deriva-
tions from the building and Mondrian grammars shown in Figure 5,
and their targeted counterparts in Figures 11 and 15. In these exam-
ples, desired characteristics were obtained partly through the gram-
mar specification and partly by optimization.

13. PERFORMANCE

Performance characteristics for the examples in this paper are sum-
marized in Table I. For most procedural modeling tasks, producing
a good visual fit is more important than guaranteeing a globally
optimal solution. Therefore, rather than employing an automated
convergence test such as coupling from the past [Propp and Wilson
1996], we observe each simulation as it evolves and terminate it
manually. Figure 12 plots the number of iterations against model
complexity for the seven image-based examples. Figure 13 shows
the evolution of the MAP estimate over time for each of these sim-
ulations. Overall, the jump formulation described in Section 7.2
results in a global acceptance rate of about 30%.

These results compare favorably with related work on MCMC
inference on procedural models. Schlecht et al. [2007] report using
20,000 iterations to fit a simple 2D branching structure (with fewer
than a hundred symbols and parameters) to fungal microscopy data
via a hand-tuned RJMCMC formulation. In contrast, our models,
which are roughly 100× more complex, require only about 10×
more computation. Moreover, the optimizations described in Sec-
tion 8 are quite effective: Figure 14 illustrates the speed and quality
enhancements afforded by optimized nonterminal selection, paral-
lel tempering, delayed rejection, and annealing.

14. CONCLUSION

We presented an algorithm for controlling grammar-based proce-
dural models. The algorithm formulates procedural modeling tasks
as probabilistic inference problems and solves these problems effi-
ciently with Markov chain Monte Carlo techniques. We believe that
this work takes a step towards making grammar-based procedural
modeling more useful and accessible.

One clear opportunity for future work is improving the conver-
gence of the optimization. In the current framework, the rate of
improvement decreases as a dominant mode of the posterior is
found and explored (see the long elbows of the curves shown in

Fig. 11: Two views of the building grammar targeted to a voxelization of
the Stanford bunny (inset).

ACM Transactions on Graphics, Vol. 30, No. 2, Article 11, Publication date: April 2011.



12 • J. O. Talton et al.

Figure 13). It seems likely that the use of data-driven proposal dis-
tributions in this context could result in as much as an order of
magnitude improvement in performance.

Another promising research avenue is extending the methods
described in this paper to more powerful procedural representa-
tions such as open or context-sensitive L-systems [Prusinkiewicz
and Lindenmayer 1990]. Similarly, our requirement that descrip-
tive parameters live only on terminal symbols is currently neces-
sary to provide a clean separation between dimension-altering and
dimension-preserving moves, but also limits the types of models
that can be described.

Grammar Symbols Parameters Tree Depth Vertices Derivation 
Complexity

Hours Iterations Model 
Complexity

Young Oak
Conifer
Old Oak
Poplar
Acacia
Willow
City
Mondrian
Building
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21,176 29,909 30 50,862 51,085 4 265,000 530,000 10.37486542 5.1874327102
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Fig. 12: Number of iterations plotted against model complexity (symbols
plus parameters) for the seven image-based examples. The lone outlier (the
willow) was terminated after ten hours due to its high per-iteration cost.
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Fig. 13: Evolution of the MAP estimate over time for each of the seven
image-based examples.
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Fig. 14: (left) MAP estimates produced for a simple branching grammar
with (bottom) and without (top) the optimizations described in Section 8.
(right) The evolution of the MAP estimates for these simulations.

Lastly, this work highlights the need for more effective tools for
creating grammar-based procedural models. The nine grammars
employed in this paper contain between 50 and 400 lines of code
each, and took several hundred man-hours to develop and refine.
We are eager to see new techniques aimed at removing this final
stumbling block from the procedural modeling pipeline. Early steps
in this important direction have recently been reported [Bokeloh
et al. 2010; Stava et al. 2010].
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