Metropolis Procedural Modeling

Jerry Talton Yu Lou Steve Lesser Jared Duke Radomír Měch Vladlen Koltun

Stanford University & Adobe Systems

Grammar-based Models

Grammar-based Models

Alphabet:

set of terminal symbols T and nonterminal symbols V

Alphabet:

set of terminal symbols T and nonterminal symbols V

Axiom:

initial string ω

Alphabet:

set of terminal symbols T and nonterminal symbols VAxiom:

initial string ω

Rewriting rules:

predecessor nonterminal \rightarrow successor symbols

Alphabet:

set of terminal symbols T and nonterminal symbols VAxiom:

initial string ω

Rewriting rules:

predecessor nonterminal \rightarrow successor symbols

Turtle interpretation:

F draw line - turn left + turn right [push] pop

$$\omega: X$$
$$X \to F[-X][+X]$$

$$\omega: X$$
$$X \to F[-X][+X]$$

X

$$\omega: X$$
$$X \to F[-X][+X]$$

$$X \qquad F[-X][+X]$$

$$\omega: X$$
$$X \to F[-X][+X]$$

X F[-X][+X] F[-F[-X][+X]][+F[-X][+X]]

$$\omega: X$$
$$X \to F[-X][+X]$$

X F[-X][+X] F[-F[-X][+X]][+F[-X][+X]]

• Assign probability to each rewriting rule in grammar G

- Assign probability to each rewriting rule in grammar G
- Yields distribution $\pi(\cdot)$ over space of derivations $\mathcal{L}(G)$

- Assign probability to each rewriting rule in grammar G
- Yields distribution $\pi(\cdot)$ over space of derivations $\mathcal{L}(G)$
- Gives *generative model* that can be **sampled**

$$\omega : X$$

$$X \xrightarrow{.5} F[-X][+X]$$

$$X \xrightarrow{.25} F[+X]$$

$$X \xrightarrow{.25} F[-X]$$

$$\omega: X$$

$$X \xrightarrow{.5} F[-X][+X]$$

$$X \xrightarrow{.25} F[+X]$$

$$X \xrightarrow{.25} F[-X]$$

1

$$\omega: X$$

$$X \xrightarrow{.5} F[-X][+X]$$

$$X \xrightarrow{.25} F[+X]$$

$$X \xrightarrow{.25} F[-X]$$

.5

$$\begin{split} &\omega: X\\ X \xrightarrow{.5} F[-X][+X]\\ X \xrightarrow{.25} F[+X]\\ X \xrightarrow{.25} F[-X]\\ X \xrightarrow{.25} F[-X] \end{split}$$

$$\begin{split} &\omega: X\\ X \xrightarrow{.5} F[-X][+X]\\ X \xrightarrow{.25} F[+X]\\ X \xrightarrow{.25} F[-X]\\ X \xrightarrow{.25} F[-X] \end{split}$$

$$\begin{split} &\omega: X\\ X \xrightarrow{.5} F[-X][+X]\\ &X \xrightarrow{.25} F[+X]\\ &X \xrightarrow{.25} F[-X]\\ &X \xrightarrow{.25} F[-X] \end{split}$$

 $\pi(\delta) = 1 \times .5 \times .25 \times .25$

 $\omega: X$

$$\omega: X$$
$$X \to F(t)[-X][+X]$$

• Terminal symbols associated with numeric parameters

$$\begin{split} & \omega: X \\ & X \to F(t)[-X][+X] \\ & t \sim N(\mu,\sigma^2) \end{split}$$

- Terminal symbols associated with numeric parameters
- Each parameter ϕ_i sampled from a distribution $\Phi_i(\cdot)$

- Terminal symbols associated with numeric parameters
- Each parameter ϕ_i sampled from a distribution $\Phi_i(\cdot)$
- Parameters control visual appearance of components

- $\phi = [.8, .4, .9, .9, .7, .3, 1]$
- Terminal symbols associated with numeric parameters
- Each parameter ϕ_i sampled from a distribution $\Phi_i(\cdot)$
- Parameters control visual appearance of components

From "The Algorithmic Beauty of Plants"

Our contribution: general method for bringing artistic *control* to grammar-based models

[Prusinkiewicz et al. '94]

[Aliaga *et al.* '07]

[Chen *et al.* '08]

[Teboul et al. '10]

[Neubert *et al.* '07]
Goal: decouple model specification from control mechanism

Thursday, August 11, 11

Bayesian Inference

• consider space of derivations $\delta \in \Delta(G)$

- consider space of derivations $\delta \in \Delta(G)$
- define model prior $\pi(\delta)$

- consider space of derivations $\delta \in \Delta(G)$
- define model prior $\pi(\delta)$
- take in some user specification ${\cal I}$

- consider space of derivations $\delta \in \Delta(G)$
- define model prior $\pi(\delta)$
- take in some user specification I
- formulate likelihood function $L(I|\delta)$

- consider space of derivations $\delta \in \Delta(G)$
- define model prior $\pi(\delta)$
- take in some user specification I
- formulate likelihood function $L(I|\delta)$
- maximize $p(\delta|I) \propto L(I|\delta)\pi(\delta)$

- consider space of derivations $\delta \in \Delta(G)$
- define model prior $\pi(\delta)$
- take in some user specification I
- formulate likelihood function $L(I|\delta)$
- maximize $p(\delta|I) \propto L(I|\delta)\pi(\delta)$

Key idea: simulate a Markov Chain to sample from $p(\cdot|\cdot)$

Key idea: simulate a *Markov Chain* to sample from $p(\cdot|\cdot)$, perform *maximum a posteriori* estimation

MCMC Review

A Markov Chain is a sequence of random variables X_1, X_2, \ldots with the Markov Property:

$$P(X_n = x | X_{n-1} = x_{n-1}, \dots, X_1 = x_1) =$$
$$P(X_n = x | X_{n-1} = x_{n-1})$$

MCMC Review

A Markov Chain is a sequence of random variables X_1, X_2, \ldots with the Markov Property:

$$P(X_n = x | X_{n-1} = x_{n-1}, \dots, X_1 = x_1) = P(X_n = x | X_{n-1} = x_{n-1})$$

Properly constructed, each $X_i \sim p(X)$, where p(X) is the *stationary distribution* of the chain

Thursday, August 11, 11

Pick a *proposal density* $q(X_*|X_n)$ that can be sampled from efficiently

Pick a *proposal density* $q(X_*|X_n)$ that can be sampled from efficiently

At each step:

Pick a *proposal density* $q(X_*|X_n)$ that can be sampled from efficiently

At each step:

• draw $X_* \sim q(\cdot|X_n)$

Pick a *proposal density* $q(X_*|X_n)$ that can be sampled from efficiently

At each step:

- draw $X_* \sim q(\cdot|X_n)$
- Compute an *acceptance probability*

$$\alpha = \min\left(\frac{p(X_*)}{p(X_i)}\frac{q(X_n|X_*)}{q(X_*|X_n)}, 1\right)$$

Pick a *proposal density* $q(X_*|X_n)$ that can be sampled from efficiently

At each step:

- draw $X_* \sim q(\cdot|X_n)$
- Compute an *acceptance probability*

$$\alpha = \min\left(\frac{p(X_*)}{p(X_i)}\frac{q(X_n|X_*)}{q(X_*|X_n)}, 1\right)$$

• Accept $X_{n+1} = X_*$ or reject $X_{n+1} = X_n$

An Opportunity

MH algorithm lets us *sample* efficiently from any function we can *evaluate*...

A Conundrum

MH algorithm lets us *sample* efficiently from any function defined over a fixed-dimensional space we can *evaluate*...

AConundrum

Thursday, August 11, 11

AConundrum

Thursday, August 11, 11

AConundrum

 $\alpha = \min\left(\frac{p(X_*)}{p(X_i)}\frac{q(X_n|X_*)}{q(X_*|X_n)}, 1\right)$

 $\in \mathbb{R}^{19}$

Thursday, August 11, 11

 $\in \mathbb{R}^5$

A Conundrum

, lives in \mathbb{R}^{19}

 $\alpha = \min\left(\frac{p(X_*)}{p(X_i)}\frac{q(X_n|X_*)}{q(X_*|X_n)}, 1\right)$

 $\in \mathbb{R}^{19}$

 $\in \mathbb{R}^5$

A Conundrum

Thursday, August 11, 11

• Introduced by [Green '95]

- Introduced by [Green '95]
- Trans-dimensional MCMC

- Introduced by [Green '95]
- Trans-dimensional MCMC
- Extends MH from *parameter fitting* to *model selection*

- Introduced by [Green '95]
- Trans-dimensional MCMC
- Extends MH from *parameter fitting* to *model selection*

Use RJMCMC when "the number of things you don't know is one of the things you don't know"

Fitting Gaussians

Fitting Gaussians

Bayesian Inference

- define model prior $\pi(\delta)$
- formulate likelihood function $L(I|\delta)$
- maximize $p(\delta|I) \propto L(I|\delta)\pi(\delta)$

RJMCMC

- start with random sample $\delta \sim \pi(\cdot)$
- dimension-preserving *diffusion* moves
- dimension-altering jump moves

Model Prior

Thursday, August 11, 11

Likelihood Formulation

Take sketch/volume as input

- Render/voxelize current model
- Compute:

$$\log L(I|\delta) = -\frac{1}{2\sigma^2} \sum_{\vec{x}\in\mathcal{D}} d(I(\vec{x}), I_{\delta}(\vec{x}))^2$$

Likelihood Formulation

Take sketch/volume as input

- Render/voxelize current model
- Compute:

$$\log L(I|\delta) = -\frac{1}{2\sigma^2} \sum_{\vec{x}\in\mathcal{D}} d(I(\vec{x}), I_{\delta}(\vec{x}))^2$$

In principle, can use any cost function

Diffusion Moves

$$\alpha(\delta'|\delta) = \min\left\{1, \frac{p(\delta'|I)}{p(\delta|I)} \prod_{i} \frac{\Phi_{t(i)}(\phi_{t(i)})}{\Phi_{t(i)}(\phi'_{t(i)})}\right\} = \min\left\{1, \frac{L(I|\delta')}{L(I|\delta)}\right\}$$

Thursday, August 11, 11

.63

F

.74

+

.8

[

.72

Theoretical requirements:

Theoretical requirements:

Reversibility

$$(n, \mathbf{x}_n) \to (m, \mathbf{x}_m) \iff (m, \mathbf{x}_m) \to (n, \mathbf{x}_n)$$

Theoretical requirements:

Reversibility

$$(n, \mathbf{x}_n) \to (m, \mathbf{x}_m) \iff (m, \mathbf{x}_m) \to (n, \mathbf{x}_n)$$

Dimension-matching

 $f_{m\to n}: \mathcal{X}_m \times \mathcal{U}_{m,n} \to \mathcal{X}_n \times \mathcal{U}_{n,m}$ with $f_{m\to n}$ deterministic, differentiable, invertible

 $f_{m \to n} \left([0.8, 0.4, 0.9] \right) = [0.8, 0.4, 0.9, 1, 0.5]$

 $j(\tau'_v|\tau_v) = q_\tau(v)$ P(s|parent(s)) $s \in \tau'_{a}$ $\alpha_{\delta \to \delta'} = \min \left\{ 1, \frac{p(\delta'|I)}{p(\delta|I)} \frac{j(\tau_v | \tau'_v)}{j(\tau' | \tau_w)} \frac{U_{[0,1]}(u')}{1} \mathcal{J}_{\delta \to \delta'} \right\}$ $= \min \left\{ 1, \frac{L(I|\delta') \ \pi(\delta')}{L(I|\delta) \ \pi(\delta)} \frac{q_{\tau'}(v) \ \prod_{s \in \tau_v} P\left(s | \text{parent}(s)\right)}{q_{\tau}(v) \ \prod_{s \in \tau'_v} P\left(s | \text{parent}(s)\right)} \right\}$ $= \min\left\{1, \frac{q_{\tau'}(v)}{q_{\tau}(v)} \frac{L(I|\delta')}{L(I|\delta)} \frac{\prod_{t \in \tau'_v} \Phi_t(\varphi_t)}{\prod_{t \in \tau_v} \Phi_t(\varphi'_t)}\right\}$

Thursday, August 11, 11

Limitations

Performance

example	symbols	params	depth	vertices	Ν	time
City (6)	850	1,154	120	1,432	75k	14m
Young Oak (8)	12,152	18,937	15	176,520	110k	2h
Acacia (9)	21,176	29,909	29	50,862	265k	4h
Willow (9)	70,754	164,823	34	166,328	385k	10h
Conifer (10)	31,319	35,639	27	221,941	350k	9h
Old Oak (10)	53,624	71,738	30	66,191	560k	6h
Poplar (10)	11,019	12,836	32	193,016	90k	2h
Building (11)	9,673	16,805	28	1,660	850k	30m
Mondrian (15)	74	134	21	38	6k	5s

- Tempered transitions [Neal '94], parallel tempering [Geyer '91], delayed rejection [Tierney & Mira '99]
- Sequential & data-driven MCMC [Tu & Zhu '02]
- Coupling from the past [Propp & Wilson '96]

graphics.stanford.edu/projects/mpm

graphics.stanford.edu/projects/mpm

Questions?

Thursday, August 11, 11