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Figure 18. Somewhere in a virtual Manhattan.

Figure 17. A virtual city modelled using the data from figure 2. Approximately 26000 buildings were created.
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Figure 18: Complex scenes with trees generated autonomously (left) and with a procedural brush (right).

7.2 Contributions

While many individual elements of our method have been described
before, their integration offers a combination of visual quality of
tree models, possibility of animating tree development, and model
control that has not been achieved in previous systems. Below we
place our contributions in the context of previous work.

Self-organization simplifies the modeling process. Recursive
models rely on the user defining the distribution of branches along
their supporting axes. This requires a large number of user-tunable
parameters [Weber and Penn 1995; Lintermann and Deussen 1999;
Prusinkiewicz et al. 2001], which have to be manually adjusted when
other aspects of the model are changed (Fig. 19a–c). In contrast, our
method provides automatic control of the density and distribution
of branches (Fig. 20; see also Fig. 12), which result from the self-
organizing nature of competition for space or light. A wide range
of forms can be obtained by manipulating a small number of key
parameters (Figs. 7, 10, 12, 13), with the density and distribution of
branches automatically adjusted by the generative algorithm.

Figure 19: Analysis of a recursive tree model. (a) Sample tree
defined using the global-to-local method [Prusinkiewicz et al. 2001].
(b) A change in the tropism results in uneven branch density: too
dense at the bottom, too sparse at the top. (c) Uniform branch
density was restored by the user, but this operation required manual
adjustment of several user-defined functions. (d) Removing leaves
highlights the highly repetitive structure of the tree.

Integration of architecture and self-organization improves the
visual realism of tree models. Recursively defined trees tend to
inherit the regular structure (Fig. 19d) of their architectural mod-
els [Hallé et al. 1978]. In temperate climate trees, however, such
regularity can only be found in young trees. On the other hand,
trees generated exclusively using spatial competition [Rodkaew et al.
2003; Runions et al. 2007] tend to be quite disorganized (Fig. 21a),
because the pattern of bud distribution is not considered, and a new
branch can be attached to any existing branch at any position and ori-
entation. The close integration of architectural and self-organizing
components captures well the balance between the regularity and
variability of temperate-climate trees (Fig. 20).

Apical control yields a wide range of tree forms. Our method
is most closely related to previous models of trees interacting with
their environment [Chiba et al. 1994; Měch and Prusinkiewicz 1996],
and could be implemented within the modeling framework of open
L-systems proposed in the latter paper. However, the actual model

Figure 20: Sample trees generated using our method. A well-
balanced branch distribution is automatically maintained when
other attributes of form are changed. Compare with the recursive
model in Fig. 19b. The distribution of branches represents a plau-
sible compromise between regularity of recursive models (Fig.19d)
and disorganization of models based on pure competition (Fig. 21a).
Apical control makes it possible to model excurrent, elongated tree
forms (compare with Fig. 21b).
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Figure 9: Sample trees generated with the priority model of bud
fate control using weight function shown in Fig. 8c with parameters
wmax = 1, wmin = 0.006, and ⇥ = 0.5 (left) or 0.35 (right).

average amounts of light received by the supported branches (total
light divided by the number of buds in a branch, e.g. 2.1/3 = 0.7 in
Fig. 8b, left) are then sorted, yielding ordered priority lists associated
with each axis (Fig. 8b, center). Individual buds attached to the
axis are considered as single-metamer branches. Apical control is
simulated by placing the terminal bud at the beginning of this list,
irrespective of its light exposure. Finally, the resource is distributed

between the supported branches and buds using weights that depend
on their position in the priority list (Fig. 8b, right). Specifically,

vi = v
QiwiPN

j=1
Qjwj

, i = 1, 2, ..., N,

where v is the amount of resource flowing into the axis under consid-
eration, N is the number of buds or branches supported by this axis,
vi is the amount of resource allocated to branch i, and w1, . . . , wN

are the weights. We have used the piecewise linear function shown
in Fig. 8c to select the weights. As in the BH model, the total
amount of distributed resource is assumed to be proportional to the
cumulative amount of light reaching the base, vbase = �Qbase. The
amount of resources reaching each bud determines the number of
metamers this bud will produce in the next simulation step.

Assigning large weights to a smaller number of most productive
branches (at the beginning of the priority list) results in a more
excurrent tree form (Fig. 9). Furthermore, a wide diversity of forms
can be obtained by regulating the time at which the apical control is
removed in the main stem or the lateral branches (Fig. 10). Removal
of apical control is also important in animations of development,
since many types of temperate-climate trees have a well defined
main axis when young, but progress to more a decurrent form when

Figure 10: Sample tree forms created by using the priority model of bud fate control. Left: apical control removed from main stem and lateral
branches early in development. Center: apical control limited to the main stem, removed late in development. Right: apical control removed
early in the main stem, persistent in first-order lateral branches.

Figure 11: Snapshots from an animation of tree development simulated with the priority model of bud fate. Apical control was initially present
in the tree on the left, then removed in the course of development, resulting in a progression from the excurrent form of the young tree to the
decurrent form of the old tree. This simulation also shows the adaptation of self-organizing trees to the presence of other trees and obstacles.
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Figure 1: This figure shows the application of CGA shape, a novel shape grammar for the procedural modeling of computer graphics
architecture. First, the grammar generates procedural variations of the building mass model using volumetric shapes and then proceeds to
create façade detail consistent with the mass model. Context sensitive rules ensure that entities like windows or doors do not intersect with
other walls, that doors give out on terraces or the street level, that terraces are bounded by railings, etc.

Abstract

CGA shape, a novel shape grammar for the procedural modeling of
CG architecture, produces building shells with high visual quality
and geometric detail. It produces extensive architectural models for
computer games and movies, at low cost. Context sensitive shape
rules allow the user to specify interactions between the entities of
the hierarchical shape descriptions. Selected examples demonstrate
solutions to previously unsolved modeling problems, especially to
consistent mass modeling with volumetric shapes of arbitrary ori-
entation. CGA shape is shown to efficiently generate massive urban
models with unprecedented level of detail, with the virtual rebuild-
ing of the archaeological site of Pompeii as a case in point.

CR Categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Real-
ism I.6.3 [Simulation and Modeling]: Applications J.6 [Computer-
Aided Engineering]: Computer-Aided Design (CAD)

Keywords: Procedural Modeling, Architecture, Chomsky Gram-
mars, L-systems, Computer-Aided Design

1 Introduction

The creation of compelling models is a crucial task in the develop-
ment of successful movies and computer games. However, model-
ing large three-dimensional environments, such as cities, is a very
expensive process and can require several man years worth of la-
bor. In this paper we will employ procedural modeling using shape
grammars capable of efficiently creating large cities with high ge-
ometric detail and up to a billion polygons. It would be extremely

∗e-mail: {pmueller|shaegler|ulmeran|vangool}@vision.ee.ethz.ch
†e-mail: peter.wonka@asu.edu

time consuming to replicate these results with existing modeling
software.

We use a shape grammar (called CGA shape) with production rules
that iteratively evolve a design by creating more and more details.
In the context of buildings, the production rules first create a crude
volumetric model of a building, called the mass model, then con-
tinue to structure the façade and finally add details for windows,
doors and ornaments. The main advantage of the method is that the
creation of the hierarchical structure and the annotation of a model
is specified in the modeling process. This semantic information is
important for reusing design rules for procedural variations (see fig-
ure 1) and thereby creating a large variety of architecture populating
a whole city.

The idea of modeling urban environments using shape grammars
was recently explored by Parish and Müller [2001] and Wonka et
al. [2003]: On the one hand, Parish and Müller showed how to
generate large urban environments where each building consists of
simple mass models and shaders for façade detail. On the other
hand, Wonka et al. [2003] demonstrated how to generate geometric
details on façades of individual buildings. Ideally, we would like to
combine these two ideas to generate large and detailed urban envi-
ronments. However, there is a significant challenge in the context
of mass modeling that needs to be addressed and requires extensive
changes to both models. (1) Parish and Müller could generate sim-
ple models by adding translated and rotated boxes and details were
added with a shader. This strategy cannot generate sufficient geo-
metric detail and there will be numerous unwanted intersections of
architectural elements (see figure 2). (2) The split rules proposed by
Wonka et al. are only sufficient for simple mass models. Complex
mass models will require an excessive amount of splits. Further,
the mass model cannot be easily changed because novel configura-
tions will need additional production rules and objects of arbitrary
orientation cannot be handled easily.

We present a grammar-based solution to generate detailed building
shells stemming from complex mass models. Our approach is based
on a new model for context sensitive shape rules that is suitable
for computer graphics architecture. The major contributions of this
paper are as follows:

• We are the first to introduce a procedural approach to model
detailed buildings with consistent mass models. The build-
ings are not restricted to axis aligned shapes and include roof
surfaces and rotated shapes. This also allows us to amplify
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Stochastic CFGs

• Assign probability to each rewriting rule in grammar

• Yields distribution          over space of derivations

• Gives generative model that can be sampled

84 Chapter 3. Developmental models

#include L(0),L(1),... /* leaf shapes */
#include K(0),K(1),... /* flower shapes */

ω : A(7)
p1 : A(t) : t=7→ FI(20)[&(60)∼L(0)]/(90)[&(45)A(0)]/(90)

[&(60)∼L(0)]/(90)[&(45)A(4)]FI(10)∼K(0)
p2 : A(t) : t<7→ A(t+1)
p3 : I(t) : t>0→ FFI(t-1)
p4 : L(t) : * → L(t+1)
p5 : K(t) : * → K(t+1)

Figure 3.14: Development of Lychnis coronaria

G

⇡(·) L(G)
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From “!e Algorithmic Beauty of Plants”

1.6. Branching structures 25

a
n=5,δ=25.7◦

F
F→F[+F]F[-F]F

b
n=5,δ=20◦

F
F→F[+F]F[-F][F]

c
n=4,δ=22.5◦

F
F→FF-[-F+F+F]+

[+F-F-F]

d
n=7,δ=20◦

X
X→F[+X]F[-X]+X
F→FF

e
n=7,δ=25.7◦

X
X→F[+X][-X]FX
F→FF

f
n=5,δ=22.5◦

X
X→F-[[X]+X]+F[+FX]-X
F→FF

Figure 1.24: Examples of plant-like structures generated by bracketed OL-
systems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and
(f) are node-rewriting.

F ! F [+F ]F [�F ]F F ! F [+F ]F [�F ][F ]
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Our contribution: general method for bringing 
artistic control to grammar-based models
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Figure 10: An implicit surface defined by a skeleton of lines and
ellipsoids

Figure 11: Topiary dinosaur

7 DISCUSSION

In this paper, we extended L-systems with a mechanism for simu-
lating the impact of the environment on plant development. The re-
sulting formalism was explained using simple geometric examples,
then applied to simulate plant response to pruning. A biologically-
motivated treemodel incorporating this mechanism served as a basis
for creating models of sculptured plants found in topiary gardens.
One prospective application of such models is in computer-assisted
landscape design.
We have not found much published information characterizing the
impact of pruning on tree architecture. More data would be nec-
essary to construct faithful models of particular tree species. As
described in [31], construction of visual models of plants provides
a valuable guideline for collecting field data. Consequently, the
mathematical framework introduced in the present paper may assist
in biological studies of the effects of pruning on plant development.
Pruning is only one of a range of phenomena that can be modeled
using environmentally-sensitive L-systems. The values returned by
the query modules may not only indicate whether a query point is
inside or outside a clipping volume, but also to return, through prop-
erly defined field functions, other values characterizing the space in
which the plant develops. For example, in a model of roots, the

Figure 12: A model of the knot garden at Moseley Old Hall

field values may represent concentrations of nutrients and water in
soil. This field may be assumed to be stationary, or change dynam-
ically to reflect the absorption of substances by the growing plant.
Above the ground, a dynamically changing field may be used to
distinguish areas exposed to light from those in shade, and specify
areas occupied by other objects for collision detection purposes.
We hope that such simulations will lead to a better understanding
of the underlying phenomena, increase the predictive value of plant
models, and result in more realistic synthetic images of plants.
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prevent the image from being projected onto back-facing 
and occluded polygons. 

6 RESULTS AND EXAMPLES 
With our system we have created several existing and novel 
buildings based on real-world image data. We acquired 
datasets varying from 4 to 16 images for seven different 
buildings: University, Engineering, Music, Administration, 
Office, Apartment, and Corner. Adding a building to the 
visualization system is a one time processing effort taking 
one to two hours to create the model, mark edge corre-
spondences, subdivide the model, mark occluded faces, 
and stylize the terminals. Once a captured building is avail-
able, a novel model can be created and modified on-the-fly 
using projective texture mapping or stylized rendering. 
Using our interactive system, the user can arrange sets of 
connected building blocks from a pre-defined list of solid 
primitives and start sketching buildings. An entire building 
grammar can be applied instantly to a new set of building 
blocks from a captured building with a single copy-and-
paste operation. Alternatively, the user may want to view a 
captured building, change the size and shape of the original 
building, or add landscaping. Handles are provided on the 
building blocks to facilitate their resizing. In the system of 
this article, the building layouts can be augmented interac-
tively with synthetic ground, texture-mapped sky, trees, 
and bushes using our landscape painter. The ground plane 
is divided into small tiles that can be “painted” with grass 
or cement. Similar to an airbrush, a user can draw a cloud 
of leaf billboard textures to produce a bush or tree cluster. 

Figure 9 shows several pen-and-ink style views rendered 
interactively by our system. The buildings use the grammar 
inferred from the University dataset (see Figure 2a for ex-
ample photographs). Figure 9a and 9b contain close-ups of 
a novel building created with this grammar. In Figure 9a, 
the same stylization level is used for all terminals. In Figure 
9b, shading is produced using both diffuse shading and our 
stylized shading model. Lighter-colored stylizations are 
used to represent brighter areas. The point light source in 
this example is located slightly below and to the right of the 
camera. Figure 9c shows a stylized view of the captured 
University building with bushes added at the base. These 
renderings give a sketched feel to the scene yet maintain 
the style of the original structure, require minimal effort by 
the user, and can be interactively changed and navigated. 
Figure 10 demonstrates the use of projective texture map-
ping to render views of the Administration building. Figure 
10a shows one of the original photographs of the building. 
Figure 10b illustrates the recovered original model free of 
occluded surfaces and with color intensity equalized. Fig-
ure 10c contains a novel building created in the style of the 
original in about 15 minutes, including the landscaping. 
Since the new model is more regular than the original, 
some face production rules were applied individually to 
maintain vertical coherence. Instead of copy-and-paste of 
an entire building grammar, our system also affords copy-
ing grammars to individual floors and faces.  
Figures 11-13 illustrate additional buildings and renderings 
produced by our system. Figure 11a shows a rendering of 
the original Office building and Figures 11b-d demonstrate 
a wide range of modifications to the original building. Fig-

Figure 10. Projective Texture Mapping. Our system can also render using color-equalized view-dependent textures. (a) An original image 
of Administration building. (b) Rendering of original building with occlusions removed and colors equalized. (c) Novel building of the same 
style together with landscaping. 

a) b) c) 

Figure 11. Office Building. Our sys-
tem supports visualizing a wide range 
of changes to existing buildings. For 
example, (a) an original recovered 
model of the Office building, and (b-
d) extensions of the building into a L-
shaped and two T-shaped configura-
tions. 

a) b) 

c) d) 

[Chen et al. ’08]

(a)

(b)

(c)

(d)

(e)

Figure 10: A variety of results generated from sketches of different trees. From left to right: sketch, after branch reconstruction and propaga-
tion, and two views of the complete tree model.

[Teboul et al. ’10]Figure 13: Image-based modeling of an Haussmannian building. The first row shows from left
to right: the input data, the randomized forest-based segmentation and the projection of the
optimized grammar on the input data. The second row gives 3 levels of modeling. On the left one,
each terminal shape is represented by a colored cube. On the middle one, the basic elements have
a pre-defined geometry. Finally the right one combines the input image as a texture for the facade
with some pre-defined 3D models for each terminal basic shape.
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Goal: decouple model speci"cation 
from control mechanism 
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Modeling as Optimization

Bayesian Inference

• consider space of derivations 

• de"ne model prior

• take in some user speci"cation

• formulate likelihood function

• maximize 

I

L(I|�)

⇡(�)

p(�|I) / L(I|�)⇡(�)

� 2 �(G)
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Bayesian Inference
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Key idea: simulate a Markov Chain to 
sample from          p(·|·)
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Key idea: simulate a Markov Chain to 
sample from          p(·|·)                                 , perform maximum 
a posteriori estimation
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MCMC Review

A Markov Chain is a sequence of random variables          
w                   with the Markov Property:X1, X2, . . .

P (Xn = x|Xn�1 = xn�1, . . . ,X1 = x1) =
P (Xn = x|Xn�1 = xn�1)

Properly constructed, each                     , where            
x         is the stationary distribution of the chain

Xi ⇠ p(X)
p(X)
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Metropolis-Hastings
Pick a proposal density                    that can 
be sampled from efficiently

At each step:

• draw           

• Compute an acceptance probability

• Accept                        or reject

X⇤ ⇠ q(·|Xn)

q(X⇤|Xn)

Xn+1 = X⇤

� = min

✓
p(X⇤)

p(Xi)

q(Xn|X⇤)

q(X⇤|Xn)
, 1

◆

Xn+1 = Xn
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An Opportunity

MH algorithm lets us sample efficiently 
from any function we can evaluate...
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A Conundrum

MH algorithm lets us sample efficiently 
from any function de"ned over a 
"xed-dimensional space we can evaluate...
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2 R5
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2 R5 2 R19
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✓
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p(Xi)
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lives in R19
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A Conundrum

2 R5 2 R19

� = min

✓
p(X⇤)

p(Xi)

q(Xn|X⇤)

q(X⇤|Xn)
, 1

◆

lives in R5

lives in R19
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Reversible Jump MCMC

• Introduced by [Green ’95]

• Trans-dimensional MCMC

• Extends MH from parameter "#ing 
to model selection

Use RJMCMC when “the number of things you
don’t know is one of the things you don’t know”
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Fi!ing Gaussians
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Bayesian Inference

• de"ne model prior

• formulate likelihood function

• maximize 

RJMCMC

• start with random sample 

• dimension-preserving diffusion moves

• dimension-altering jump moves

L(I|�)

⇡(�)

p(�|I) / L(I|�)⇡(�)

� � ⇡(·)
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ω X 1

[ -1 [ ]+]F .31 X 2X 2

[ - [ - ] ]+[3 [ ]+]F .31 F .55 F .8 F .74 F .63

[ - [ - ] [ ]+2 [ ]+]X 3 X 3F .31 F .55 F .63

.31 .55 .8 .74 .63� =

Level 1 Level 2 Level 3

⇥(�) �
Y

s2�

P (s|parent(s))
Y

t2�)

Y

i2t

�t(i)(⇤t(i)),

Model Prior
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Likelihood Formulation

log L(I|�) = � 1

2�

2

X

~x2D

d

�
I(~x), I

�

(~x)

�2

Take sketch/volume as input

• Render/voxelize current model

• Compute:
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Likelihood Formulation

log L(I|�) = � 1

2�

2

X

~x2D

d

�
I(~x), I

�

(~x)

�2

Take sketch/volume as input

• Render/voxelize current model

• Compute:

In principle, can use any cost function
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Diffusion Moves

[ - [ - ] ]+[ [ ]+]F .31 F .55 F .8 F .74 F .63

.31 .8 .74 .63.55� = �0 = .31 .8 .74 .63.72

↵(�0|�) = min

(
1,

p(�0|I)
p(�|I)

Y

i

�t(i)(�t(i))
�t(i)(�0

t(i))

)
= min

⇢
1,

L(I|�0)
L(I|�)

�
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Jump Moves
Metropolis Procedural Modeling • 5

[ - [ - ] ]+[ [ ]+]F .31 F .55 F .8 F .74 F .63

.31 .8 .74 .63.55 .31 .8 .74 .63.72�� =� =

Fig. 3: A derivation undergoing a diffusion move. A random terminal is
selected and its descriptive parameters resampled.

7. MCMC FOR GRAMMARS
This paper presents a robust method for inferring reversible jump
moves for any parametric, stochastic, conditional, context-free
grammar. The presented formulation has a number of advantages
over previous attempts at using trans-dimensional MCMC in pro-
cedural modeling. Unlike the method of Ripperda and Brenner
[2009], which requires symmetric shape grammars in order to guar-
antee reversibility, our method places no restrictions on the form
of the underlying grammar. In addition, the presented technique is
entirely automatic: jump moves are derived directly from the gram-
mar specification and need not be manually constructed for a par-
ticular grammar, as in Schlecht et al. [2007]. Moreover, we provide
a simple mechanism for dimension matching that scales to mod-
els with hundreds of thousands of continuous parameters, obviat-
ing the need for approximate optimization algorithms like the one
described by Alegre and Dellaert [2004].

Given an grammar G along with a user-provided model speci-
fication I and associated scoring function L(I|·), we initialize the
Markov chain to ⇥ ⌅ (⌅,⇧) ⌥ ⇤(·) by sampling from the prior. At
every subsequent iteration, we randomly choose to apply either a
jump or diffusion move in order to evolve the chain.

7.1 Diffusion moves
In a diffusion move, the topology of the derivation tree remains
fixed, and the descriptive parameters of its derived string are modi-
fied (see Figure 3). To perform such a move, we first pick a random
terminal t from ⇥ , and then resample ⇧⌦t ⌥ �t to generate a new
derivation ⇥⌦. Since the distribution governing these parameters is
specified a priori in the grammar, we use an independence sampler
for the proposal density, where q(⇥⌦|⇥) = q(⇥⌦) = �t(⇧⌦t). The
acceptance probability for ⇥⌦ then simplifies to

����⌦ = min

⇥
1,

p(⇥⌦|I)�t(⇧t)

p(⇥|I)�t(⇧⌦t)

⇤
= min

⇥
1,

L(I|⇥⌦)
L(I|⇥)

⇤
.

7.2 Jump moves
To derive a complete set of jump moves, we leverage the set of
stochastic productions given in the grammar. In particular, to per-
form a jump on a given derivation (⌅,⇧), we first randomly select
a variable v from within ⌅ , and then rederive the subtree ⌅v rooted
at v by re-rolling productions for v and its children. This new sub-
tree ⌅ ⌦v is evolved until it consists entirely of terminal symbols or
reaches the global depth limit; this process is illustrated in Figure 4.

We now ensure that these jump moves are reversible, and formu-
late appropriate dimension matching functions for them. To begin,
observe that sampling from a given descriptive distribution � is
equivalent to sampling from one or more uniform distributions U
and applying a deterministic transformation to the results [Box and

ω X 1

[ -1 [ ]+]F .31 X 2X 2

[ - [ - ] ]+[3 [ ]+]F .31 F .55 F .8 F .74 F .63

[ - [ - ] [ ]+2 [ ]+]X 3 X 3F .31 F .55 F .63

.31 .55 .8 .63.74

ω X 1

[ -1 [ ]+]F .31 X 2X 2

[ -2 [ ]+]F .31 F .63

.31 .63

F .55

.55

�

� �

v =

� =

�� =

(� �,⇥�)

(�,⇥)

Fig. 4: A derivation tree (�,⇥) undergoing a jump move to (� ⌦,⇥⌦). A ran-
dom nonterminal symbol v is selected, and the subtree rooted at v is re-
placed with a different production from Grammar 1. Here the dimension of
⇥ is reduced by the jump.

Muller 1958]. Therefore, any parameter vector ⇧ ↵ Rq has a cor-
responding representation ⇧̃ ↵ [0, 1]w with q ⇧ w, and sampling
⇧ ⌥ � is equivalent to sampling ⇧̃ ⌥ U[0,1].

We may now consider jumps between subtrees (⌅v, ⇧̃) and
(⌅ ⌦v, ⇧̃

⌦) where ⇧̃ ↵ Rj and ⇧̃⌦ ↵ Rk. Without loss of
generality, let j ⌃ k and u⌦ be a vector of j � k uni-
form random numbers in the range [0, 1]. For the forward
move, we define (⇧̃⌦, u⌦) = f⇥�⇥ ⌦(⇧̃) = ⇧̃. For the reverse,
⇧̃ = f⇥ ⌦�⇥ (⇧̃⌦, u⌦) = (⇧̃⌦, u⌦). Essentially, by putting all parame-
ters on equal footing, we can copy the old values to the new state
and reinterpret them accordingly, truncating or supplementing them
with new random samples to match the target dimension.

This formulation has several desirable properties. First, it is
trivial to implement and highly efficient. Second, it is clearly re-
versible, since f⇥�⇥ ⌦(f⇥ ⌦�⇥ (⇧̃⌦, u⌦)) = (⇧̃⌦, u⌦). Third, the Jaco-
bians simplify to

Jf���⌦
=

����
�(⇧⌦, u⌦)

�(⇧)

���� = Jf�⌦��
=

����
�(⇧)

�(⇧⌦, u⌦)

���� = 1.

To compute the final acceptance probability for the move, we
first define the jump probability of replacing the selected subtree
⌅v with a new subtree ⌅ ⌦v

j(⌅ ⌦v|⌅v) = q⇥ (v)
⌥

s↵⇥ ⌦v

P (s|parent(s)) ,

where q⇥ (v) is the probability of selecting a nonterminal v in ⌅ .
Then,

����⌦ = min

⇥
1,

p(⇥⌦|I)
p(⇥|I)

j(⌅v|⌅ ⌦v)
j(⌅ ⌦v|⌅v)

U[0,1](u⌦)

1
J���⌦

⇤

= min

⌅
1,

L(I|⇥⌦) ⇤(⇥⌦)
L(I|⇥) ⇤(⇥)

q⇥ ⌦(v)
⌃

s↵⇥v P (s|parent(s))
q⇥ (v)

⌃
s↵⇥ ⌦v P (s|parent(s))

⇧

= min

⇥
1,

q⇥ ⌦(v)

q⇥ (v)

L(I|⇥⌦)
L(I|⇥)

⌃
t↵⇥ ⌦v �t (⇧t)⌃
t↵⇥v �t (⇧⌦t)

⇤
. (�)
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Jump Moves

$eoretical requirements:

• Reversibility

• Dimension-matching

with             deterministic, differentiable, invertible

(n,xn) ! (m,xm) () (m,xm) ! (n,xn)

fm!n : Xm � Um,n ⇥ Xn � Un,m

fm!n
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Jump Moves

$eoretical requirements:

• Reversibility

• Dimension-matching

with             deterministic, differentiable, invertible

(n,xn) ! (m,xm) () (m,xm) ! (n,xn)

fm!n : Xm � Um,n ⇥ Xn � Un,m

fm!n

fm!n ([0.8, 0.4, 0.9]) = [0.8, 0.4, 0.9, 1, 0.5]
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��!�0 = min

⇢
1,

p(⇥0|I)
p(⇥|I)

j(⌅v|⌅ 0v)
j(⌅ 0v|⌅v)

U[0,1](u
0)

1
J�!�0

�

= min

(
1,

L(I|⇥0) ⇤(⇥0)
L(I|⇥) ⇤(⇥)

q⇥ 0(v)
Q

s2⇥v
P (s|parent(s))

q⇥ (v)
Q

s2⇥ 0
v
P (s|parent(s))

)

= min

(
1,

q⇥ 0(v)

q⇥ (v)

L(I|⇥0)
L(I|⇥)

Q
t2⇥ 0

v
�t (⇧t)Q

t2⇥v
�t (⇧0

t)

)

j(� 0v|�v) = q� (v)
Y

s2� 0
v

P (s|parent(s))

Jump Moves
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Metropolis Procedural Modeling • 9

Fig. 6: (left) Derivations from the city grammar targeted to skylines of a whale (top) and shoe (bottom). (right) The same derivations from
different viewpoints, highlighting the urban structure enforced by the grammar.

To construct this function we examined nine of Mondrian’s rep-
resentative works painted between 1920 and 1930 and assembled
a set of terms that account for some of the variation within this
set. These terms include number of cells, average cell size, aver-
age aspect ratio, and average area of horizontally- and vertically-
dominant cells. Since grid lines in Mondrian’s art tend to align
across kd-tree boundaries, we added the minimum non-negative
distance between parallel edges. To account for the distinctive spa-
tial color distributions of Mondrian paintings, we also included the
average area occupied by each color in Mondrian’s palette and the
number of adjacent cells with the same non-white color.

The form of the likelihood function follows directly from this set
of terms. Given a derivation � from the grammar, we compute each
term s on the derivation and calculate a penalty value

D(s�) = erf
�
|s� � µs|
⇤s

⌃
2

⇥
,

where erf(·) is the Gauss error function, and µs and ⇤s are the mean
and standard deviation of s in the training data. L(�) is defined
simply as

L(�) = exp

⇤
�
⇧

s⌅S

wsD(s�)

⌅
,

where the weights ws are set manually to approximate the relative
importance of the statistics.

12. RESULTS AND DISCUSSION
Figure 8 shows eight young oak trees targeted to the word SIG-
GRAPH using the image-based likelihood formulation. Figure 9
shows two different grammars—acacia and willow—targeted to
identical specifications. Figure 10 shows conifer, old oak, and
poplar trees targeted to a set of sketches.

These examples highlight several advantages of the presented
technique over prior work. Since our method functions on arbi-
trary grammars—which are among the most faithful and general
representations for botanical structures—it can be used to control
tree models with complex, realistic growth patterns, accounting
for physical variation in apical dominance and photo- and gravit-
ropism, and rigidly enforcing monopodial and sympodial branch-
ing structures. This obviates the need for special purpose algo-
rithms that only loosely approximate the growth of real trees, such
as those described by Neubert et al. [2007] and Chen et al. [2008].

Furthermore, the presented technique is not restricted to gram-
mars based on biological growth. Figure 6 demonstrates sketch-
based modeling applied to the city grammar. Figure 11 illustrates
volume-based targeting applied to the building grammar. Figure 15
shows several modes of the Mondrian likelihood function.

The success of any grammar-based inference procedure neces-
sarily hinges on the precise form of the chosen grammar. If a user
provides a specification that the grammar simply cannot achieve,
the results can be unsatisfactory, as shown in Figure 7. Moreover, it
can be difficult to predict a priori if a particular grammar is capa-
ble of producing a good match for a provided specification: some
experimentation may be required.

Fig. 7: The grammar in these examples supports only bipodial branching.
Thus, it produces a good fit for one sketch (left), but not the other (right).
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Fig. 8: A set of young oak trees from a single grammar, produced with the algorithm described in this paper. The trees exhibit natural,
realistic structure (top) and spell “SIGGRAPH” when viewed from above (bottom). Zoom in for detail.

Fig. 9: Acacia trees (left) and willows (right) targeted to the SIGGRAPH logo. Zoom in to see the small branches supporting the thin edges
of the crescent shapes.

Fig. 10: Conifer, old oak, and poplar grammars targeted to sketches. The inference technique successfully models details in the sketches,
such as silhouettes and the low-density hole in the oak.
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Fig. 5: Illustrations of the models used in this paper. From top left to lower right: random derivations from the building, city, poplar, young
oak, conifer, acacia, old oak, willow, and Mondrian grammars. Zoom in for detail.
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Fig. 15: Three images of original Mondrian paintings, and three random samples from our targeting function. Clockwise from top left, the
first, second, and fourth images are Mondrians. The paintings are ‘Composition A.’ 1920; ‘Tableau No. II with Red, Blue, Black, Yellow and
Grey’ 1921-25; and ‘No. VI / Composition No. II’ 1920, all c�2011 Mondrian/Holtzman Trust c/o HCR - International Virginia.
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Fig. 5: Illustrations of the models used in this paper. From top left to lower right: random derivations from the building, city, poplar, young
oak, conifer, acacia, old oak, willow, and Mondrian grammars. Zoom in for detail.
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Fig. 6: (left) Derivations from the city grammar targeted to skylines of a whale (top) and shoe (bottom). (right) The same derivations from
different viewpoints, highlighting the urban structure enforced by the grammar.

To construct this function we examined nine of Mondrian’s rep-
resentative works painted between 1920 and 1930 and assembled
a set of terms that account for some of the variation within this
set. These terms include number of cells, average cell size, aver-
age aspect ratio, and average area of horizontally- and vertically-
dominant cells. Since grid lines in Mondrian’s art tend to align
across kd-tree boundaries, we added the minimum non-negative
distance between parallel edges. To account for the distinctive spa-
tial color distributions of Mondrian paintings, we also included the
average area occupied by each color in Mondrian’s palette and the
number of adjacent cells with the same non-white color.

The form of the likelihood function follows directly from this set
of terms. Given a derivation � from the grammar, we compute each
term s on the derivation and calculate a penalty value

D(s�) = erf
�
|s� � µs|
⇤s

⌃
2

⇥
,

where erf(·) is the Gauss error function, and µs and ⇤s are the mean
and standard deviation of s in the training data. L(�) is defined
simply as

L(�) = exp

⇤
�
⇧

s⌅S

wsD(s�)

⌅
,

where the weights ws are set manually to approximate the relative
importance of the statistics.

12. RESULTS AND DISCUSSION
Figure 8 shows eight young oak trees targeted to the word SIG-
GRAPH using the image-based likelihood formulation. Figure 9
shows two different grammars—acacia and willow—targeted to
identical specifications. Figure 10 shows conifer, old oak, and
poplar trees targeted to a set of sketches.

These examples highlight several advantages of the presented
technique over prior work. Since our method functions on arbi-
trary grammars—which are among the most faithful and general
representations for botanical structures—it can be used to control
tree models with complex, realistic growth patterns, accounting
for physical variation in apical dominance and photo- and gravit-
ropism, and rigidly enforcing monopodial and sympodial branch-
ing structures. This obviates the need for special purpose algo-
rithms that only loosely approximate the growth of real trees, such
as those described by Neubert et al. [2007] and Chen et al. [2008].

Furthermore, the presented technique is not restricted to gram-
mars based on biological growth. Figure 6 demonstrates sketch-
based modeling applied to the city grammar. Figure 11 illustrates
volume-based targeting applied to the building grammar. Figure 15
shows several modes of the Mondrian likelihood function.

The success of any grammar-based inference procedure neces-
sarily hinges on the precise form of the chosen grammar. If a user
provides a specification that the grammar simply cannot achieve,
the results can be unsatisfactory, as shown in Figure 7. Moreover, it
can be difficult to predict a priori if a particular grammar is capa-
ble of producing a good match for a provided specification: some
experimentation may be required.

Fig. 7: The grammar in these examples supports only bipodial branching.
Thus, it produces a good fit for one sketch (left), but not the other (right).
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example symbols params depth vertices N time
City (6) 850 1,154 120 1,432 75k 14m
Young Oak (8) 12,152 18,937 15 176,520 110k 2h
Acacia (9) 21,176 29,909 29 50,862 265k 4h
Willow (9) 70,754 164,823 34 166,328 385k 10h
Conifer (10) 31,319 35,639 27 221,941 350k 9h
Old Oak (10) 53,624 71,738 30 66,191 560k 6h
Poplar (10) 11,019 12,836 32 193,016 90k 2h
Building (11) 9,673 16,805 28 1,660 850k 30m
Mondrian (15) 74 134 21 38 6k 5s

Table I. : Performance figures for the examples, showing the number of
symbols and descriptive parameters in each derived model, the depth of the
derivation tree, the number of iterations N used to produce the result, and
the total simulation time on a 2GHz Intel Core 2.

On the other hand, the presented technique affords users in-
creased flexibility in writing and developing grammar-based proce-
dural models. Properties that are difficult to impose via generative
rules are often easier to specify as terms in a likelihood function. As
a result, the presented technique alleviates the need to painstakingly
construct grammars for which every derivation possesses all of the
desired characteristics. Contrast, for instance, the random deriva-
tions from the building and Mondrian grammars shown in Figure 5,
and their targeted counterparts in Figures 11 and 15. In these exam-
ples, desired characteristics were obtained partly through the gram-
mar specification and partly by optimization.

13. PERFORMANCE
Performance characteristics for the examples in this paper are sum-
marized in Table I. For most procedural modeling tasks, producing
a good visual fit is more important than guaranteeing a globally
optimal solution. Therefore, rather than employing an automated
convergence test such as coupling from the past [Propp and Wilson
1996], we observe each simulation as it evolves and terminate it
manually. Figure 12 plots the number of iterations against model
complexity for the seven image-based examples. Figure 13 shows
the evolution of the MAP estimate over time for each of these sim-
ulations. Overall, the jump formulation described in Section 7.2
results in a global acceptance rate of about 30%.

These results compare favorably with related work on MCMC
inference on procedural models. Schlecht et al. [2007] report using
20,000 iterations to fit a simple 2D branching structure (with fewer
than a hundred symbols and parameters) to fungal microscopy data
via a hand-tuned RJMCMC formulation. In contrast, our models,
which are roughly 100� more complex, require only about 10�
more computation. Moreover, the optimizations described in Sec-
tion 8 are quite effective: Figure 14 illustrates the speed and quality
enhancements afforded by optimized nonterminal selection, paral-
lel tempering, delayed rejection, and annealing.

14. CONCLUSION
We presented an algorithm for controlling grammar-based proce-
dural models. The algorithm formulates procedural modeling tasks
as probabilistic inference problems and solves these problems effi-
ciently with Markov chain Monte Carlo techniques. We believe that
this work takes a step towards making grammar-based procedural
modeling more useful and accessible.

One clear opportunity for future work is improving the conver-
gence of the optimization. In the current framework, the rate of
improvement decreases as a dominant mode of the posterior is
found and explored (see the long elbows of the curves shown in

Fig. 11: Two views of the building grammar targeted to a voxelization of
the Stanford bunny (inset).

ACM Transactions on Graphics, Vol. X, No. Y, Article ZZZ, Publication date: Month 2010.

• Tempered transitions [Neal ’94], parallel tempering 
[Geyer ’91],  delayed rejection [Tierney & Mira ’99]

• Sequential & data-driven MCMC [Tu & Zhu ’02]

• Coupling from the past [Propp & Wilson ’96]
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