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Abstract

We propose a new class of implicit networks, the multiscale deep equilibrium model
(MDEQ), suited to large-scale and highly hierarchical pattern recognition domains.
An MDEQ directly solves for and backpropagates through the equilibrium points of
multiple feature resolutions simultaneously, using implicit differentiation to avoid
storing intermediate states (and thus requiring only O(1) memory consumption).
These simultaneously-learned multi-resolution features allow us to train a single
model on a diverse set of tasks and loss functions, such as using a single MDEQ
to perform both image classification and semantic segmentation. We illustrate the
effectiveness of this approach on two large-scale vision tasks: ImageNet classifi-
cation and semantic segmentation on high-resolution images from the Cityscapes
dataset. In both settings, MDEQs are able to match or exceed the performance of
recent competitive computer vision models: the first time such performance and
scale have been achieved by an implicit deep learning approach. The code and
pre-trained models are at https://github.com/locuslab/mdeq.

1 Introduction

State-of-the-art pattern recognition systems in domains such as computer vision and audio processing
are almost universally based on multi-layer hierarchical feature extractors [32, 34, 35]. These models
are structured in stages: the input is processed via a number of consecutive blocks, each operating at
a different resolution [31, 52, 49, 25]. The architectures explicitly express hierarchical structure, with
up- and downsampling layers that transition between consecutive blocks operating at different scales.
An important motivation for such designs is the prominent multiscale structure and extremely high
signal dimensionalities in these domains. A typical image, for instance, contains millions of pixels,
which must be processed coherently by the model.

An alternative approach to differentiable modeling is exemplified by recent progress on implicit deep
networks, such as Neural ODEs (NODEs) [12] and deep equilibrium models (DEQs) [5]. These
constructions replace explicit, deeply stacked layers with analytical conditions that the model must
satisfy, and are able to simulate models with “infinite” depth within a constant memory footprint. A
notable achievement for implicit modeling is its successful application to large-scale sequences in
natural language processing [5].

Is implicit deep learning relevant for general pattern recognition tasks? One clear challenge here is
that implicit networks do away with flexible “layers” and “stages”. It is therefore not clear whether
they can appropriately model multiscale structure, which appears essential to high discriminative
power in some domains. This is the challenge that motivates our work. Can implicit models that
forego deep sequences of layers and stages attain competitive accuracy in domains characterized by
rich multiscale structure, such as computer vision?

To address this challenge, we introduce a new class of implicit networks: the multiscale deep equilib-
rium model (MDEQ). It is inspired by DEQs, which attained high accuracy in sequence modeling [5].
We expand upon the DEQ construction substantially to introduce simultaneous equilibrium modeling
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of multiple signal resolutions. MDEQ solves for equilibria of multiple resolution streams simul-
taneously by directly optimizing for stable representations on all feature scales at the same time.
Unlike standard explicit deep networks, MDEQ does not process different resolutions in succession,
with higher resolutions flowing into lower ones or vice versa. Rather, the different feature scales are
maintained side by side in a single “shallow” model that is driven to equilibrium.

This design brings two major advantages. First, like the basic DEQ, our model does not require
backpropagation through an explicit stack of layers and has anO(1) memory footprint during training.
This is especially important as pattern recognition systems are memory-intensive. Second, MDEQ
rectifies one of the drawbacks of DEQ by exposing multiple feature scales at equilibrium, thereby
providing natural interfaces for auxiliary losses and for compound training procedures such as
pretraining (e.g., on ImageNet) and fine-tuning (e.g., on segmentation or detection tasks). Multiscale
modeling enables a single MDEQ to simultaneously train for multiple losses defined on potentially
very different scales, whose equilibrium features can serve as “heads” for a variety of tasks.

We demonstrate the effectiveness of MDEQ via extensive experiments on large-scale image classifica-
tion and semantic segmentation datasets. Remarkably, this shallow implicit model attains comparable
accuracy levels to state-of-the-art deeply-stacked explicit ones. On ImageNet classification, MDEQs
outperform baseline ResNets (e.g., ResNet-101) with similar parameter counts, reaching 77.5% top-1
accuracy. On Cityscapes semantic segmentation (dense labeling of 2-megapixel images), identical
MDEQs to the ones used for ImageNet experiments match the performance of recent explicit models
while consuming much less memory. Our largest MDEQ surpasses 80% mIoU on the Cityscapes
validation set, outperforming strong convolutional networks and coming tantalizingly close to the
state of the art. This is by far the largest-scale application of implicit deep learning to date and a
remarkable result for a class of models that until recently were applied largely to “toy” domains.

2 Background

Implicit Deep Learning. Virtually all modern deep learning approaches use explicit models, which
provide explicit computation graphs for forward propagation. Backward passes proceed in reverse
order through the same graph. This approach is the core of popular deep learning frameworks [1]
and is associated with the very concept of “architecture”. In contrast, implicit models do not have
prescribed computation graphs. They instead posit a specific criterion that the model must satisfy
(e.g., the endpoint of an ODE flow, or the root of an equation). Importantly, the algorithm that drives
the model to fulfill this criterion is not prescribed. Therefore, implicit models can leverage black-box
solvers in their forward passes and enjoy analytical backward passes that are independent of the
forward pass trajectories.

Implicit modeling of hidden states has been explored by the deep learning community for decades.
Pineda [42] and Almeida [2] studied implicit differentiation techniques for training recurrent dynam-
ics, also known as recurrent back-propagation (RBP) [36]. Implicit approaches to network design
have recently attracted renewed interest [19, 23]. For example, Neural ODEs (NODEs) [12, 18]
model a recursive residual block using implicit ODE solvers, equivalent to a continuous ResNet
taking infintesimal steps. Deep equilibrium models (DEQs) [5] solve for the fixed point of a sequence
model with black-box root-finding methods, equivalent to finding the limit state of an infinite-layer
network. Other instantiations of implicit modeling include optimization layers [17, 3], differentiable
physics engines [14, 43], logical structure learning [56], and continuous generative models [24].

Our work takes the deep equilibrium approach [5] into signal domains characterized by rich multiscale
structure. We develop the first one-layer implicit deep model that is able to scale to realistic visual
tasks (e.g., megapixel-level images), and achieve competitive results in these regimes. In comparison,
ODE-based models have so far only been applied to relatively low-dimensional signals due to
numerical instability. For example, Chen et al. [12] downsampled 28× 28 MNIST images to 7× 7
before feeding them to Neural ODEs.

More broadly, our work can be seen as a new perspective on implicit models, wherein the models
define and optimize simultaneous criteria over multiple data streams that can have different dimen-
sionalities. While DEQs and NODEs have so far been defined on a single stream of features, a
single MDEQ can jointly optimize features for different tasks, such as image segmentation and
classification.
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Multiscale Modeling in Computer Vision. Computer vision is a canonical application domain
for hierarchical multiscale modeling. The field has come to be dominated by deep convolutional
networks [32, 31]. Computer vision problems can be viewed in terms of the granularity of the desired
output: from low-resolution, such as a label for a whole image [16], to high-resolution output that
assigns a label to each pixel, as in semantic segmentation [47, 11, 59, 62]. State-of-the-art models for
these problems are explicitly structured into sequential stages of processing that operate at different
resolutions [31, 52, 49, 25]. For example, a ResNet [25] typically consists of 4-6 sequential stages,
each operating at half the resolution of the preceding one. A dilated ResNet [60] uses a different
schedule for the progression of resolutions. A DenseNet [26] uses different connectivity patterns to
carry information between layers, but shares the overarching structure: a sequence of stages. Other
designs progressively decrease feature resolution and then increase it step by step [44]. Downsampling
and upsampling can also be repeated, again in an explicitly choreographed sequence [41, 51].

Multiscale modeling has been a central motif in computer vision. The Laplacian pyramid is an
influential early example of multiscale modeling [7]. Multiscale processing has been built into
convolutional networks for scene parsing by Farabet et al. [20] and has been explicitly addressed in
many subsequent architectures [47, 11, 59, 8, 37, 62, 27, 10, 55].

Our work brings multiscale modeling to implicit deep networks. MDEQ has in essence only one
stage, in which the different resolutions coexist side by side. The input is injected at the highest
resolution and then propagated implicitly to the other scales, which are optimized simultaneously
by a (black-box) solver that drives them to satisfy a joint equilibrium condition. Just like DEQs, an
MDEQ is able to represent an “infinitely” deep network with only a constant memory cost.

3 Multiscale Deep Equilibrium Models

We begin by briefly summarizing the basic DEQ construction and some major challenges that arise
when extending it to computer vision.

3.1 Deep Equilibrium (DEQ): Generic Formulation

One of the core ideas that motivated the DEQ approach was weight-tying: the same set of parameters
can be shared across the layers of a deep network. Formally, Bai et al. [5] formulated an L-layer
weight-tied transformation with parameter θ on hidden state z as

z[i+1] = fθ(z
[i];x), i = 0, . . . , L− 1 (1)

where the input representation x was injected into each layer. When sufficient stability conditions
were ensured, stacking such layers infinitely (i.e., L → ∞) was shown to essentially perform
fixed-point iterations and thus tend to an equilibrium z? = fθ(z

?;x). Intuitively, as we iterate the
transformation fθ, the hidden representation tends to converge to a stable state, z?. Such construction
has a number of appealing properties. First, we can directly solve for the fixed point, which can be
done faster than explicitly iterating through the layers. We formulate this as a root-finding problem:

gθ(z;x) := fθ(z;x)− z =⇒ z? = Rootfind(gθ;x) (2)
For example, one can leverage Newton or quasi-Newton methods to achieve quadratic or superlinear
convergence to the root. Second, one can directly backpropagate through the equilibrium state using
the Jacobian of gθ at z?, without tracing through the forward root-finding process. Formally, given a
loss ` = L(z?,y) (where y is the target), the gradients can be written as

∂`

∂θ
=

∂`

∂z?
(
−J−1gθ |z?

) ∂fθ(z?;x)
∂θ

∂`

∂x
=

∂`

∂z?
(
−J−1gθ |z?

) ∂fθ(z?;x)
∂x

. (3)

See Bai et al. [5] for the proof, which is based on the implicit function theorem [29]. This means
that the forward pass of a DEQ can rely on any black-box root solver, while the backward pass is
based independently on differentiating through only one layer at the equilibrium (i.e., ∂fθ(z

?;x)
∂(·) ).

The memory consumption of the entire training process is equivalent to that of just one layer rather
than L→∞ layers. Since the Jacobian of gθ can be expensive to compute, DEQs solve for a linear
equation involving a vector-Jacobian product, which is a lot cheaper:

x(Jgθ |z?) +
∂`

∂z?
= 0. (4)

The DEQ model therefore solves for the network output at its infinite depth, with each step of the
model now implicitly defined to reach an analytical objective (the equilibrium).
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Figure 1: The structure of a multiscale deep equilibrium model (MDEQ). All components of the
model are shown in this figure. MDEQ consists of a transformation fθ that is driven to equilibrium.
Features at different scales coexist side by side and are driven to equilibrium simultaneously.

Challenges. The construction of Bai et al. [5], which we have just summarized, was primarily
aimed at processing sequences. As we transition from sequences to high-resolution images, we note
important differences between these domains. First, unlike typical autoregressive sequence learning
problems (e.g., language modeling), where input and output have identical length and dimensionality,
general pattern recognition systems (such as those in vision) entail multi-stage modeling via a
combination of up- and downsampling in the architecture. The basic DEQ construction does not
exhibit such structure. Second, the output of a computer vision task such as image classification (a
label) or object localization (a region) may have very different dimensionality from the input (a full
image): again a feature that the basic DEQ does not support. Third, state-of-the-art models for tasks
such as semantic segmentation are commonly based on “backbones” that are pretrained for image
classification, even though the tasks are structurally different and their outputs have very different
dimensionalities (e.g., one label for the whole image versus a label for each pixel). It’s not clear how
a DEQ construction can support such transfer. Fourth, whereas past work on DEQs could leverage
state-of-the-art weight-tied architectures for sequence modeling as the basis for the transformation
fθ [4, 15], no such models exist in computer vision.

3.2 The MDEQ Model

Notation. Figure 1 illustrates the entire structure of MDEQ. As before, fθ denotes the transformation
that is (implicitly) iterated to a fixed point, x is the (precomputed) input representation provided to
fθ, and z is the model’s internal state. We omit the batch dimension for clarity.

Transformation fθ. The central part of MDEQ is the transformation fθ that is driven to equilibrium.
We use a simple design in which features at each resolution are first taken through a residual block.
The blocks are shallow and are identical in structure. At resolution i, the residual block receives the
internal state zi and outputs a transformed feature tensor z+i at the same resolution. Notably, the
highest resolution stream (i.e., i = 1) also receives an input injection x that is precomputed directly
from the source image and injected to the highest-resolution residual block. (See Eq. (5) and the
discussion below.)

The internal structure of the residual block is shown in Figure 2. We largely adopt the design of He
et al. [25], but use group normalization [57] rather than batch normalization [28], for stability reasons
that are discussed in Section 3.3. The residual block at resolution i can be formally expressed as

z̃i = GroupNorm
(
Conv2d(zi)

)
ẑi = GroupNorm

(
Conv2d(ReLU(z̃i)) + 1{i=1} · x

)
z+i = GroupNorm

(
ReLU(ẑi + zi)

) (5)

Following these blocks, the second part of fθ is a multi-resolution fusion step that mixes the feature
maps across different scales (see Figure 1). The transformed features z+i undergo either upsampling
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Figure 2: The residual block used in MDEQ. An
MDEQ contains only one such layer.

or downsampling from the current scale i to each
other scale j 6= i. In our construction, downsam-
pling is performed by j − i consecutive 2-strided
3× 3 Conv2d, whereas upsampling is performed
by direct bilinear interpolation. The final output
at scale j is formed by summing over the trans-
formed feature maps provided from all incoming
scales i (along with z+j ); i.e., the output feature
tensor at each scale is a mixture of transformed
features from all scales. This forces the features
at all scales to be consistent and drives the whole
system to a coordinated equilibrium that harmonizes the representations across scales.

Input Representation. The raw input first goes through a transformation (e.g., a linear layer
that aligns the feature channels) to form x, which will be provided to fθ. The existence of such
input injection is vital to implicit models as it (along with θ) correlates the flow of the dynamical
system with the input. However, unlike multiscale input representations used by some explicit vision
architectures [20, 11], we only inject x to the highest-resolution feature stream (see Eq. (5)). The
input is provided to MDEQ at a single (full) resolution. The lower resolutions hence start with no
knowledge at all about the input; this information will only implicitly propagate through them as all
scales are gradually driven to coordinated equilibria z? by the (black-box) solver.

(Limited-memory) Multiscale Equilibrium Solver. In the DEQ, the internal state is a single
tensor z [5]. The MDEQ state, however, is a collection of tensors at n resolutions: z = [z1, . . . , zn].
Note that this is not a concatenation, as the different zi have different dimensionalities, feature
resolutions, and semantics.

With this in mind, our equilibrium solver leverages Broyden’s method. We initialize the internal states
by setting z

[0]
i = 0 for all scales i. z = [z1, . . . , zn] is maintained as a collection of n tensors whose

respective equilibrium states (i.e., roots) are solved for and backpropagated through simultaneously
(with each resolution inducing its own loss).

The original Broyden solver was not efficient enough when applied to computer vision datasets, which
have very high dimensionality. For example, in the Cityscapes segmentation task (see Section 4),
the Jacobian of a 4-resolution MDEQ at z? is well over 2,000 times larger than its single-scale
counterpart in word-level language modeling [5]. Note that even with low-rank approximations of
the Jacobian in quasi-Newton methods, the high dimensionality of images can make storing these
updates extremely expensive. To address this, we improve the memory efficiency of the forward and
backward passes by optimizing Broyden’s method. We implemented a new solver that is inspired by
Limited-memory BFGS (L-BFGS) [38], where we only keep the latest m low-rank updates at any
step and discard the earlier ones (see Appendix B.1).

Pretraining and Auxiliary Losses. Figure 3 provides a comparison of MDEQ with single-stream
implicit models such as the DEQ, and with explicit deep networks in computer vision. These different
models expose different “interfaces” that can be used to define losses for different tasks. Prior implicit
models such as neural ODEs and DEQs typically assume that a loss is defined on a single stream of
implicit hidden states, which has a uniform input and output shape (Figure 3b). It is therefore not
clear how such a model can be flexibly transferred across structurally different tasks (e.g., pretraining
on image classification and fine-tuning on semantic segmentation). Furthermore, there is no natural
way to define auxiliary losses [33], because there are no “layers” and the forward and backward
computation trajectories are decoupled.

In comparison, MDEQ exposes convenient “interfaces” to its states at multiple resolutions. One
resolution (the highest) can be the same as the resolution of the input, and can be used to define losses
for dense prediction tasks such as semantic segmentation. Another resolution (the lowest) can be a
vector in which the spatial dimensions are collapsed, and can be used to define losses for image-level
labeling tasks such as image classification. This suggests clean protocols for training the same model
for different tasks, either jointly (e.g., multi-task learning in which structurally different supervision
flows through multiple heads) or in sequence (e.g., pretraining for image classification through one
head and fine-tuning for semantic segmentation through another).
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Figure 3: A visual comparison of MDEQ with prior implicit models and with standard explicit
models in computer vision. Equilibrium states at multiple resolutions enable MDEQ to incorporate
supervision in different forms.

3.3 Integrating Common DL Techniques with MDEQs

MDEQ simulates an “infinitely” deep network by implicitly modeling one layer. Such implicitness
calls for care when adapting common deep learning practices. We provide an exploration of such
adaptations and their impact on the training dynamics of MDEQ. We believe these observations will
also be valuable for future research on implicit models.

Normalization. Layer normalization of hidden activations in fθ played an important role in con-
straining the output and stabilizing DEQs on sequences [5]. A natural counterpart in vision is batch
normalization (BN) [28]. However, BN is not directly suitable for implicit models, since it estimates
population statistics based on layers, which are implicit in our setting, and the Jacobian matrix
of the transformation fθ will scale badly to make the fixed point significantly harder to solve for.
We therefore use group normalization (GN) [57], which groups the input channels and performs
normalization within each group. GN is independent of batch size and offers more natural support for
transfer learning (e.g., pretraining and fine-tuning on structurally different tasks). Unlike in DEQs,
we keep the learnable affine parameters of GN.

Dropout. The conventional spatial dropout used by explicit vision models applies a random mask
to given layers in the network [50]. A new mask is generated whenever dropout is invoked. Such
layer-based stochasticity can significantly hurt the stability of convergence to the equilibrium. In fact,
as two adjacent calls to fθ most probably will have different Bernoulli dropout masks, it is almost
impossible to reach a fixed point where fθ(z?;x) = z?. We therefore adopt variational dropout [21]
and apply the exact same mask at all invocations of fθ in a given training iteration. The mask is reset
at each iteration.

Nonlinearities. The multiscale features are initialized to z
[0]
i = 0 for all resolutions i. However,

we found that this could induce certain instabilities when training MDEQ (especially in the starting
phase of it), most likely due to the drastic change of slope of the ReLU non-linearity at the origin,
where the derivative is undefined [22]. To combat this, we replace the last ReLU in both the residual
block and the multiscale fusion by a softplus [22] in the initial phase of training. These are later
switched back to ReLU. The softplus provides a smooth approximation to the ReLU, but has slope
1− 1

1+exp(βz) → 1
2 around z = 0 (where β controls the curvature).

Convolution and Convergence to Equilibrium. Whereas the original DEQ model focused pri-
marily on self-attention transformations [54], where all hidden units communicate globally, MDEQ
models face additional challenges due to the nature of typical vision models. Specifically, our MDEQ
models employ convolutions with small receptive fields (e.g., the two 3 × 3 convolutional filters
in fθ’s residual block) on potentially very large images: for instance, we eventually evaluate our
semantic segmentation model on megapixel-scale images. In consequence, we typically need a
higher number of root-finding iterations to converge to an exact equilibrium. While this does pose a
challenge, we find that using the aforementioned strategies of 1) multiscale simultaneous up- and
downsampling and 2) quasi-Newton root-finding, drives the model close to equilibrium within a
reasonable number of iterations. We further analyze convergence behavior in Appendix B.
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Figure 4: Left: test accuracy as a function of training epochs. Right: MDEQ-Small and ANODEs
correspond to the settings and results reported in Table 1. For all metrics, lower is better.

4 Experiments

Table 1: Evaluation on CIFAR-10. Standard devia-
tions are calculated on 5 runs.

Model Size Accuracy
CIFAR-10 (without data augmentation)

Neural ODEs [18] 172K 53.7% ± 0.2%
Aug. Neural ODEs [18] 172K 60.6% ± 0.4%
Single-stream DEQ [5] 170K 82.2% ± 0.3%

ResNet-18 [25] [Explicit] 170K 81.6% ± 0.3%
MDEQ-small (ours) 170K 87.1% ± 0.4%

CIFAR-10 (with data augmentation)
ResNet-18 [25] [Explicit] 10M 92.9% ± 0.2%

MDEQ (ours) 10M 93.8% ± 0.3%

In this section, we investigate the empirical per-
formance of MDEQs from two aspects. First, as
prior implicit approaches such as NODEs have
mostly evaluated on smaller-scale benchmarks
such as MNIST [32] and CIFAR-10 (32 × 32
images) [30], we compare MDEQs with these
baselines on the same benchmarks. We evaluate
both training-time stability and inference-time
performance. Second, we evaluate MDEQs on
large-scale computer vision tasks: ImageNet
classification [16] and semantic segmentation
on the Cityscapes dataset [13]. These tasks have
extremely high-dimensional inputs (e.g., 2048× 1024 images for Cityscapes) and are dominated by
explicit models. We provide more detailed descriptions of the tasks, hyperparameters, and training
settings in Appendix A.

Our focus is on the behavior of MDEQs and their competitiveness with prior implicit or explicit
models. We are not aiming to set a new state of the art on ImageNet classification or Cityscapes
segmentation, as this typically involves substantial additional investment [58]. We will release our
full implementation and pretrained models. A copy of the code is provided in the supplement.

All experiments with MDEQs use the limited-memory version of Broyden’s method in both forward
and backward passes, and the root solvers are stopped whenever 1) the objective value reaches some
predetermined threshold ε or 2) the solver’s iteration count reaches a limit T . On large-scale vision
benchmarks (ImageNet and Cityscapes), we downsample the input twice with 2-strided convolutions
before feeding it into MDEQs, following the common practice in explicit models [62, 55]. We use
the cosine learning rate schedule for all tasks [40].

4.1 Comparing with Prior Implicit Models on CIFAR-10

Following the setting of Dupont et al. [18], we run the experiments on CIFAR-10 classification
(without data augmentation) for 50 epochs and compare models with approximately the same number
of parameters. However, unlike the ODE-based approaches, we do not perform downsamplings on
the raw images before passing the inputs to the MDEQ solver (so the highest-resolution stream stays
at 32× 32). When training the MDEQ model, all resolutions are used for the final prediction: higher-
resolution streams go through additional downsampling layers and are added to the lowest-resolution
output to make a prediction (i.e., a form of auxiliary loss).

The results of MDEQ models on CIFAR-10 image classification are shown in Table 1. Compared to
NODEs [12] and Augmented NODEs [18], a small MDEQ with a similar parameter count improves
accuracy by more than 20 percentage points: an error reduction by more than a factor of 2. MDEQ
also improves over the single-stream DEQ (applied at the highest resolution). The training dynamics
of the different models are visualized in Figure 4a. Finally, a larger MDEQ matches and even
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Table 2: Evaluation on ImageNet classification
with top-1 and top-5 accuracies reported. MDEQs
were trained for 100 epochs.

Model Size top1 Acc. top5 Acc.

AlexNet [31] 238M 57.0% 80.3%
ResNet-18 [25] 13M 70.2% 89.9%
ResNet-34 [25] 21M 74.8% 91.1%

Inception-V2 [28] 12M 74.8% 92.2%
ResNet-50 [25] 26M 75.1% 92.5%

HRNet-W18-C [55] 21M 76.8% 93.4%
Single-stream DEQ + global pool [5] 18M 72.9% 91.0%

MDEQ-small (ours) [Implicit] 18M 75.5% 92.7%

ResNet-101 [25] 52M 77.1% 93.5%
W-ResNet-50 [61] 69M 78.1% 93.9%
DenseNet-264 [26] 74M 79.7% 94.8%

MDEQ-large (ours) [Implicit] 63M 77.5% 93.6%
MDEQ-XL (ours) [Implicit] 81M 79.2% 94.5%

Table 3: Evaluation on Cityscapes val semantic
segmentation. “*” marks the current SOTA. Higher
mIoU (mean Intersection over Union) is better.

Backbone Model Size mIoU

ResNet-18-A [39] ResNet-18 3.8M 55.4
ResNet-18-B [39] ResNet-18 15.24M 69.1

MobileNetV2Plus [46] MobileNetV2 8.3M 74.5
GSCNN [53] ResNet-50 - 73.0

HRNetV2-W18-Small-v2* [55] HRNet 4.0M 76.0
MDEQ-small (ours) [Implicit] MDEQ 7.8M 75.1

U-Net++ [64] ResNet-101 59.5M 75.5
Dilated-ResNet [60] D-ResNet-101 52.1M 75.7

PSPNet [62] D-ResNet-101 65.9M 78.4
DeepLabv3 [9] D-ResNet-101 58.0M 78.5
PSANet [63] ResNet-101 - 78.6

HRNetV2-W48* [55] HRNet 65.9M 81.1
MDEQ-large (ours) [Implicit] MDEQ 53.0M 77.8
MDEQ-XL (ours) [Implicit] MDEQ 70.9M 80.3

exceeds the accuracy of a ResNet-18 with the same capacity: the first time such performance has
been demonstrated by an implicit model.

4.2 ImageNet Classification

We now test the ability of MDEQ to scale to a much larger dataset with higher-resolution images:
ImageNet [16]. As with CIFAR-10 classification, we add a shallow classification layer after the
MDEQ module to fuse the equilibrium outputs from different scales, and train on a combined loss.

We benchmark both a small MDEQ model and a large MDEQ to provide appropriate comparisons
with a number of reference models, such as ResNet-18, -34, -50, and -101 [25]. Note that MDEQ
has only one layer of residual blocks followed by multi-resolution fusion. Therefore, to match the
capacity of standard explicit models, we need to increase the feature dimensionality within MDEQ.
This is accomplished by adjusting the width of the convolutional filter within the residual block (see
Figure 2).

Table 2 shows the accuracy of two MDEQs (of different sizes) in comparison to well-known reference
models in computer vision. MDEQs are remarkably competitive with strong explicit models. For
example, a small MDEQ with 18M parameters outperforms ResNet-18 (13M parameters), ResNet-34
(21M parameters), and even ResNet-50 (26M parameters). A larger MDEQ (64M parameters) reaches
the same level of performance as ResNet-101 (52M parameters). This is far beyond the scale and
accuracy levels of prior applications of implicit modeling.

4.3 Cityscapes Semantic Segmentation

After training on ImageNet, we train the same MDEQs for semantic segmentation on the Cityscapes
dataset [13]. When transferring the models from ImageNet to Cityscapes, we directly use the
highest-resolution equilibrium output z?1 to train on the highest-resolution loss. Thus MDEQ is its
own “backbone”. We train on the Cityscapes train set and evaluate on the val set. Following the
evaluation protocol of Zhao et al. [63] and Wang et al. [55], we test on a single scale with no flipping.

MDEQs attain remarkably high levels of accuracy. They come close to the current state of the art,
and match or outperform well-known and carefully architected explicit models that were released in
the past two years. A small MDEQ (7.8M parameters) achieves a mean IoU of 75.1. This improves
upon a MobileNetV2Plus [46] of the same size and is close to the SOTA for models on this scale. A
large MDEQ (53.5M parameters) reaches 77.8 mIoU, which is within 1 percentage point of highly
regarded recent semantic segmentation models such as DeepLabv3 [9] and PSPNet [62], whereas a
larger version (70.9M parameters) surpasses them. It is surprising that such levels of accuracy can
be achieved by a “shallow” implicit model, based on principles that have not been applied to this
domain before. Examples of semantic segmentation results are shown in Appendix C.

4.4 Runtime and Memory Consumption

We provide a runtime and memory analysis of MDEQs using CIFAR-10 data, with input batch size
32. Since prior implicit models such as ANODEs [18] are relatively small, we provide results for both
MDEQ and MDEQ-small for a fair comparison. All computation speeds are benchmarked relative
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(a) CIFAR-10 classification
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(b) ImageNet classification
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(c) Cityscapes segmentation

Figure 5: Plots of MDEQ’s convergence to equilibrium (measured by ‖z
[i+1]−z[i]‖
‖z[i]‖ ) as a function of

the number of times we evaluate fθ. As input image resolution grows (from CIFAR-10 to Cityscapes),
MDEQ takes more steps to converge with (L-)Broyden’s method. Standard deviation is calculated on
5 randomly selected batches from each dataset.

to the ResNet-101 model (about 150ms per batch) on a single RTX 2080 Ti GPU. The results are
summarized in Figure 4b.

MDEQ saves more than 60% of the GPU memory at training time compared to explicit models such
as ResNets and DenseNets, while maintaining competitive accuracy. Training a large MDEQ on
ImageNet consumes about 6GB of memory, which is mostly used by Broyden’s method. This low
memory footprint is a direct result of the analytical backward pass. Meanwhile, MDEQs are generally
slower than explicit networks. We observe a 2.7× slowdown for MDEQ compared to ResNet-101,
a tendency similar to that observed in the sequence domain [5]. A major factor contributing to the
slowdown is that MDEQs maintain features at all resolutions throughout, whereas explicit models
such as ResNets gradually downsample their activations and thus reduce computation (e.g., 70% of
ResNet-101 layers operate on features that are downsampled by 8 × 8 or more). However, when
compared to ANODEs with 172K parameters, an MDEQ of similar size is 3× faster while achieving
a 3× error reduction. Additional discussion of runtime and convergence is provided in Appendix B.

4.5 Equilibrium Convergence on High-resolution Inputs

As we scale MDEQ to higher-resolution inputs, the equilibrium solving process becomes more
challenging. This is illustrated in Figure 5, where we show the equilibrium convergence of MDEQ
on CIFAR-10 (low-resolution), ImageNet (medium-resolution) and Cityscapes (high-resolution)
images by measuring the change of residual with respect to the number of function evaluations. We
empirically find that (limited-memory) Broyden’s method and multiscale fusion both help stabilize
the convergence on high-resolution data. For example, in all three cases, Broyden’s method (blue
lines in Figure 5) converges to the fixed point in a more stable and efficient manner than simply
iterating fθ (yellow lines). Further analysis of convergence behavior is provided in Appendix B.

5 Conclusion

We introduced multiscale deep equilibrium models (MDEQs): a new class of implicit architectures for
domains characterized by high dimensionality and multiscale structure. Unlike prior implicit models,
such as DEQs and Neural ODEs, an MDEQ solves for and backpropagates through synchronized
equilibria of multiple feature representations at different resolutions. We show that a single MDEQ can
be used for different tasks, such as image classification and semantic segmentation. Our experiments
demonstrate for the first time that “shallow” implicit models can scale to practical computer vision
tasks and achieve competitive performance that matches explicit architectures characterized by
sequential processing through deeply stacked layers.

The remarkable performance of implicit models in this work brings up core questions in machine
learning. Are complex stage-wise hierarchical architectures, which have dominated deep learning
to date, necessary? MDEQ exemplifies a different approach to differentiable modeling. The most
significant message of our work is that this approach may be much more relevant in practice than
previously appeared. We hope that this will contribute to the development of implicit deep learning
and will further broaden the agenda in differentiable modeling.
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A Task Descriptions and Training Settings

We provide a detailed description of all tasks and some additional details on the training of MDEQ.

Image Classification on CIFAR-10. CIFAR-10 is a well-known computer vision dataset that
consists of 60,000 color images, each of size 32 × 32 [30]. There are 10 object classes and 6,000
images per class. The entire dataset is divided into training (50K images) and testing (10K) sets.

We use two different training settings for evaluating the MDEQ model on CIFAR-10. Follow-
ing Dupont et al. [18], we compare MDEQ-small with other implicit models on CIFAR-10 images
without data augmentation (i.e., the original, raw images), using approximately 170K learnable
parameters in the model. In the second setting, we apply data augmentation to the input images (i.e.,
random cropping, horizontal flipping, etc.), a setting that most competitive vision baselines (e.g.,
ResNets) use by default.

Image Classification on ImageNet. The dataset we use contains 1.2 million labeled training
images from ImageNet [31] distributed over 1,000 classes, and a test set of 150,000 images. The
original ImageNet consists of variable-resolution images, and we follow the standard setting [25] to
use the 224× 224 crops as inputs to the model.

ImageNet is frequently used for pretraining general-purpose image feature extractors that are used
on downstream tasks [25, 61, 60, 55]. We train a small and large MDEQ model, which will act as
their own “backbone” when later fine-tuned on the Cityscapes segmentation task. We train MDEQ on
ImageNet for 100 epochs. Following the practice of Bai et al. [5] with DEQ models for sequences,
we start the training (the first few epochs) of MDEQ with a shallow (5-layer) weight-tied stacking of
fθ to warm up the weights, and then switch to the implicit equilibrium (root) solver for the rest of the
training epochs.

Semantic Segmentation on Cityscapes. Cityscapes is a large-scale urban scene understanding
dataset containing high-quality, pixel-level annotated street scene images from 50 cities [13]. The
dataset consists of 5,000 images, which are divided into 2,975 (train), 500 (val) and 1,525 (test)
sets. Each pixel is classified in a 19-way fashion for evaluation.

We follow the training protocol of prior works [62, 55] to train the MDEQ models on the Cityscapes
train, and perform random cropping (to 1024× 512) and random horizontal flipping on the training
inputs. The models are evaluated on the Cityscapes val (single scale and no random flipping) with
the original resolution 2048 × 1024. We use the identical MDEQ model(s) as used in ImageNet
training, but now predict with the high-resolution head.

Hyperparameters. We provide the hyperparameters of the models we used in each of these tasks
in Table 4. Note that we use a single model for both ImageNet classification and Cityscapes
segmentation, so the models share the same configuration (highlighted in red in Table 4 for clarity).
For all tasks, the MDEQ features in resolution i = 1, . . . , n take the shape

(
H

2i−1 ,
W

2i−1

)
i=1,...,n

,
where H,W are the dimensions of the original input. In other words, each resolution uses half the
feature size of its next higher resolution stream. We apply weight normalization [45] to all of the
learnable weights in fθ.

Hardware. Experiments were conducted on RTX 2080 Ti GPUs. Both ImageNet and Cityscapes
experiments used 4 GPUs, while CIFAR-10 classification models were trained on 1 GPU (including
the baselines).

Initialization of MDEQ Models. For CIFAR-10 and ImageNet, we initialize the parameters of fθ
randomly from N (0, 0.01) (Cityscapes MDEQs use pretrained ImageNet MDEQs). Generally, we
observe that the final performance of MDEQ is not sensitive to the choice of initialization distribution.
However, such random initialization could occasionally induce instabilities in the starting phase of
the training (see red lines in Figure 5). We solve this problem by either 1) temporarily replacing
ReLU with softplus in the first few epochs of training; or 2) warming up the weights by training a
shallow (e.g., 5-layer) weight-tied stacking of fθ, then switching to MDEQ’s equilibrium solver for
the rest of the training.
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Table 4: Settings & hyperparameters of each task. “cls.” means classification task, and “seg.” means
segmentation task. These models coorespond to the ones reported in Tables 1, 2, and 3.

CIFAR-10 (cls.) ImageNet (cls.) Cityscapes (seg.)
MDEQ-Small MDEQ MDEQ-Small MDEQ-Large MDEQ-Small MDEQ-Large

Input Image Size 32× 32 224× 224
1024× 512 (train)
2048× 1024 (test)

Number of Epochs 50 200 100 100 480 480
Batch Size 128 128 128 128 12 12
Optimizer Adam Adam SGD SGD SGD SGD

(Start) Learning Rate 0.001 0.001 0.05 0.05 0.01 0.01
Nesterov Momentum - - 0.9 0.9 - -

Weight Decay 0 0 5e-5 1e-4 2e-4 3e-4
Use Pre-trained Weights - - - - Yes, from ImageNet Yes, from ImageNet

Number of Scales 3 4 4 4

(Exact same model as in ImageNet)

# of Channels for Each Scale [8,16,32] [28,56,112,224] [32,64,128,256] [80,160,320,640]
Width Expansion (in the residual block) 5× 5× 5× 5×

Normalization (# of groups) GroupNorm(4) GroupNorm(4) GroupNorm(4) GroupNorm(4)
Weight Normalization ! ! ! !

# of Downsamplings Before Equilirbium Solver 0 0 2 2

Forward Quasi-Newton Threshold Tf 15 15 22 22 27 27
Backward Quasi-Newton Threshold Tb 18 18 25 25 30 30

Limited-Mem. Broyden’s Method Storage Size m 12 12 18 18 18 18
Variational Dropout Rate 0.2 0.25 0.0 0.0 0.03 0.05

B Equilibrium Solving and Convergence Analysis

We extend our discussion on the convergence to equilibrium in Section 3.3 here. First, we briefly
introduce the (limited-memory) Broyden’s method that we use to perform the root-solving.

B.1 (Limited-memory) Broyden’s Method

As our goal is to solve the equation gθ(z?;x) = fθ(z
?;x)− z? = 0 for the (root) equilibrium point

z? as efficiently as possible, an ideal choice would be Newton’s method:

z[i+1] = z[i] − (J−1gθ
∣∣
z[i])gθ(z

[i];x); z[0] = 0 (6)
However, in practice this involves two major difficulties. First, for a deep network with realistic
size, the Jacobians are typically prohibitively large to compute and store. For instance, for a layer
converting an input tensor of dimension 32× 32× 80 (e.g., height × width × channels) to an output
of the same shape, the resulting Jacobian will have dimension 81920× 81920, which needs 25GB
of memory to store. Second, even if we can store this Jacobian, inverting it would be an extremely
expensive (cubic complexity) operation.

We therefore use a variant of Broyden’s method [6, 5]:

z[i+1] = z[i] − α ·B[i]gθ(z
[i];x); z[0] = 0 (7)

where α is an adjustable step size and B[i] is a low-rank approximation to J−1
gθ

∣∣
z[i]

. Notably, we do
not need to form the Broyden matrix B[i] explicitly, as we can write it as a sum of low-rank updates:

B[i+1] = B[0] +

i∑
k=1

u[k]v[k]> = B[0] + UV > (8)

where u,v comes from the Sherman-Morrison formula [48]. We initialize the Broyden matrix to
B[0] = −I . As described in Section 3.2, we further extended Broyden’s method with a limited-
memory version that stores no more than m low-rank updates u, v each. Specifically, when the
maximum storage memory m is used, we free up memory by discarding the oldest update in U and
V (other schemes are also possible).

B.2 Discussions

Runtime. The rate of convergence of MDEQ is directly related to the runtime of MDEQ. Because
an MDEQ does not have “layers”, a good indicator of computational complexity of MDEQ is the
number of root-finding iterations (e.g., each Broyden iteration evalute fθ exactly once). In practice,
we stop the Broyden iterations at some threshold limit (e.g., 22 iterations), which usually does not
yield the exact equilibrium (see Figure 5 and the discussion below). However, we find these estimates
of the equilibria are usually good enough and sufficient for very competitive training of the MDEQ
models. Similar observations have also been made in sequence-level DEQs [5].
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Convergence on High-resolution Inputs. As we scale MDEQ to higher-resolution inputs, the
equilibrium solving process also becomes increasingly challenging. We identify at least two major
reasons behind this phenomenon.

1. As the input resolution gets higher, so does the size of the Jacobian of fθ which we try to
approximate via Broyden’s method. Therefore, more low-rank updates are expected for the
Broyden matrix approximate the Jacobian and solve for the high-dimensional root.

2. Due to the nature of typical vision models, MDEQ employs convolutions with small receptive
fields (e.g., the two 3× 3 convolutions in fθ’s residual block) on very large inputs. To see how
this complicates the equilibrium solving, consider a case where we simply iterate fθ(·;x) on z
to reach the equilibrium point (i.e., not using Broyden’s method; assuming fθ is stable). Then
we need at least as many iterations as required for the stacked fθ to have a receptive field large
enough to cover the entire image. Otherwise, new pixels covered by the larger receptive field will
be available for each additional stack of fθ (which disrupts the equilibrium).
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Figure 6: Comparing MDEQ with single-stream
DEQ on CIFAR-10. All resolutions of MDEQ
converge simultaneously and in a much stabler way
than the single-scale DEQ model. Larger scale
index means higher resolution (e.g., “scale 1” is
the highest scale).

This phenomenon is visualized in Figure 5,
where we show equilibrium convergence of
MDEQ models on CIFAR-10 (low resolution),
ImageNet (medium resolution), and Cityscapes
(high resolution) images by measuring the
change of residual ‖z

[i+1]−z[i]‖
‖z[i]‖ with respect to

calls to fθ. As with our experimental setting in
Section 4, we initialize the Cityscapes MDEQ
with the weights pretrained on ImageNet clas-
sification (pink line in Figure 5c). In particular,
we observe that more Broyden iterations were
required to reach the fixed point as the images
get larger. For example, whereas MDEQ typ-
ically finds the equilibria with a good level of
accuracy within 30 steps on CIFAR-10 images,
over 100 steps are used on Cityscapes images.

Moreover, in all three cases, Broyden’s method
(blue lines in Figure 5) converges to the fixed
point in a more stable and efficient manner than simply iterating fθ (yellow lines), which often
converges poorly or does not converge at all.

We find that the simultaneous multiscale fusion also effectively stabilizes the equilibrium convergence

of an MDEQ. Figure 6 visualizes the convergence of all equilibrium streams (i.e., ‖z
[i+1]
k −z[i]

k ‖
‖z[i]
k ‖

for

resolution k) in an MDEQ that is applied on CIFAR-10. For comparison, we also visualize the
convergence of a single-stream DEQ [5] that maintains only the highest-resolution stream (i.e.,
32× 32). Specifically, from Figure 6 one can observe that: 1) all MDEQ resolution streams indeed
converge to their equilibria in parallel; 2) lower-resolution streams converge faster than higher-
resolution streams; and 3) high-resolution convergence is much faster in multiscale setting (pink line)
than in the single-stream setting (orange line).

We hypothesize that Broyden’s method and the multiscale fusion help with the equilibrium conver-
gence because both techniques provide a faster way to expand the receptive field of fθ (than simply
stacking it). For Broyden’s method (see Eq. (7)), the Broyden matrix B[i] is a full matrix that mixes
all locations of the feature map (which is represented by gθ(z[i];x)); whereas typical convolutional
filters only mix the signals locally. On the other hand, multiscale up- and downsamplings broaden the
effective receptive field on the high-resolution stream by direct interpolation from lower-resolution
feature maps.

C Qualitative Segmentation Results on Cityscapes

We demonstrate in Figure 7 some examples of the segmentation results of the MDEQ-large model
(see Table 3) on Cityscapes (val) images (of resolution 2048× 1024).
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Figure 7: Examples of MDEQ-large segmentation results on the Cityscapes dataset.
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