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Training AI agents to perform complex tasks in simulated worlds requires
millions to billions of steps of experience. To achieve high performance,
today’s fastest simulators for training AI agents adopt the idea of batch
simulation: using a single simulation engine to simultaneously step many
environments in parallel. We introduce a framework for productively author-
ing novel training environments (including custom logic for environment
generation, environment time stepping, and generating agent observations
and rewards) that execute as high-performance, GPU-accelerated batched
simulators. Our key observation is that the entity-component-system (ECS)
design pattern, popular for expressing CPU-side game logic today, is also
well-suited for providing the structure needed for high-performance batched
simulators. We contribute the first fully-GPU accelerated ECS implementa-
tion that natively supports batch environment simulation. We demonstrate
how ECS abstractions impose structure on a training environment’s logic
and state that allows the system to efficiently manage state, amortize work,
and identify GPU-friendly coherent parallel computations within and across
different environments. We implement several learning environments in
this framework, and demonstrate GPU speedups of two to three orders of
magnitude over open source CPU baselines and 5-33× over strong baselines
running on a 32-thread CPU. An implementation of the OpenAI hide and
seek 3D environment written in our framework, which performs rigid body
physics and ray tracing in each simulator step, achieves over 1.9 million
environment steps per second on a single GPU.

CCS Concepts: • Computing methodologies → Graphics systems and
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1 INTRODUCTION
Training AI agents to learn complex problem solving skills in sim-
ulated environments is of high interest to graphics, robotics, and
foundational AI. For example, by learning from millions to billions
of steps of experience, reinforcement learning (RL) methods can
produce agents that demonstrate intelligent team play in video
games [OpenAI et al. 2019; Vinyals et al. 2019], perform human-like
athletic skills [Ling et al. 2020; Peng et al. 2022; Won et al. 2021], use
tools to achieve high-level goals [Baker et al. 2020], and even play
test video games [Bergdahl et al. 2020; Sestini et al. 2022]. Unfortu-
nately, even with supercomputing-scale resources, training policies
for state-of-the-art learning tasks can take days to complete. As
learning tasks become increasingly complex, we expect both the
amount of required experience and the complexity of the environ-
ments being simulated to grow. This hinders progress in the field
and reduces the practicality of training advanced AI agents.

To address the high cost of environment simulation, recent efforts
have redesigned simulators from the ground up to achieve higher
efficiency when training agents [Dalton et al. 2020; Freeman et al.
2021; Hessel et al. 2021; Makoviychuk et al. 2021; Shacklett et al.
2021]. These efforts share the idea of batched simulation, executing
many independent environments (training episodes) at the same
time within a single simulator engine. Visibility into the state of
many concurrent environments allows batched simulators to ex-
ploit parallelism and coherence (both instruction and data) across
environments to achieve high efficiency on throughput-oriented
computing platforms like GPUs and TPUs. As a result, batch simu-
lators can realize orders of magnitude higher training performance
than solutions that naively parallelize by running copies of pre-
existing simulators on different threads or machines.
The challenge is that writing an efficient batched simulator re-

quires task domain knowledge and parallel programming expertise.
For this reason, existing batch simulators provide a limited, fixed set
of functionality (e.g., a simulator for 3D dynamics simulation, agent
navigation in 3D environments, or Atari games). Creating a new
batched simulator for a novel learning task requires a developer to
modify an existing batch simulator’s internals, or create a new high-
performance simulator from scratch. This contrasts with the process
for creating novel interactive environments using popular game
engines like Unity [Juliani et al. 2018] or Unreal [Epic Games 2022].
These engines are scriptable and extensible, and provide APIs for
developers to specify the logic of their game without knowledge of
how the engine internally executes those computations efficiently.
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In this paper we pursue the best of both worlds. We seek a pro-
grammable framework that facilitates productive creation of novel,
customized agent training environments, but also realizes the high
performance of GPU-accelerated, batched environment simulation
designs. We make and operationalize the observation that the entity-
component-system (ECS) architecture, a widely used design pattern
that facilitates extensible development and parallel execution on
multi-core CPUs, is also well-suited for authoring batched simula-
tors that run efficiently on the large-scale, fine-grained parallelism
of GPUs. Specifically, our contributions are:

• We identify that ECS programming abstractions are well suited
for authoring novel, GPU-accelerated batch environment simu-
lators. These designs permit expression of custom game logic
using simple, parallelism-free programming concepts (a function
per world, per agent, per object) and provide efficient interfaces
between the subsystems required to simulate custom learning
environments. ECS abstractions also provide crucial structure
over custom logic and state that allows batch simulators to effi-
ciently manage memory, amortize work, and identify coherent
parallel computations within and across different environments.

• We provide Madrona, an ECS implementation that efficiently
executes batch environment simulation on a GPU. Madrona
organizes simulation state for coherent, parallel data access,
employs both intra-environment (across agents, objects, events)
and cross-environment parallelism, and groups computations to
increase instruction stream coherence. To our knowledge, we
are the first to present a detailed description of mapping the ECS
architecture fully onto the GPU.

• We demonstrate the flexibility and performance of Madrona by
using it to implement several learning environments. By sched-
uling all aspects of environment simulation onto the GPU, we
demonstrate performance that is two to three orders of mag-
nitude higher than existing open source CPU baselines and
5-33× faster than very strong parallel CPU baselines. For ex-
ample, we demonstrate a port of the hide and seek multi-agent
learning environment (with rigid body physics and LIDAR ray
tracing) [Baker et al. 2020] running at over 1.9M steps per second
on a single GPU.

Madrona is available open source at madrona-engine.github.io.

2 REQUIREMENTS AND GOALS
To motivate the requirements of RL environment simulation, con-
sider OpenAI’s hide and seek [Baker et al. 2020], a video-game-like
environment used for learning teamwork and tool use skills. Hide
and seek is a competitive multi-agent game where agents on the
“hider” team cooperate to stay out of sight of agents on the “seeker”
team. Play occurs within a 3D environment containing rooms where
agents can hide and perform actions on objects (like moving, stack-
ing, or locking) in order to impede the other team. Learning from
billions of frames of play in randomized hide and seek environ-
ments leads to the emergence of creative team play strategies such
as using objects as tools to block doors, form fortresses that keep
seekers away, or use as ladders to climb over walls (for more detail
see [Baker et al. 2020]).

Implementing hide and seek involves providing code for three
parts of the end-to-end training system that not only define the
environment simulation itself, but also logic that computes metadata
necessary for learning (policy observations, rewards) as well as
procedural generation of new environment configurations.

Environment simulation. Simulating the hide and seek environ-
ment requires basic rigid body dynamics and collision detection
between agents, objects, and floor plan walls. Simulating the rules of
play also requires maintaining state for which agents are on which
team, tracking who is grasping what objects, and whether objects
are “locked” so they cannot be used by the opposing team.

Policy input generation. The system must generate agent policy
inputs from an environment’s state. In hide and seek this involves
geometric computations such a ray casting a low-resolution 360-
degree depth map around each agent (agents have LIDAR) and
computing pairwise visibility for all agents (agents do not receive
information about opposing agents they cannot see). In addition to
policy inputs, the system must also compute learning rewards for
each agent (derived from the pairwise visibility calculations).

Environment instance generation. To train agents in a diverse set
of scenarios, hide-and-seek generates a novel environment for each
training episode. This involves generating a physically plausible (no
interpenetrations) floor plan and the initial starting positions and
orientations of agents and manipulable objects. New environments
have random numbers of objects and objects of different size.

Environment simulation, policy input generation, and novel envi-
ronment generation are key aspects of many RL training systems. Of
course, the implementation details of these operations are specific to
a given learning task. For example, alternative variants of hide and
seek introduce new types of objects and new game rules. The Hanabi
card game environment we use in our evaluation does not require
rigid body simulation, but must simulate a multi-agent, turn-based
game. Tasks involving robot navigation in 3D environments may
require RGB-D rendered outputs to be fed to the policy as well as
reward computations that involve complex geometric computations
such as geodesic distance calculations on a navigation mesh. For
these reasons, we believe that it is valuable for batched environ-
ment simulation frameworks to be programmable by environment
creators as well as performant. Specifically, we seek a system that
meets the following requirements:
• Programmable. To allow for creation of a wide range of novel
learning environments, developers must be able to programmat-
ically specify custom simulation environment state and provide
their own implementations of task and environment specific
logic. Furthermore, to support interactive, modifiable environ-
ments, custom logic must be able to dynamically create and
destroy environment state, operate on variably sized collections,
and perform complex control flow.

• High performance. The system must execute user-defined
logic efficiently on a high-throughput parallel processor like a
GPU. This requires parallelizing as much of the learning environ-
ment workload as possible, and structuring parallel execution
to encourage instruction and data access coherence. To ensure
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that end-to-end performance is not limited by synchronization
or data transforms between subsystems (e.g, physics, rendering,
learning) of a complex environment simulator, subsystems must
be able to efficiently interface and exchange data with each other.
High efficiency should be achieved under varying operating con-
ditions, such as different numbers of batched environments or
agents per environment.

• Productive. Programmers should not need to be parallel pro-
gramming experts to create new high-efficiency batch simulators.
To make it easy to define new environments, the system must
provide abstractions for expressing logic using per-world, per-
agent, or per-object functions without concern for how they are
parallelized. The resulting logic should also be modular and eas-
ily composable via well-defined data layouts and calling conven-
tions to allow construction of complex learning environments
from combinations of custom and preexisting implementations.

3 RELATED WORK
AI simulators. Many AI toolkits, in particular those targeting

embodied AI and robotics applications, repurpose existing com-
puter game engines (e.g., Carla [Dosovitskiy et al. 2017] on Unreal,
AI2-Thor [Kolve et al. 2017] on Unity, iGibson [Shen et al. 2021] on
PyBullet [Coumans and Bai 2021], OmniGibson [Li et al. 2022] on
Omniverse, Habitat [Savva et al. 2019] on Magnum) or simulation li-
braries (MuJoCo [Todorov et al. 2012]) to simulate complex training
environments. In these cases environment creators relied on mature
asset pipelines and scripting APIs provided by these engines to cre-
ate rich interactive environments appropriate for specific learning
tasks. However, since these engines are designed to simulate a single
environment at a time, parallel execution of multiple environments
requires executing many copies of the engine.

Distributing black-box simulator instances. To accelerate training,
much work has focused on efficiently scheduling parallel execution
of many black-box simulator instances on large numbers of CPU or
GPU resources [Espeholt et al. 2020, 2018; Hessel et al. 2021; Horgan
et al. 2018; OpenAI 2018; Petrenko et al. 2020; Weng et al. 2022].
These “scale-out” designs provide high throughput and enable large-
scale training experiments, but their efficiency is fundamentally
limited because they do not modify the simulator itself.

Batched simulation architectures. Batch simulators [Dalton et al.
2020; Freeman et al. 2021; Makoviychuk et al. 2021; Shacklett et al.
2021] execute many environment instances inside a single simulator
at once. These designs amortize data storage and computation costs
across environment instances and demonstrate significantly greater
efficiency when mapping simulations to the fine-grained, wide par-
allelism of a GPU. However, since implementing batched simulation
requires a simulator rewrite, most embodiments are specialized to a
specific task domain (Shacklett et al. [2021] for point-goal navigation
in 3D environments, Makoviychuk et al. [2021] for 3D physics simu-
lations).While GPU execution engines exist for training agents, such
as Lan et al. [2022], these systems simply map many environments
to independent GPU threads and don’t leverage batch simulation
internally. We are unaware of any batched simulator that meets our
programmability requirements.

Array-based programming. An alternative approach to meeting
our programmability and performance goals is to author batch envi-
ronment simulators using array-based programming environments
like JAX [Bradbury et al. 2018] or PyTorch [Paszke et al. 2019] that
compile to accelerated computing platforms like GPUs and TPUs.
While array-based programming in Python may seem like it also
addresses our productivity goals, implementing complex training
environments using state-of-the-art simulation methods requires
complex data structures and non-trivial control flow (traversing ac-
celeration structures, collision solvers, state machines, conditional
logic in functions). It is cumbersome (and often inefficient) to ex-
press these computations using array-based abstractions. As a result,
simulators written in array-based systems often eschew complex
data structures [Freeman et al. 2021], limiting the complexity of the
environments they can efficiently simulate.

High-level GPU programming languages. Many systems seek to
improve the accessibility and productivity of GPU programming
by allowing CUDA kernels to be written in high-level languages
such as Python (e.g. Warp [Macklin 2022] and Numba [Lam et al.
2015]). We view these projects as complementary to our work: given
appropriate engineering, logic written in these high-level languages
could interface with our framework to combine the productivity
benefits of high-level languages with the runtime services provided
by our system for batch simulation (support for dynamic creation
of simulation state, efficient interfaces between subsystems, etc).

Entity-component-system architecture. Game engine frameworks
provide APIs for developers to implement custom game logic and
environment state on top of the built-in services of the engine.While
many different game engine architectures exist across a range of suc-
cessful titles, the Entity-Component-System (ECS) architecture has
gained recent popularity through implementations in major game
engines such as Unity [Johansson 2018] and Unreal Engine [Palermo
2022], as well as a wide array of open-source implementations of the
architecture [Caini 2019; Mertens 2020]. The ECS architecture has
been shown to provide code organization and flexibility benefits, for
example in Blizzard’s Overwatch [Ford 2017], as well as performance
benefits due to data access efficiency and parallelism [Acton 2019].

4 ECS ABSTRACTIONS
Madrona leverages ECS abstractions to provide a programmable,
performant, and productive platform for constructing batch simula-
tors. By design, Madrona’s programming interfaces for expressing
simulator logic are similar to those of ECS implementations in pop-
ular game engines [Johansson 2018]. We consider the extension
of a well-established game programming paradigm to the domain
of batch simulation as a strength of our approach. In this section
we describe key ECS concepts by illustrating how hide and seek is
expressed in Madrona.

4.1 ECS Concepts
Defining state: entities and components. In ECS programming, a

simulation environment’s state is organized into collections of en-
tities. In hide and seek two important types of entities are Agent

(agents on the hider or seeker teams) and Obstacle (non-agent scene
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Fig. 1. The HideSeek environment expressed using ECS concepts. (A) Environment simulation logic is organized as a set of systems (TimeIntegrate,
FindOverlaps, ProcessAction) that operate on collections of entities. Arrows in the figure indicate the components (data fields) accessed by each system. (B)
The system computation graph defines the entire set of computations for a simulation step.

objects). Entities can also represent ephemeral state, such as the
interaction details of an agent pushing an obstacle or a potential
CollisionPair event between two objects (a record of object pairs
that require a collision test). Note that entities may have differ-
ent lifetimes throughout a simulation. For example, Agent entities
exist for the duration of the simulation, entities representing agent-
obstacle interactions may exist for a few simulation time steps, and
CollisionPair entities are created and destroyed as part of collision
detection logic within a single simulation step.
An entity’s state is defined by the values of its components. For

example, an Agent will have components such as its position in
3D space, the team it is on, and what action its policy specifies it
should perform next. Entities that have the same components are
said to share an archetype. Figure 1-A illustrates three hide and seek
archetypes as well as example component values for three entities
of each archetype.

Manipulating state: systems and queries. An environment’s state
is manipulated by systems, data-parallel computation on collections
of entities. A system is defined by a query that defines what entities
are contained in the input collection and a function that is invoked
for each entity. Queries select entities that have a specified set of
components. In Figure 1-A the TimeIntegrate system executes on
all entities with pos and vel components, which is all entities with
the Agent or Obstacle archetypes. The components matched by the
query are passed to the system as function arguments (colored
arrows indicate component access). The additional argument env is

a context variable passed to all systems, and serves to provide access
to global variables and random access to entities by ID. For example,
the FindOverlaps system uses env to access the environment BVH
in order to identify potential collision pairs. Note that executing a
system may result in the construction (or deletion) of new entities.
For example, FindOverlaps creates new CollisionPair entities.

The system computation graph defines the entire set of computa-
tions needed to execute a simulation step. Nodes in the DAG repre-
sent systems and edges represent dependencies between systems
that must be respected by the ECS runtime. A simplified version of
the computation graph for hide and seek is given in 1-B. Observe
that the graph involves systems that carry out all three parts of
environment processing described in Section 2.

4.2 Putting it All Together: A Madrona Application
Given these concepts, developers can implement a novel batch en-
vironment simulator with Madrona as follows.

First, the application defines all required components (name,
datatype), as well as all the archetypes that use these components.
New ECS systems are then implemented as C++ functions that ac-
cept component data for each entity as arguments (the argument
types also define the ECS query that matches entities for the system).
Since C++ is a general purpose programming language, ECS systems
have flexibility in how environment logic is implemented, although
a large amount of functionality can be written as straight-line func-
tions that read and write component data on a per-entity basis.
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# Initialize Hide and Seek (HS) Batch Simulator
components = HSDefineComponents() # pos, vec, reward, ...
archetypes = HSDefineArchetypes(components)  # agent, ...
graph      = HSBuildComputationGraph(components)
envs       = HSInitEnvironments(NUM_ENVS, archetypes)

HSBindExternalComponents(envs, Policy.GetActionTensors())
observationPtrs = HSGetObservationRewardPtrs(envs)

# Experience Collection Loop
while !done:
  Policy.Execute(observationPtrs)
  MadronaGPUStep(envs, graph)

1
2
3
4
5

6
7

8
9
10
11

HideSeekExperienceCollection:

Listing 1. An experience collection loop for hide and seek using a batch
simulator built on Madrona. Internally, the HS* functions use Madrona’s
ECS interfaces to define simulation state and the computation graph.Within
the loop, Madrona advances the batch of environments (envs) by one step,
assuming control of entity state management and parallel execution of
simulator logic. After the step has completed, Madrona returns control to
the outer training application that can implement policy inference (red)
and policy optimization (not shown) using standard learning frameworks
capable of interfacing directly with ECS state through tensor interfaces.

Additionally, Madrona provides C++ APIs for standard ECS opera-
tions such as fetching component data based on entity ID, creating
and deleting entities, and building the system computation graph.
Note that the use of C++ should be considered an implementation
detail, bindings could be written to Madrona’s ECS APIs and data
layouts for any language with a suitable GPU compiler. Throughout
the paper, figure and listings use python-esque pseudocode rather
than C++ for brevity.
Once the core batch simulator is implemented with the ECS,

Madrona enables easy integration with existing training systems as
shown in Listing 1. During initialization, the training system first
calls into application code that initializes the ECS (lines 2-3), builds
the system computation graph (line 4), and instructs the Madrona
runtime to instantiate a given number of unique environments to
simulate concurrently (line 5). To facilitate efficient communication
between training system code and the batch simulator, Madrona
provides APIs that allow the application to expose ECS component
data as tensors for use in standard learning frameworks. For hide
and seek, the training system binds pointers to policy action tensors
as input to the simulator (line 6) that become accessible as regular
components (e.g. Action in Figure 1), and observations and rewards
(from agent components, e.g. Reward) are exported from the simulator
for input to the policy (line 7).
Finally, experience collection proceeds by iteratively executing

the application’s policy inference code (line 10) and stepping the
batch simulation across all environments (line 11). Importantly,
Madrona only imposes ECS structure on the operations the ap-
plication decides to place in the system computation graph. The
application retains flexibility to implement its own training loop,
define how policies are evaluated to produce new actions, and how
learning uses observations and rewards to optimize the policy.

5 MAPPING A BATCH ECS ONTO THE GPU
ECS abstractions impose structure on custom application logic
and state that allows the Madrona ECS runtime to efficiently map
batch simulation workloads onto the GPU. Through components,
archetypes, and system queries, applications provide Madrona with
definitions of custom state cleanly decomposed from the logic mod-
ifying that state, allowing the runtime to internally manage storage
and data flow. Through the system computation graph, the runtime
understands that all environments will execute the same systems
during simulation step, allowing safe control over parallel execution.
This explicit knowledge about data types and execution makes

high performance simulation possible by giving Madrona a large
degree of control over how the user’s logic is mapped onto the
GPU. First, archetypes (and their components) are instantiated as
column stores in GPU memory. Next, Madrona gathers together
the user-provided functions that implement each ECS system and
compiles them, together with wrapper code to manage component
access, into a single GPUmegakernel [Parker et al. 2010]. Finally, the
system computation graph is loaded onto the GPU and executed by
the megakernel for each simulation step. The following subsections
describe these steps in more detail.

5.1 Managing Component Storage
Centralized table storage. Madrona centrally manages storage for

all component data in a batch simulation. Specifically, for every
archetype declared by the application, Madrona creates a single
in-memory table to store component data for the entities of that
archetype across all environments. To allow efficient access to con-
secutive components, these tables are column stores with compo-
nent data stored contiguously in memory, following standard ECS
practice. Since systems may access per-environment state when
processing entities (such as the FindOverlaps system in Figure 1-A
that requires the per-environment BVH data), Madrona adds an
implicit EnvID component to every table (Figure 2, left table). EnvID
allows Madrona to quickly look up the per-environment data for
every entity and provide it to ECS systems as required.
Madrona’s single-table-per-archetype storage scheme has three

significant performance benefits. First, when executing systems,
neighboring GPU threads processing consecutive entities in a ta-
ble maintain coherent access to component data even when those
entities belong to different environments. If Madrona maintained
separate tables for each environment, incoherent data access would
occur when only a small number of entities per environment match
an ECS query, because neighboring threads in a GPU warp would
require data stored across different tables. For example, consider the
ProcessAction system for hide and seek from Figure 1-A. If environ-
ments contained only two agents, per-environment tables would
result in only two threads per warp accessing data in the same table.
The second benefit of Madrona’s single-table-per-archetype de-

sign is that it reduces memory footprint when executing large
batches of environments. Since entities can be dynamically created,
over-allocation of table storage (to accommodate efficient addition
of new entities) is amortized across all environments. An imple-
mentation that maintained separate tables for each environment
would suffer from internal memory fragmentation that scales with
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Fig. 2. Madrona uses an implicit EnvID component in every archetype to map entities back to the environment they belong to (a). This column is also used as a
sentinel value to mark deleted rows (b). Deleted rows can be efficiently reclaimed by sorting the table by EnvID (c), then dropping the trailing deleted rows (d).

the number of environments simulated concurrently, reducing the
maximum number of environments simultaneously resident in GPU
memory and therefore GPU utilization (we observe these costs in
Section 6.2). Madrona also leverages the unified table design to
amortize the costs of ECS metadata. For example, query objects that
store table and column IDs for every matching archetype in the
system need only be stored once across all environments.

The third benefit of centralizing storage across all environments
is support for zero-copy communication with subsystems external
to the ECS, in particular learning frameworks that use batched
tensor interfaces. Madrona allows the application to expose ECS
component data (for example the Reward component of the Agent

archetype) as tensors that alias the same GPU memory used by
the archetype’s column store. This aliasing allows learning code
and ECS logic to both directly read and write the same component
data without requiring copies. Additionally, the resulting tensor is
automatically batched across all environments as a consequence of
the single-table-per-archetype design.

Dynamic entity creation and destruction. Since entities can be
dynamically created and destroyed at runtime (including at fine
temporal frequencies), Madrona requires an efficient dynamic mem-
ory allocation strategy. For an ECS, creating entities for a given
archetype simply requires adding a new row in the corresponding
table (Figure 2, b). Madrona grows tables by allocating large regions
of virtual memory at startup and paging in physical memory on
demand (leveraging support originally added for virtual texturing
systems [Obert et al. 2012]). This bypasses the need for a custom
GPU allocator, and maintains contiguous storage in virtual address
space. Contiguous storage is necessary to export ECS component
data as tensors for learning frameworks without performing copies.

Madrona also leverages the implicit EnvID component to support
efficient parallel entity deletion. When an entity is deleted, the EnvID

component is set to a sentinel value (−1) that represents a deleted en-
tity (Figure 2, b). This implementation requires no synchronization
between deleting threads. Many existing CPU ECS implementations
reclaim deleted table rows incrementally using small chunk allo-
cation schemes (return chunks when all rows are free). However
since our goal is maximum environment stepping throughput, not
predictable per-step latency, Madrona takes a simpler, GPU-friendly,

approach to reclamation analogous to garbage collection. Specifi-
cally, Madrona periodically compacts sparse tables using a parallel
radix sort on the EnvID column to sort all table rows with EnvID of
−1 to the end of the table (Figure 2, c). After sorting, the table can
be trivially resized to cut off the −1 entries, reclaiming memory.
Sorting by EnvID also provides a performance benefit: improved

data coherence when accessing per-environment state. When tables
are sorted by EnvID, threads working on neighboring entities will
access the same shared environment state, leading to coherent and
cache friendly accesses. While sorting immediately is not necessary
for correctness, empirical testing shows that sorting at the beginning
of every step (conditioned on row addition or removal for each table)
provides the best performance due to the low cost of radix sort and
the data coherence benefits.

5.2 Mapping Systems onto the GPU
As described in Section 4.2, Madrona ECS systems are implemented
in C++. At a high level, Madrona compiles these systems onto the
GPU by leveraging the NVIDIA CUDA C++ compiler to directly
map each system invocation onto a single GPU thread using the
CUDA SIMT programming model. To allow Madrona to manage
parallelization of entity updates and dataflow throughout the system
computation graph, users write ECS systems at a level of abstraction
above standard CUDA kernels. Concretely, ECS systems are imple-
mented as functions that receive a single entity’s components as
arguments, which the user’s code modifies to update the entity (see
Figure 1-A pseudocode). When the application adds an ECS system
to the system computation graph, Madrona uses the provided ECS
query to find all matching archetypes and the corresponding col-
umn indices for each accessed component. Using this information,
Madrona generates code that manages component access and calls
the user’s ECS system function across multiple GPU threads for
each matching entity.

For example in Figure 1-A, the FindOverlaps systemwill match col-
umn 0 and column 3 of both the Agent and Obstacles table. Using this
information, Madrona generates a system entry function that maps
GPU threads to table row indices and passes the fetched component
data into the user’s ECS system function. Listing 2 shows simplified
pseudocode for the system entry function of the FindOverlaps system.
Given a table with 𝑁 rows, Madrona will invoke the system entry
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envID = envIDColumn[invocationID]
if envID == -1:
    return

env = envs[envID]

entityID = entityIDColumn[invocationID]
bbox     = bboxColumn[invocationID]
FindOverlaps(env, entityID, bbox)

1
2
3

4

5
6
7

FindOverlapsEntry(invocationID, envs, envIDColumn,
                  entityIDColumn, bboxColumn):

Listing 2. An example of the entry function for the FindOverlaps system.
Madrona controls howGPU threadsmap to rows in the ECS table by varying
invocationID across threads. The linear column stores for component data
trivially allow the entry function to fetch the appropriate row data for each
thread in constant time, and the EnvID column ensures the correct per-
environment data is passed to each system invocation.

function 𝑁 times, where each invocation results in a single GPU
thread executing the user’s ECS system function (invocationID is
incremented so each thread maps to a unique row). In the case of the
FindOverlaps system, the query matches 𝑁 rows in the Agent table
and𝑀 rows in the Obstacle table, so Madrona will invoke the entry
function 𝑁 + 𝑀 times. Madrona provides the first 𝑁 invocations
column pointers for the Agent table and provides the subsequent𝑀
invocations column pointers for the Obstacle table.

The system entry function alsomanages passing per-environment
global state into the application’s system function using the EnvID

component that Madrona adds to each archetype. To ensure appli-
cation code does not run on entities that have been deleted, if the
EnvID is −1, the row is automatically skipped and the thread simply
returns early without executing the user’s ECS system function.
For the vast majority of systems in the hide and seek task, Mad-

rona’s default parallelization strategy for ECS systems (each GPU
thread invokes the system entry function to process one entity)
is sufficient. However some systems may be able to achieve in-
creased GPU utilization with advanced parallelization strategies
that use warp-level parallelism or on-chip shared memory. There-
fore Madrona allows the application to modify the behavior of the
system entry function in two key ways: to increase the number
of rows processed per invocation and to increase the number of
threads dispatched to each invocation to either a warp (32 threads)
or a full thread block (256 threads in our implementation). For exam-
ple, our hide and seek implementation uses this feature to optimize
narrow phase collision detection by processing 32 CollisionPair

entities cooperatively across a full warp of GPU threads. Convex
hull data is loaded into on-chip shared memory and then inner loops
over convex hull features are cooperatively parallelized across the
warp, while the final serial step of contact creation is parallelized
across the 32 loaded pairs. Thread-block-level parallelism is also
used internally by Madrona to efficiently sort tables (the radix sort
stages chunks of the EnvID column into shared memory for partial
sorting). Exploring extensions to ECS APIs that can expose this kind
of fine-grained parallelism and advanced memory hierarchy usage
in higher-level interfaces is an interesting area for future work.

5.3 Megakernel-Based Computation Graph Execution
Given how data is stored and how a single system is executed, the
final major remaining detail of Madrona’s implementation is how
the full system computation graph is executed. The naive solution
for executing the graph is to launch each system as a separate CUDA
kernel; however, this approach has two major issues. First, even
moderately complex tasks like hide and seek are composed of a large
number of ECS systems (many of which are inexpensive entity up-
dates), so kernel launch overheads would significantly reduce GPU
utilization. Second, certain systems process a dynamic number of en-
tities each step, so the number of GPU threads needed for the launch
is not known ahead of time. For example, the NarrowPhase system
will be invoked for every CollisionPair created by the FindOverlaps

system, which can only be known after FindOverlaps has executed
just one system prior in the computation graph. For dynamic sys-
tems like Narrowphase, a CPU readback step would need to execute
before the CUDA kernel launch to determine the number of entities
matching the system’s ECS query. For computation graphs that
contain many low-cost, dynamic systems, the overhead of frequent
CPU synchronization would severely limit performance.

Therefore rather than separate kernel launches, Madrona opts to
use a GPU-driven approach with a megakernel design [Parker et al.
2010]. Madrona compiles all systems in the computation graph to-
gether into a single CUDA kernel that is launched once by the CPU
per batch environment step and completes the entire computation
graph before returning to the CPU. To manage both the execution of
application-defined systems and engine-level operations that need
to be performed, such as evaluating ECS queries and sorting tables,
Madrona builds a task graph that describes the full execution of
each batch simulation step. Madrona uses a straightforward task
graph scheduling policy where all GPU threads work on the same
node together before advancing to the next node in the task graph.
While this strategy could lead to poor GPU utilization if not enough
work is available per node, large-batch simulation of many envi-
ronments typically yields large amounts of work per node. Beyond
simplicity, the primary advantage of this approach is that Madrona
has full knowledge of the GPU’s execution at any point. This means
global operations like remapping memory or compacting tables to
minimize peak memory usage during a step can be safely performed
in between other nodes in the task graph, without concern for race
conditions resulting from the application’s system code running
while Madrona attempts to perform these engine-level operations.

At a low level, the megakernel is implemented using a persistent-
threads [Aila and Laine 2009] style design, where warps of threads
loop repeatedly, fetching work at warp-level granularity until the
node is completed. When a warp finishes the current node (com-
pletes the final outstanding invocation for that node), it immediately
updates the global task graph state to point to the next node, and
all warps across the GPU immediately begin the next task. This
allows low-cost operations, such as evaluating ECS queries to find
the number of matching rows (a necessary step before each system
can begin executing), to be inserted as nodes in the task graph with
low overhead. For hide and seek, the end result is a task graph with
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around 200 total nodes; refer to Section 6.6 for a performance break-
down of a single evaluation of the task graph, which demonstrates
the low overhead of the megakernel scheduling approach.

5.4 Optimizing GPU Utilization via Up-Front Profiling
A consequence of the megakernel design is that all ECS systems
share the same per-thread register allocation. When task graphs
contain systems with different register footprint and memory la-
tency constraints, using a single register allocation strategy for
the entire task graph may result in GPU under-utilization due to
stalls from insufficient occupancy or register spilling. Madrona ad-
dresses this issue by optionally compiling multiple versions of the
megakernel with different register allocations and then splitting
task graph execution into multiple kernel launches using a profile
guided optimization (PGO) strategy.
To determine optimal register allocations for each ECS system,

Madrona employs an up-front profiling phase that executes a small
number of environment simulation steps with each register al-
location while measuring per-system execution times using low-
overhead tracing infrastructure built into the task graph. Once profil-
ing completes, Madrona chooses when to change register allocations
during task graph execution by comparing the profiled speedups for
each ECS system to the estimated cost of additional kernel launches.
Overall, the time spent in the profiling phase is negligible and can
lead to significantly higher throughput for the millions of steps later
in a training run.

6 EVALUATION
We evaluate Madrona’s expressivity by implementing batch simula-
tors for several learning environments. To evaluate performance and
efficiency, we compare GPU batch simulation usingMadrona against
parallel (but non-batch simulation) CPU and GPU baselines, as well
as against widely used third-party reference implementations.

6.1 Experimental Setup
6.1.1 Environments.

• HideSeek implements a three hider, two seeker game of the
hide and seek environment [Baker et al. 2020] described in Sec-
tion 2. This 3D environment presents multiple granularities of
parallelism, dynamic entity creation and deletion, and systems
that perform broad- and narrow-phase collision detection, con-
tact solving, ray casting, game-play logic, and non-trivial policy
input generation.

• Overcooked is a fully cooperative game used as a benchmark
task for Human-AI coordination [Carroll et al. 2019] where mul-
tiple chefs navigate a grid world to serve as many dishes as
possible within a time limit. This 2D environment features com-
plex agent interactions, customizable layouts, and parallelism
over both agents and cells in the grid world. Our implementation
uses the standard “lossless state encoding" designed for use by
convolutional neural networks.

• Hanabi is a card game where two-to-five agents [Bard et al. 2020]
cooperate to win. Hanabi requires reasoning about the motiva-
tions of other agents based on observing their actions, and it is
considered a state-of-the-art challenge in modern AI. Being just

a card game, Hanabi is cheap to simulate, but the best perform-
ing Hanabi policy requires tens of billions of environment steps
to train [Yu et al. 2022], making high-performance execution
critical to research progress.

• Cartpole is a classic RL environment [Barto et al. 1983] where
an agent moves a cart to balance an inverted pendulum. It is a
simple “hello world” test of implementing a custom environment
in Madrona. It is an “embarrassingly parallel” task, with minimal
state and no conditional execution.

6.1.2 Configurations. We evaluate Madrona’s performance in two
ways. First we compare Madrona’s throughput against that of exist-
ing open-source reference implementations: OpenAI’s MuJoCo &
Python implementation [Baker et al. 2020] of HideSeek, Carroll
et al. [2019]’s Python implementation of Overcooked, DeepMind’s
C++ implementation of Hanabi, and OpenAI Gym’s [Brockman
et al. 2016] NumPy implementation of Cartpole. Since notable dif-
ferences in programming language and simulator algorithms (e.g,
physics) exist between our implementations and these baselines,
direct comparison is difficult. Therefore, we also implement three
Madrona backends that allow us to more directly compare our GPU-
accelerated batch simulation performance with other scheduling
strategies while running the same ECS system implementations.
• BATCH-ECS-GPU is the GPU-accelerated, batch environment
simulation implementation described in Section 5.

• ECS-CPU is a CPU-implementation of Madrona that concur-
rently executes 𝑁 environments but does not perform batch
simulation. Instead, it simulates environments on each of the
CPU’s𝑇 threads using an independent ECS instance per environ-
ment. To complete an environment step for all 𝑁 environments,
worker threads grab environments from a work queue and com-
plete the next step for a single environment before moving on
to the next environment. ECS-CPU can be viewed as an im-
plementation of the synchronous mode of fast RL scheduling
systems like EnvPool [Weng et al. 2022]. However, rather than
treat the simulator as a (potentially slow) black box, in ECS-CPU
the simulator is single-threaded C++ that benefits from the data
access optimizations of ECS-structured code. We use ECS-CPU
as a very strong baseline for CPU performance.

• ECS-GPU is a GPU-implementation of Madrona that does not
perform batch simulation. Similarly to ECS-CPU, this implemen-
tation maps each environment (and its ECS runtime) to a single
CUDA thread. We use ECS-GPU to highlight the importance of
batch environment simulation on the GPU compared to naive
“one-environment-per-thread” execution.

• REF-CPU represents the open-source reference implementation
for each environment. These simulators are single threaded and
only simulate one environment. To scale to multi-core CPUs, we
run one simulator process per CPU thread and batch results in
a central learning process.
We evaluate all configurations on a system with an Intel Core i9

13900K CPU (32 threads) and a NVIDIA GeForce RTX 4090 GPU.

6.2 Peak Simulation Throughput
Table 1 plots the peak throughput (environment steps per second)
of all implementations. We compute throughput as the time spent
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Table 1. Throughput (environment steps per second) of each system con-
figuration under peak operating conditions. When allowed to run under
large batch configurations (HideSeek: 32K, Overcooked: 64K, Hanabi: 128K,
Cartpole: 1024K) BATCH-ECS-GPU significantly outperforms strong CPU
baselines (ECS-CPU) on a high-core CPU, achieving 11× and 33× speedups
on HideSeek and Overcooked respectively. ECS-GPU’s comparatively low
performance shows that GPU parallelization schemes that do not restruc-
ture code and data for coherent execution can yield poor performance.

Environment Steps/Sec
Config HideSeek Overcooked Hanabi Cartpole

BATCH-ECS-GPU 1.9 × 106 4.0 × 107 2.1 × 107 3.4 × 109

ECS-GPU 4.5 × 104 1.1 × 106 4.1 × 106 1.4 × 108
ECS-CPU 1.6 × 105 1.2 × 106 4.1 × 106 2.8 × 107
REF-CPU 6.9 × 103 9.7 × 103 1.3 × 104 1.4 × 105

to execute all work defined in the computation graph. This includes
environment generation and generation of policy inputs/rewards,
but does not include policy inference. All implementations provide
their results in contiguous tensors in GPU memory for consumption
by standard learning frameworks. BATCH-ECS-GPU already stores
component data in this manner, while the other backends must
perform additional data movement. Measurement is performed over
1920 environment steps (eight episodes for HideSeek, including
environment resets). Using BATCH-ECS-GPU, peak throughput
is observed when running with large batch sizes (HideSeek: 32K,
Overcooked: 64K, Hanabi: 128K, Cartpole: 1024K). We evaluate
throughput at smaller batch sizes in Section 6.4.

Public reference simulators are not performant. One notable con-
clusion from Table 1 is that open-source reference implementations
of these popular ML environments are not performant. Although the
reference implementation of HideSeek uses MuJoCo [Todorov et al.
2012] for physics and Hanabi is written in C++, they still achieve
low throughput. (HideSeek’s performance is limited by Python code
around MuJoCo that simulates game logic and generates observa-
tions for learning.) Overall, these reference implementations are
23× (HideSeek) to 320× (Hanabi) slower than our strong baselines
implemented using the Madrona CPU runtime (ECS-CPU).

HideSeek performance. BATCH-ECS-GPU achieves a peak rate of
over 1.9M steps per second when executing HideSeek with a batch
of 32K environments, outperforming the strong ECS-CPU baseline
by 11× (270× faster than the reference implementation). Prelimi-
nary experiments with an end-to-end RL training pipeline indicate
that the costs of policy inference and policy optimization during
training are approximately balanced with that of BATCH-ECS-GPU
environment simulation (54% of runtime is environment genera-
tion, simulation, and observation generation). This suggests that the
115 billion environment steps needed to observe emergence of all
seven phases of emergent tool use in the HideSeek environment (as
described in Baker et al. [2020]) could be executed on a single RTX
4090 GPU in about 1.5 days. The first instances of fort building and
ramp use would emerge in under four hours. Running OpenAI’s
open-source environment simulator on the 32-thread 13900K CPU
would reach this early learning milestone after 40 days.

Table 2. Throughput and GPU utilization relative to hardware speed of light
while simulating HideSeek. Using profiling data to optimize megakernel
register allocation (PGO Enabled) provides a 35% overall throughput im-
provement due to improved compute and memory bandwidth utilization.
The naive ECS-GPU backend utilizes the GPU poorly due to instruction
divergence and incoherent memory access.

PGO Env Steps / Compute Memory
Config Enabled Second Util Util

BATCH-ECS-GPU Yes 1.9 × 106 33% 69%
BATCH-ECS-GPU No 1.4 × 106 22% 46%

ECS-GPU No 4.5 × 104 1.9% 1.9%

The poor performance of ECS-GPU (GPU-accelerated but not
batched) shows the value of Madrona’s batched ECS design. ECS-
GPU’s peak performance is over 42× slower than BATCH-ECS-GPU
(and over 3× slower than ECS-CPU). One reason for this difference
is that memory capacity limits ECS-GPU to approximately 8K con-
current environments (utilizing only 8K CUDA threads). ECS-GPU
suffers frommemory capacity issues due to fragmentation since each
environment allocates its own ECS table structures (and reallocates
them as entities are created and destroyed). A second reason is that
ECS-GPU execution suffers from GPUwarp divergence and incoher-
ent memory access because threads execute different ECS systems
at the same time. Analysis of GPU performance counters confirms
that ECS-GPU realizes only 1.9% of the GPU’s peak compute and
memory bandwidth (Table 2). By centralizing component storage
and graph scheduling across all environments, BATCH-ECS-GPU’s
design encourages coherent execution and data access, increasing
compute and bandwidth utilization to 33% and 69% respectively.

Overcooked,Hanabi andCartpole performance. BATCH-ECS-GPU
can generate experience at 40M (Overcooked, batch size 64K), 21M
(Hanabi, batch size 128K) and 3.4B (Cartpole, batch size 1024K) steps
per second per GPU. These results demonstrate Madrona’s ability to
realize extremely high-throughput environment simulation when
learning from large batch sizes is possible.
Echoing trends from HideSeek, ECS-GPU executes Overcooked

inefficiently due to instruction divergence and its inability to exploit
intra-environment parallelism. The smallest gap between BATCH-
ECS-GPU and ECS-GPU occurs for Hanabi (5×), where BATCH-
ECS-GPU’s performance is limited by a lack of intra-environment
parallelism and frequent memory accesses to game state, resulting in
BATCH-ECS-GPU realizing over 90% of peak memory bandwidth,
but only 6% compute utilization. Although Cartpole lacks intra-
environment parallelism, dynamic state, or conditional execution,
BATCH-ECS-GPU still outperforms ECS-GPU by 24×. This is be-
cause ECS-GPUmust perform additional datamovement to combine
the state from each environment’s separate ECS data structures into
a unified tensor for export outside the simulator. Since environment
simulation for Cartpole is cheap, this additional copy adds signifi-
cant overhead to ECS-GPU execution. BATCH-ECS-GPUmaintains
state for all environments in a contiguous ECS table by construction,
so it does not incur this cost.
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Fig. 3. For HideSeek, BATCH-ECS-GPUmaintains>75% of peak throughput
down to 8K environments. Hanabi and Overcooked are less computationally
intensive, but reach close to peak performance at 32K environments, while
Cartpole performance scales logarithmically until 512K environments. The
CPU-based runtime (ECS-CPU) can realize near peak throughput when
concurrently executing much smaller numbers of environments.

6.3 Impact of Profile Guided Optimization on Utilization
BATCH-ECS-GPU leverages profile guided optimization (PGO) to
improve GPU utilization by adjusting register usage and concur-
rency across the system computation graph (Section 5.4). Table 2
shows that PGO increases BATCH-ECS-GPU’s throughput by 500K
steps per second, a 35% improvement. With PGO disabled, BATCH-
ECS-GPU operates with the maximum register allocation of 255
registers per thread for the entire megakernel. This configuration is
the best for a single megakernel due to the register requirements of
complex ECS systems such as narrow phase collision detection, but
the result is a reduction in the GPU’s ability to hide memory access
latency for systems with more modest register requirements. Split-
ting the megakernel into subkernels allows some ECS systems to
execute with more active threads and benefit from increased latency
hiding. The result of this optimization is shown in Table 2 as an
increase in compute utilization (as a percent of GPU speed of light)
from 22% to 33% and an increase memory bandwidth utilization
(specifically bandwidth to L2 cache) from 46% to 69%.

6.4 Throughput Sensitivity to Batch Size
The BATCH-ECS-GPU peak throughputs reported in Table 1 are
obtained from execution with large batch sizes. Large batch sizes
expose more parallel work, but incur the cost of higher memory
footprint to store environment state and rollouts for more envi-
ronments. Also, since more experience is collected before updating
a policy during training, larger batch sizes may reduce training
sample efficiency, diminishing the benefits of fast environment sim-
ulation [McCandlish et al. 2018]. To understand the effect of batch
size on throughput, Figure 3 plots BATCH-ECS-GPU and ECS-CPU
performance at a range of batch sizes.

HideSeek retains >75% of peak throughput down to a batch size of
8K. Performance remains close to peak with only 8K environments
because BATCH-ECS-GPU keeps GPU utilization high by exposing
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Fig. 4. Madrona exploits intra-environment and cross-environment par-
allelism, so increasing agents per environment can translate into higher
throughput. The HideSeek and Overcooked tasks require work that scales
quadratically with the number of agents (computing pairwise observations
for learning). As a result, per-agent throughput increases with agent count
(as GPU utilization improves) until the quadratic costs dominate. The Micro
environment contains no pairwise dependencies, and demonstrates agent
update throughput growing linearly with the number of agents until the
GPU is fully saturated.

coherent parallel work across environments and across entities in
each environment. With approximately 30 colliding obstacles in the
environment, the number of collision pairs is often a significant
multiple of the number of environments. Other expensive computa-
tions, such as building agent observations, can be parallelized across
the five agent entities, and ray-casting for visibility is parallelized
further down to the per-ray level by manually exploiting warp-level
parallelism as described in Section 5.2.
Similarly to HideSeek, Overcooked exposes significant intra-

environment parallelism and achieves almost 90% of peak through-
put running just 16K environments. Hanabi contains no internal
parallelism, but reaches a memory bandwidth bottleneck at 32K
environments, limiting throughput. Cartpole is so simple that many
environments (524K) are needed to saturate the GPU.

BATCH-ECS-GPU begins to outperform ECS-CPU with just 500
environments for HideSeek and 200 environments for Overcooked.
For more complex environments with large amounts of internal
parallelism, these crossover points may move even lower. These
results suggest that GPU-based batch environment simulators can
reach high throughput at batch sizes that are modest for modern
policy learning algorithms.

6.5 Intra-Environment Throughput Scaling
As discussed in the prior section, Madrona’s ability to exploit intra-
environment parallelism is critical for maintaining high throughput
on the GPU across a range of batch sizes. To understand how perfor-
mance scales as intra-environment parallel work increases, Figure 4
evaluates performance in environments with increasing numbers
of agents. Using modified versions of HideSeek (16K environment
batch) and Overcooked (1K environment batch) capable of sup-
porting up to 40 agents, we measure throughput both in terms of
environment steps per second and agent steps per second (environ-
ment steps per second × # agents). An important note is that the
task definition for both environments requires pairwise observa-
tions between all agents, causing total work (and storage) to scale
quadratically as more agents are added.
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Fig. 5. Profile of one computation graph step of HideSeek (BATCH-ECS-GPU runtime, 16K environment batch). Each horizontal row visualizes the activity of
one of the 128 SMs on the GPU over the 7.9 ms time interval required to step the batch of environments. Colors depict the ECS system under execution by
each warp. Zooming into each row shows the fraction of warps on the SM assigned work at a given time, represented by the colored portion of the row. For
the majority of the computation, most systems process a large number of entities and Madrona successfully achieves good work distribution onto all SMs.
Since there is only one invocation of the constraint solver (system 6) and velocity filter (8) per environment (no intra-environment parallelism), some SMs go
idle during these periods as there is not enough work to fill the GPU’s 30,000+ threads.

Initially, per-agent throughput increases with agent count since
GPU utilization increases with additional parallel work. However,
when simulating more than 10 agents, per-agent throughput begins
to decrease because the cost of generating agent observations is
quadratic in the number of agents. Note that for HideSeek, total
agent steps per second is still higher with 40 agents than two agents,
showing Madrona’s ability to accelerate experience collection for
multi-agent learning in environments with many agents.

To explore scaling without the impact of quadratic observations,
we also include a simple synthetic microbenchmark environment,
Micro, that consists of a compute-heavy ECS system that performs
work proportional to the number of agents per environment. As
expected,Micro underutilizes the GPU when executing 128 environ-
ments with low numbers of agents, but per-agent throughput scales
linearly as more agents are added until the GPU is fully utilized at
250 agents per environment.

6.6 HideSeek Execution Profile
Figure 5 displays a trace of BATCH-ECS-GPU execution when run-
ning one step of HideSeek with batch size 16K. The trace spans
7.9 ms of wall-clock time (measured with the tracing infrastructure

used for profile guided optimization, see Section 5.4). Each of the
128 thick rows in the figure corresponds to one streaming multi-
processor (SM) on the RTX 4090. Readers that zoom into the figure
will observe that each SM row is further vertically subdivided to
show the fraction of total warps per SM executing an ECS system
at any given time (half the row will be colored if 50% of the SM’s
warps are assigned work). The color of each SM row corresponds to
the ECS system currently being executed on the GPU. Systems that
take only a small fraction of total execution time are accumulated
in the “miscellaneous” category and colored black. Note that this
visualization provides insight into how well the BATCH-ECS-GPU
scheduler utilizes the GPU by assigning ECS system invocations
to warps. It does not model SM datapath underutilization due to
instruction divergence or memory latency stalls.

Work distribution. Overall, execution exhibits good workload bal-
ance onto the GPU. Many of the more costly systems in the compu-
tation graph process a large number of entities (intra-environment
parallelism), so there is often sufficient parallel work to map to all
available GPU threads. Since BATCH-ECS-GPU’s scheduler forces
the entire GPU to cooperatively process one graph node at a time,
having sufficient parallel slackness is also important to reduce effects
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of stragglers. Only when executing systems with one invocation per
environment, such as the constraint solver (system 6) or velocity
filter (system 8), does the computation have insufficient parallelism
leading to idle SMs (there are only 16,384 environments and over
30,000 threads across the 128 SMs.)

For systems with large amounts of available parallelism and rela-
tively low register pressure, such as broadphase (system 3), increas-
ing the number of resident GPU threads by reducing the per-thread
register allocation can improve performance. Madrona’s PGO im-
plementation takes advantage of this observation by splitting the
HideSeek megakernel into five sub-sections with register alloca-
tions ranging from the default of 255 registers per thread down to 64
registers per thread. In the figure, the black arrows labeled “Register
Allocation Change” mark these transition points.

Scheduling efficiency. A key takeaway from Figure 5 is something
that cannot be seen in the figure. The full HideSeek ECS task graph
is over 200 nodes, yet a vast majority of those nodes fall within
the tiny black regions of the figure. Given the low cost of many
nodes (e.g, runtime integral nodes that determine the number of
invocations to execute or sort tables, application systems like ap-
plying agent actions), an alternative implementation that launched
a separate kernel for each node would be dominated by launch
overheads and CPU-GPU synchronization. The result of Madrona’s
low-overhead graph scheduling approach is that low-cost nodes es-
sentially disappear from the profile, leaving the timeline dominated
by key application tasks such as rigid body physics (systems 4-8)
and ray tracing visibility (system 10) and depth (system 11). This
contrasts with the HideSeek open source reference implementation
which, although built on a high performance physics simulator (Mu-
JoCu), has a performance profile that is dominated by game play and
observation generation logic in scripted Python. Similarly, when
executing HideSeek with physics and LIDAR disabled on the naive
ECS-GPU backend (in other words, only systems 9, 10 and the unla-
beled black regions in the figure remain), ECS-GPU still is almost
2× slower than BATCH-ECS-GPU executing the full workload. It
is true that physics and graphics libraries incur the majority of the
cost in complex environment simulation, but only if the large body
of surrounding logic is implemented efficiently. Our results suggest
ECS abstractions in a performant batched implementation provide
an excellent framework for authoring this code and integrating it
efficiently with the rest of the engine.

Ray tracing performance. Systems 10 and 11 perform ray casting
via a software implementation written in the ECS. In principle, these
systems could be significantly accelerated via use of the ray trac-
ing hardware on the RTX 4090. However, current compute-mode
GPU programming APIs (unlike graphics APIs) do not allow CUDA
kernels to generate ray queries. Additionally, platform BVH-build
APIs are only invokable from the host CPU, not from GPU code. Be-
yond HideSeek, efficient access to raytracing hardware will become
increasingly important to support future tasks that require dense
visibility information. In general, as more full applications become
based on the GPU (as opposed to using the GPU as a co-processor),
platforms should aim to to provide full access to hardware capabili-
ties from both the host and the GPU device.

7 DISCUSSION
In this paper we demonstrated that ECS designs are viable solutions
for the performance and productivity challenges of developing new
batch simulators for training AI agents. We also demonstrated that
exceptionally high performance is possible when mapping ECS
structured environment simulators to the GPU. Overall we hope
that by providing the community with simulator examples that
operate in new high-performance regimes, and by making it easier
to create new high-performance batch simulators for novel tasks,
our work catalyzes progress in creating intelligent AI agents for
interactive systems like computer games and robotics applications.
We also hope our efforts help community members that do not have
access to immense computing resources to tackle state-of-the-art
problems in this growing field.

These results are encouraging, but still at an early stage: we have
not yet considered the full range of possible system scheduling opti-
mizations. Additionally, in Section 6 we observed howGPU platform
evolutions that provide access to the full set of hardware-accelerated
capabilities stand to improve our implementations. Looking forward,
the complexity of simulated environments will likely grow over
time (more detailed geometry, higher-resolution observations, more
agents and unique behaviors), making it possible to better utilize
high-end GPUs or multi-GPU configurations. Given these trends,
we expect the GPU-CPU performance gap on batch environment
simulation workloads to continue to rise.
To our knowledge, Madrona is the first ECS architecture imple-

mented fully on the GPU. Although our motivation was to efficiently
schedule batch simulators for policy training, our implementation
could serve as a design reference for existing ECS implementations
considering GPU-acceleration of traditional (single environment)
game logic execution as well.

Finally, the need to simulate many interactive environments effi-
ciently is not unique to agent training. For example, the headless
server component of traditional multi-player games runs in the dat-
acenter. For economic efficiency, many game server instances are
co-located on the same machine (often isolated in virtual machines).
Batch-simulation designs targeting a different balance between high
throughput and low latency than Madrona may yield significant
efficiency gains for multi-player game servers or game streaming
services. Overall, efficient batch simulation is an interesting work-
load that should trigger reevaluation of graphics system design.
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