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Figure 1: Character controllers created using our approach: animals, karate punching and kicking, and directional walking.

Abstract

Interactive, task-guided character controllers must be agile and re-
sponsive to user input, while retaining the flexibility to be read-
ily authored and modified by the designer. Central to a method’s
ease of use is its capacity to synthesize character motion for novel
situations without requiring excessive data or programming effort.
In this work, we present a technique that animates characters per-
forming user-specified tasks by using a probabilistic motion model,
which is trained on a small number of artist-provided animation
clips. The method uses a low-dimensional space learned from the
example motions to continuously control the character’s pose to ac-
complish the desired task. By controlling the character through a
reduced space, our method can discover new transitions, tractably
precompute a control policy, and avoid low quality poses.
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1 Introduction

Humans can learn new motion skills from just a few demonstra-
tions: when a student observes an instructor perform a karate
punch, he can emulate its style and repurpose it for striking in dif-
ferent directions. Such generalization is a challenge for character
animation techniques, which often require the user to “spell out”
the desired behavior with a comprehensive set of motions. Recent
years have seen significant advances in example-based kinematic
character control, but such methods derive their agility from the
ability to efficiently navigate large example datasets. Constructing
such large datasets requires considerable time and effort, especially
for artist-animated characters or difficult acrobatic motions. While

stock motion libraries can be used for animating generic charac-
ters, many applications demand unique motion styles and require
their own datasets.

In this paper, we propose a new approach to interactive character
animation that constructs agile, continuous kinematic controllers
from a small number of example motion clips. Unlike previous
methods, our approach does not require the user to provide an ex-
tensive set of motions that are rearranged to accomplish the desired
task, but instead generalizes a few example clips into a continuous
space of stylistically consistent motions. By navigating this space
in real time, our method produces controllers that accomplish user-
specified tasks with motions that resemble the provided clips. Since
the learned space is continuous, the controller can create a contin-
uously varying stream of motion and respond instantaneously to
changes in user input.

To learn low-dimensional motion spaces, we use a novel variant
of the Gaussian process latent variable model (GPLVM). Standard
GPLVMs often learn embeddings that lack the dense connections
necessary for generating transitions and variations, making them
unreliable for control tasks. We augment the GPLVM with a novel
connectivity prior that ensures that the embedding incorporates rich
interactions between the example motions, allowing the controller
to discover new transitions through the motion space that are not
present in the examples. Our experiments demonstrate that such a
prior is essential for creating agile, responsive characters.

Controlling the entire high-dimensional pose of the character with
conventional optimal control methods is generally intractable, but
we can exploit the compact pose representation induced by the
learned low-dimensional space. Our controller interactively navi-
gates this space using a precomputed policy, and the corresponding
full body poses form a complete animation sequence that fulfills the
desired task. In this way, our method is able to avoid the curse of
dimensionality while preserving the ability to continuously vary the
character’s pose in response to user input.

At runtime, we use the precomputed policy to efficiently synthesize
interactive motions. Our model also allows common runtime an-
imation transformation operations, such as inverse kinematics and
foot skate cleanup, to be interpreted as probabilistic inference and
applied automatically without fine-tuning parameters, blending in-
tervals, or joint weights. This allows the character to react naturally
to the environment while fulfilling the user-specified task.

The main contribution of this work is a new approach for contin-
uous kinematic control of interactive characters that uses a low-
dimensional space of motions to generalize the example clips. This
enables agile, continuous controllers to be built from small datasets,
including artist-created motion clips, without requiring numerous
examples of transitions and variations. The approach uses a novel
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variant of the Gaussian process latent variable model that ensures
that the learned space contains rich connections between the exam-
ple clips. Such connections are critical for finding new transitions
and for navigating the low-dimensional space in an agile manner.
To exploit the discovered transitions, we augment a nonparametric
dynamic programming algorithm with an adaptive refinement tech-
nique that seeks out new points that correspond to useful poses in
the learned space. We evaluate our approach on a variety of char-
acters and motion skills.

2 Related Work

A number of methods for generalizing from example data for inter-
active, real-time character animation have focused on interpolating
motions along user-specified parameters. Such methods include the
pioneering verbs and adverbs system [Rose et al. 1998], as well as
techniques that employ dynamic models [Hsu et al. 2005] and sta-
tistical interpolation schemes [Mukai and Kuriyama 2005]. Unlike
these methods, our approach is unsupervised and does not require
task-specific interpolation parameters to be specified by the user.

Prior unsupervised methods created motion variations using graph-
ical models [Lau et al. 2009] and used probabilistic techniques and
dimensionality reduction to generate new motions that satisfy user
constraints or edits [Grochow et al. 2004; Shin and Lee 2006; Chai
and Hodgins 2007; Urtasun et al. 2008; Min et al. 2009; Ikemoto
et al. 2009; Wei et al. 2011]. Since our goal is to animate interac-
tive characters using optimal control, we are interested in models
that represent motion with low-dimensional spaces, where optimal
control methods are tractable. The Gaussian process latent variable
model (GPLVM) is a nonlinear generalization of principal compo-
nent analysis that learns such a space [Lawrence 2005]. Prior meth-
ods have applied the GPLVM to motion data [Grochow et al. 2004;
Urtasun et al. 2005; Wang et al. 2008; Ye and Liu 2010] for tasks
such as human tracking in video and constrained motion synthesis.
However, no prior method has used the model for interactive, task-
driven control, and prior applications have largely been limited to
modeling homogeneous datasets such as forward walking. When
motions from different tasks are used to train a GPLVM, they are
often pushed far apart in the latent space. Responsive control re-
quires a model that can construct enough transitions to link all us-
able parts of the data. Prior efforts to address this limitation con-
strain the latent space topology based on the dataset [Wang et al.
2007] or explicitly encourage similar poses to be embedded near
each other [Lawrence and Quiñonero Candela 2006; Urtasun et al.
2008]. However, significant human intervention is often required
to adapt such models for a specific dataset, and no prior method
explicitly ensures good latent space connectivity. We address this
issue with a novel connectivity prior that ensures that paths exist
in the latent space to connect all example clips. This enables our
model to handle even heterogeneous datasets that include kicks,
punches, and sidesteps.

Full body kinematic control is a challenging problem, due to the
high dimensionality of the character’s configuration and the diffi-
culty of avoiding low quality motions. High-quality kinematic con-
trollers have been created for tasks such as boxing [Lee and Lee
2006] and locomotion [McCann and Pollard 2007; Treuille et al.
2007; Lo and Zwicker 2008; Lee et al. 2009], using a discrete
representation of motion data called a motion graph, which uses
a graph structure to describe how clips from an example library can
be reordered into new motions [Arikan and Forsyth 2002; Kovar
et al. 2002; Lee et al. 2002]. However, while graphs are well suited
for representing large datasets, smaller datasets that lack extensive
transitions and variations may be inadequate to induce an expres-
sive discrete graph. Our dimensionality reduction technique, on
the other hand, is specifically designed for generalizing from small
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Figure 2: In the training stage, our method first uses the exam-
ple clips to learn a low-dimensional space, each point of which
corresponds to a pose. Dynamic programming is then used to pre-
compute a policy for navigating this space in order to fulfill a user-
specified task. The policy can be used to animate an interactive
character that continuously reacts to user input.

datasets. Furthermore, our method controls the character continu-
ously, and produces a continuous variety of poses. This allows it to
respond immediately to user input and changes in the task.

Lee et al. [2010] proposed a kinematic continuous control scheme
that operates directly on full body poses. However, such a method
requires enough data to adequately fill out the high dimensional
space of poses. By representing the data with a reduced space, our
method avoids the need to control full body poses directly and can
operate on much smaller datasets. Other prior work has proposed
to improve the agility of graph-based methods by anticipating user
inputs [McCann and Pollard 2007] and by increasing the number of
graph edges with interpolation or physics-based optimization [Shin
and Oh 2006; Zhao and Safonova 2009; Ren et al. 2010]. Methods
that increase the number of edges in motion graphs can work with
datasets that contain fewer example transitions, since the synthe-
sized edges can discover transitions that are not provided. However,
such approaches are still limited to making decisions at discrete
points in time, and only at graph nodes, which always correspond
to frames in the example clips. By controlling the character con-
tinuously, our method can be responsive to a continuous stream of
user inputs without needing to choose discrete decision points.

While prior automated methods tend to work best with larger
datasets, the dominant animation method in modern games and vir-
tual worlds – sometimes called a “move tree” – uses small, custom-
authored datasets. In this approach, a hand-authored state machine
selects and blends carefully aligned motion clips. This requires sig-
nificant programming and animation effort, but results in high qual-
ity controllers that use small amounts of very carefully authored
data [Johansen 2009]. Unlike these approaches, our method is au-
tomatic and does not rely on the motions exhibiting special struc-
ture. This makes it possible to apply our approach to “raw” motion
capture, and avoids the need for extensive programming effort. Our
tasks are specified with intuitive reward functions that indicate suc-
cess or failure, and optimal control is used to maximize the rewards.

3 Overview

The proposed character animation method, outlined in Figure 2,
accepts as input a set of example clips representing the types and
styles of motions that should be used, as well as a specification of
the task that the controller should accomplish. The task is specified
in terms of a set of task parameters, such as the desired walking di-
rection or punching target, as well as a reward function that defines
how desirable each pose and parameter value is. For example, the
reward in a walking task might be high for moving in the desired
direction. In a karate punching task, poses that place the hand at the



target position with a large velocity might be rewarded.

The kinematic character controller is constructed automatically in
two stages. First, we use a modified Gaussian process latent vari-
able model (GPLVM) to learn a low-dimensional space that de-
scribes the continuous range of motions that are stylistically con-
sistent with the user examples. While the GPLVM is a powerful
nonlinear dimensionality reduction method, it is prone to embed
different motions far apart in the latent space, making it unsuit-
able for control. We use a novel connectivity prior to ensure that
the learned space has rich connections between example motions,
which enables the learned space to be navigated in an agile manner.
Dense connectivity has long been recognized as a desirable feature
in motion graphs [Kovar et al. 2002], and our proposed GPLVM
connectivity prior provides an effective way to enforce analogously
dense connectivity within a continuous nonlinear embedding, with-
out the constraint of a discrete graph structure.

In the second stage, nonparametric approximate dynamic program-
ming is used to precompute a near-optimal policy that constructs a
continuous sequence of character poses in real time to maximize the
user-specified reward function and fulfill the user’s task. Although
controlling the entire high-dimensional pose of the character with
conventional optimal control methods is intractable due to the curse
of dimensionality [Bertsekas 2001], we can efficiently precom-
pute a near-optimal policy to navigate the learned low-dimensional
space, which has a fixed dimensionality independent from the size
of each pose. Our policy is computed on the low-dimensional
space, and the learned mapping from this space to full body poses
is used to reconstruct the animation sequence. Since the learned
space describes a continuous range of poses, we preserve the ability
to continuously modify the character’s pose in response to changes
in the task parameters (such as user input), while avoiding the curse
of dimensionality.

Once the policy is learned, it can be used to synthesize interactive
motions in real time that react rapidly to user input and accom-
plish the desired task. The probabilistic model further provides us
with a principled probabilistic interpretation of common animation
transformation operations, including inverse kinematics and foot
skate cleanup. These operations can be framed as constrained max-
imum a posteriori (MAP) inference in the probabilistic model, and
can be used to automatically modify the synthesized animation to
smoothly satisfy additional constraints, such as hand or foot place-
ment and collisions with the environment.

4 Motion Model

In order to learn control policies that navigate the space of character
motions, we use a generative model that provides us with a com-
pact, low-dimensional representation of high quality motions that
resemble the provided examples. By using a probabilistic model,
we can also evaluate the quality of the new motions and avoid low
quality poses. Our model is based on the Gaussian process latent
variable model (GPLVM) [Lawrence 2005], which generates poses
as nonlinear functions over a learned low-dimensional latent space.
We employ a novel connectivity prior to ensure that the latent space
is well connected and suitable for control. The combination of di-
mensionality reduction and connectivity allows agile control poli-
cies to be learned even from small amounts of data.

4.1 Likelihood and Dynamics Terms

We represent the mapping from low-dimensional latent points x to
dY-dimensional pose vectors y as Gaussian processes (GPs), with
each channel of y transformed by a diagonal scaling matrix W
to account for the different amounts of variance in different joints

[Grochow et al. 2004]. Under the GP, the log likelihood of the data
ln p(Y|X, ᾱ,W) is proportional to

LY = −1

2
tr
(
K−1

Y YW2YT
)
− dY

2
ln |KY|+N ln |W|, (1)

where Y = [y1, . . . ,yN ]T and X = [x1, . . . ,xN ]T. The ma-
trix KY is the covariance of the GP, with each entry given by the
GP’s kernel function. A common choice is the radial basis function
(RBF) kernel, with learned hyperparameters ᾱ = [α1, α2, α3]:

krbf(xi,xj ; ᾱ) = α1 exp
(
−α2

2
||xi − xj ||2

)
+ α3δij .

Under the RBF kernel, correlations between data points fall off
smoothly as their latent coordinate distance increases.

When using the GPLVM with motion data, we must carefully con-
sider the global position and orientation of the character’s root.
Prior methods often ignored this issue by removing root motion
completely [Lawrence 2005], but root motion is essential for gen-
erating complete animations. Some prior methods used relative root
motion [Wang et al. 2008], but adding relative root motion to Y has
an unpleasant side effect: when we stay at the same latent position,
the pose remains the same, but the root will move. This creates foot
skating artifacts and results in inaccurate root velocities. Instead,
we remove the root from Y but include it in a matrix of pose veloci-
ties Ẏ = [ẏ1, . . . , ẏN−1]T. We model pose velocities as a function
of transitions in the latent space, so that each ẏi is conditioned on
two consecutive points in the latent space. The function is modeled
as another GP, with scaling matrix WẎ , kernel matrix KẎ , and
log likelihood LẎ ∝ ln p(Ẏ|X, β̄,WẎ) in the form of Equation
(1). Since we know that the velocity should be zero if xt = xt−1,
we include this information in the GP by using a product kernel

kẏ([xi,xi−1], [xj ,xj−1]; β̄) =

β1ẋ
T
i ẋj exp

(
−β2

2
||ẋi − ẋj ||2 −

β3
2
||xi − xj ||2

)
+ β4δij ,

where ẋi = xi − xi−1 and β̄ = [β1, β2, β3, β4]. This creates
a GP that is nonlinear in the velocities, while still behaving like a
linear function for small values of ẋi, so that small movements in
the latent space correspond to small root velocities.

We found that including the velocities of all joints in Ẏ improved
the quality of the embedding, by allowing it to take dynamic as-
pects of the motion into account, though only the velocities of the
root are used during synthesis. We represent joint rotations with
quaternions, with an additional angle to represent the rotation of
the root about the vertical axis. This angle, as well as the horizontal
position of the root, is only present in the velocity GP.

In addition to these reconstruction terms, we place a prior on the
distribution of latent positions that captures our belief about the
structure of the data. The prior consists of two parts: a dynam-
ics term ΦD(X), which captures the property that the example
poses are generated consecutively by a dynamical process, and
a novel connectivity term ΦC(X), which captures the belief that
the examples should interact with one another in the latent space,
rather than being pushed apart. This connectivity term is essen-
tial for producing an embedding in which all parts of the data are
reachable, and therefore usable by the controller. Since we would
like to maximize both terms, our prior is a product of the form
p(X) ∝ exp (ΦD(X)) exp (ΦC(X)). The dynamics term is de-
fined following the Gaussian process dynamical model (GPDM)
[Wang et al. 2008], which assumes that latent points are generated
by an autoregressive GP. We employ a second order model that



maps the pair [xi−1, ẋi−1] to xi, which has the log prior density

ΦD(X) = −1

2
tr
(
K−1

X X3:NXT
3:N

)
− dX

2
ln |KX|+ln p(x1,x2),

(2)
where X3:N denotes all rows except the first and second in each
trajectory, p(x1,x2) is a Gaussian prior on the first two frames,
and the covariance (KX)ij = krbf([xi−1,xi−2], [xj−1,xj−2]; γ̄)
is over all rows except the last.1 We found that the second order
model helps to avoid rapid changes in direction during synthesis.
Following Lawrence [2006], we fix kernel hyperparameters for the
dynamics to γ̄ = [0.005, 0.5, 1e−4] in all of our examples.

4.2 The Connectivity Prior

Models based on the GPLVM/GPDM tend to embed different mo-
tion trajectories far apart (even if similar poses exist), leading to
poor pose reconstruction across trajectories [Wang et al. 2007].
This is because the GPLVM places dissimilar poses far apart, but
makes no effort to place similar poses close together [Lawrence and
Quiñonero Candela 2006]. This is a serious problem for control, be-
cause the agility of the controller depends on its ability to rapidly
reach a variety of poses. If two portions of the example data are too
far apart, one or the other will be not be used by the controller.

We propose a novel prior on the latent points X that encodes our
preference for well-connected embeddings, and does not depend on
the training poses. Specifically, we model the degree of connectiv-
ity in X using graph diffusion kernels, which are closely related to
random walk processes on graphs [Kondor and Vert 2004].

LettingG denote a complete weighted graph withN vertices corre-
sponding to latent variables x1, . . . ,xN , we define a random walk
process on G such that the edge weights corresponds to the prob-
abilities of single-step transitions between the connected vertices.
We set w(xi,xj) = ‖xi − xj‖−p, where the value p controls how
much we prefer short jumps over long ones. As p is increased, long
series of short transitions become much more likely than a few long
ones. We found that a value of p = 4 worked well. We consider X
to be well-connected if no point in the embedding is unlikely to be
reached from some other point under this random walk.

The connectedness of X can be determined using the diffusion ker-
nel on G, which can be computed from the negative normalized
graph Laplacian H = −T−1/2LT−1/2, where T is a diagonal
matrix such that Tii =

∑
j w(xi,xj) and

Lij =

{∑
k w(xi,xk) if i = j

−w(xi,xj) otherwise
.

Given H, the graph diffusion kernel Kd is obtained by the matrix
exponential Kd = exp (βH), where β is a diffusion rate.

Kd
ij gives the probability of a continuous time random walker start-

ing from vertex i being found at vertex j [Kondor and Vert 2004].
Higher diffusion rates β serve to lower the diffusion distance be-
tween points connected by many short jumps, while points con-
nected by a few long jumps remain separated due to our choice of
transition probability. We empirically set β = 1000, and define the
connectivity term as

ΦC(X) = wc
∑
ij

lnKd
ij , (3)

1Here we assume a single trajectory for compactness, see Wang et
al. [2008] for details regarding concatenation of multiple trajectories.

(a) (b) (c)

Figure 3: Walking embeddings learned (a) without the connectivity
term, (b) with wc = 0.1, and (c) with wc = 1.0. The prior encour-
ages connections between the clips. Warmer colors indicate lower
reconstruction variance.

where wc = 0.1 is a weight on the connectivity prior. This term
corresponds to a “soft minimum” over the diffusion kernel values,
and effectively penalizes the embedding proportional to its most
disconnected pair of points. By itself, ΦC(X) encourages all points
to be connected by paths that consist of a number of short jumps,
which leads to evenly spaced embeddings. When combined with
the likelihood and the dynamics terms, we obtain a model that
prefers embeddings where many trajectories interact frequently and
all points can be reached from all other points, as shown in Figure 3.

4.3 Model Learning

Learning requires estimating the low-dimensional latent coordi-
nates X and hyperparameters ᾱ, β̄,W, and Wẏ from the data ma-
trices Y and Ẏ. This is done by maximizing the log posterior

ln p(X, ᾱ, β̄,W,WẎ|Y, Ẏ) ∝
LY + LẎ + ΦD(X) + ΦC(X) + ln p(ᾱ) + ln p(β̄). (4)

The likelihoods LY and LẎ are pose and velocity reconstruction
terms defined by Equation (1), which encourage the solution to be
consistent with data, while ΦD(X) and ΦC(X) encourage smooth
and well-connected embeddings, and are defined by Equations (2)
and (3). As in previous work, the hyperparameter priors were set
to ln p(ᾱ) = −

∑
i lnαi and ln p(β̄) = −

∑
i lnβi [Wang et al.

2008]. To learn the model, the log posterior was maximized using
the LBFGS algorithm. The gradients of the likelihood, including
the connectivity term, are discussed in Appendix B.

4.4 Pose Synthesis

Given a learned model Γ =
{
Y,X, ᾱ, β̄,W

}
, the prediction dis-

tribution over new poses given a corresponding latent coordinate
p(y|x,Γ) is Gaussian, with mean and covariance given by

gy(x) = WYTK−1
Y k(x) + b,

gσy(x) = W2
(
krbf(x,x)− k(x)TK−1

Y k(x)
)
,

where k(x) is an N×1 vector with i-th element krbf(x,xi) and b
is a dY×1 bias term equal to the mean of the original data. Given
a latent point x, gy(x) represents the most likely corresponding
pose. The variance gσy(x) provides a confidence measure for the
reconstructed pose: if x is far from the training data, it will often
have a high variance in the prediction distribution. We take advan-
tage of this confidence measure to learn control policies that avoid
low-quality motions. The means (gẏ, fx) and covariances (gσẏ , f

σ
x )

of the prediction distributions for the velocity and dynamics func-
tions can be written in a similar fashion. The dynamics distribution
has previously been used to simulate the latent dynamical process,



producing motion samples [Wang et al. 2008]. In the next section,
we show how we can instead produce goal-directed motions using
optimal control in the latent space.

5 Control

In the second training stage, we precompute a near-optimal pol-
icy that navigates the learned latent space in order to accomplish a
user-specified task. At runtime, this policy chooses transitions in
the latent space at every time step, in response to the task (which
includes user input) and the current latent position. Since points
in the latent space correspond to poses, the policy produces char-
acter motions that accomplish the desired task in real time. The
user specifies the task with a set of task parameters Θ, as well as
a reward function R̂, which can depend on pose, velocity, and pa-
rameter value. In a walking task, Θ might be the desired walking
direction, and R̂ might be high for moving in that direction. The
policy would choose latent space transitions that maximize R̂, pro-
ducing an animation that walks in the chosen direction.

5.1 Optimal Control

We model the control task as a Markov decision process (MDP). In
an MDP, an agent chooses actions â to transition between states
ŝ in order to maximize the long-term sum of rewards. In the
full body control task, states are pose-velocity-parameter tuples
ŝ = (y, ẏ, θ), actions are changes in pose, and the reward function
R̂(ŝt, ŝt+1) is given by the user. Velocities are included in the state
to ensure smoothness and handle tasks with velocity-dependent re-
wards, such as martial arts. The optimal policy π̂? maximizes the
expected sum of rewards over all time, with future rewards dis-
counted by γ at each time step [Bertsekas 2001]:

π̂? = arg max
π̂

∞∑
t=0

γtE[R̂(ŝt, ŝt+1)|π̂].

Optimal control in such a high dimensional space is intractable, be-
cause the difficulty of solving an MDP increases exponentially with
the dimensionality of the state space [Bertsekas 2001]. Fortunately,
the GPLVM latent space provides us with a low-dimensional alter-
native that still covers a variety of poses consistent with the user-
provided data. We therefore learn a policy π on the reduced states
s = (x, ẋ, θ), using the learned GP to reconstruct full body poses.

5.2 Reward Functions for Latent Space Control

Each state st maps to a full state ŝt = (gy(xt), gẏ(xt, ẋt), θt),
where gy(xt) and gẏ(xt, ẋt) are the GP means defined in Sec-
tion 4.4. We can use this mapping to project the reward function
into the reduced space. Since not all latent points correspond to
equally good poses, we add a quality term RQ. The full reward is
then given by

R(st, st+1) = R̂(ŝt, ŝt+1) +RQ(xt,xt+1).

We define the quality term using the variance of the reconstruc-
tion GP, which can act as a confidence score for the quality of the
emitted pose [Grochow et al. 2004]. Similarly, the dynamics GP
specifies a probability for each transition in the latent space, with
the probability of a transition from xt to xt+1 being proportional
to exp( 1

fσx
||xt+1 − fx(xt)||2). We define the quality term as

RQ(xt,xt+1) = −cx
1

fσx
||xt+1 − fx(xt)||2 − cygσy(xt+1).

x fx
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s2 s3
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Figure 4: (a) Actions are sampled in the direction of nearby value
samples, on a ring orthogonal to the dynamics mean and radius
proportional to the dynamics variance. (b) Refining samples are
added by clustering visited points, weighted by Bellman error.

The weight of the quality term is set by the constants cx = 0.04 and
cy = 0.04µ−1

σ , where µσ is the average variance of the pose GP at
the example points. While a variety of quality rewards can be con-
structed from the GP posterior distributions, our choice is motivated
by the desire to avoid points with very high variance while mini-
mizing the penalty for points near the data. Our penalty creates a
low-cost basin in a region around the data, while heavily penalizing
points that are very far away, effectively constraining the controller
to high quality poses without seriously damaging its agility.

5.3 Actions

To control the character at interactive rates, we must select a dis-
crete set of actions so that the policy can be evaluated efficiently at
runtime. The quality term will penalize actions that are far from the
mean of the GP dynamics. We therefore choose the mean itself and
a number of points on a ring perpendicular to the mean direction,
with a radius chosen so that exp( 1

fσx
||xt+1 − fx(xt)||2) = ρ. The

value ρ provides a natural way to trade off agility for motion qual-
ity, since large transitions are more jerky. We use ρ = 0.9 in our
implementation. Since the size of the ring depends on the dynam-
ics variance fσx (xt), the actions naturally become more aggressive
further from the data, which prevents the controller from getting
bogged down in high-variance, low-quality regions. The effect of
the actions is to follow the GP dynamics but also gently “steer” the
character in perpendicular directions as needed. To choose the par-
ticular points on the ring, we note that optimal actions tend to flow
towards peaks in the MDP’s value function. As discussed in the
next section, we represent the value function with a nonparametric
estimator, using a set of samples that include the example points.
The peaks of our estimator lie at sample locations, so we assume
that good actions will lie in the direction of nearby samples. We
therefore place the samples on the ring in the direction of 16 nearby
samples, as shown in Figure 4 (a).

5.4 Approximate Dynamic Programming

The state space of our MDP is continuous, so precomputing the op-
timal policy exactly is impossible. Instead, we use an approximate
dynamic programming algorithm that estimates the MDP’s value
function using a nonparametric function estimator. The value func-
tion is the expected sum of rewards obtained by the optimal policy
starting from a given state, and allows the optimal policy to be fol-
lowed simply by choosing the actions that greedily maximize value.
The value function is defined recursively as

V (s) = max
a
R(s, a(s)) + γV (a(s)), (5)

where we abuse notation and use a(s) to denote the state resulting
from action a in state s. Recall that states are tuples (x, ẋ, θ), and
actions are velocities in the latent space. In approximate dynamic



programming, V is represented with a function estimator Ṽ . We
use a nonparameteric estimator based on [Ormoneit and Sen 2002]:

Ṽ (s) =

N∑
i=1

φ(s, si)V (s). (6)

The value at s is obtained by weighing samples at nearby states
si using a kernel φ. Since the example poses are already known
to be important for the task, we initially set the sample points to
their latent positions X, with task parameters sampled on a grid. Ṽ
allows us to approximately solve for the value at each sample state
si by repeatedly applying the approximate version of the Bellman
backup operator [Ormoneit and Sen 2002; Bertsekas 2001]:

V (k+1)(si) = max
a
R(si, a(si)) + γṼ (k)(a(si)). (7)

For a state (x, ẋ, θ), we follow [Lee et al. 2010] and define the ker-
nel as the product of a kernel over (x, ẋ) and task parameters θ. The
(x, ẋ) kernel weighs the k nearest neighbors of (x, ẋ) proportion-
ally to their inverse squared distance wi = ‖(x, ẋ) − (x, ẋ)i‖−2,
and the parameter kernel performs multilinear interpolation of ad-
jacent grid points, which we denote by I(θ, θi). The final kernel
is

φ(s, si) = I(θ, θi)
wi∑
j wj

.

At runtime, we simply choose the action that maximizes the one-
step reward plus the value at the destination state, and display the
pose given by gy(x) for the current latent position x:

π?(s) = arg max
a

(
R(s, a(s)) + γṼ (a(s))

)
.

The controller therefore only needs to store the values at each grid
cell for each sample si.

5.5 Refining Samples with Bellman Error

Although the example points provide us with a good initial set of
samples, values far from these samples may be inaccurate. We
therefore employ an iterative refinement procedure to sample ad-
ditional states and repair regions where Ṽ provides a poor estimate
of the value function. This allows us to learn a policy that effec-
tively utilizes those regions of the latent space that are not near the
example points but still correspond to useful motions. Bellman er-
ror quantifies the degree to which the approximate value function
disagrees with Equation (5), and is defined as

E(s) =
(
Ṽ (s)−max

a

[
R(s, a(s)) + γṼ (a(s))

])2
.

A good approximation will have low error at all states that the MDP
will visit. If s is one of the samples, E(s) is zero by definition
(Equation (7)), so we could reduce the error at a given state to zero
by adding that state to our set of samples and repeating Equation (5)
to convergence. We therefore perform several refinement steps, in
which we first iterate Equation (7) to convergence, and then run the
controller from a number of randomly selected starting locations to
find states with high Bellman error. The latent positions and veloci-
ties corresponding to the visited states are then clustered to identify
a small set of representative points, with each state weighted by its
Bellman error. New samples are then added at the cluster centers,
as shown in Figure 4.

We use expectation-maximization (EM) clustering with fixed clus-
ter widths to obtain a uniform-density sampling of the visited re-
gions. Uniform density is important because highly nonuniform

samplings cause difficulty for nearest-neighbor based estimators.
We heuristically estimate the local density of points by ẋ, which
corresponds to the spacing between temporally adjacent points, and
set the cluster widths to 1
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of the average squared norm of its mem-

bers’ ẋ values at each iteration of EM. We perform four refinement
steps, testing fifty 200-step trajectories at each step and increas-
ing the number of samples by half the number of original exam-
ple points. We used a parallel implementation of value iteration to
speed up computation, which allowed all four refinement steps to
be completed within a couple of hours for each controller.

6 Constraints and Controller Switching

In addition to producing agile controllers, our method provides
principled probabilistic interpretations for common animation pro-
cessing operations. Characters often interact with dynamic environ-
ments and accomplish secondary tasks: a character’s pose might be
modified to avoid intersecting a wall, foot skate cleanup might be
used to avoid foot slipping artifacts, and the character might need to
execute a task while holding an object or facing a particular direc-
tion. Such modifications are usually done in an application-specific
manner with warping and inverse kinematics (IK). We can refor-
mulate such operations as probabilistic inference, and apply them
automatically during synthesis. We can also use this probabilis-
tic framework to describe how the character should behave when
the current controller is switched to a different one, which may be
trained on different motion data to perform a different task.

6.1 User-Specified Pose Constraints

We represent user-specified warping tasks as distributions over
poses. A natural way to specify a warping task is with a constraint
C(y) = 0, which induces a piecewise constant distribution

pC(y) ∝ 1{C(y)=0}.

In Section 4.4, we discussed how a point in the latent space corre-
sponds to a Gaussian distribution over poses. Though we usually
take the mean of this Gaussian, we can account for user-specified
constraints by instead taking the most likely pose under the product
of the GP distribution and the current constraints, given by

p(y|x) = pgy (y|x)
∏
i

pCi(y).

The most likely pose is obtained by maximizing pgy (y|x) sub-
ject to the constraints imposed by C1, . . . , Cn. Since pgy (y|x)
is Gaussian with mean gy(x) and diagonal covariance gσy(x), the
log probability of the pose is quadratic. Although we can solve this
optimization in real time with standard nonlinear optimization tech-
niques, many constraints can be linearized around the current pose.
If only equality constraints are used, the linearized optimization is
simply a linear system. In the case of inequality constraints, it is a
quadratic program. In both cases, the optimization is given by

max
y
||y − µ||2σ s.t. Ci(y) = 0 ∀ i, (8)

where µ = gy(x) denotes the mean and σ = gσy(x) is the variance.
Specific constraints, such as IK, are described in Appendix A.

6.2 Temporal Smoothness

Applying the constrained optimization independently to each frame
may produce an animation that is not smooth, particularly if the
constraints change suddenly. However, we can ensure tempo-
ral coherence by conditioning the pose distribution on the pre-
vious pose: instead of using pgy (yt|xt), we will instead use



clips frames sec clips frames sec
horse 3 71 2.4 run 1 2 75 2.5
dragon 3 138 4.6 run 2 4 220 7.3
dinosaur 3 188 6.3 punch 1 4 341 11.4
walk 1 2 135 4.5 punch 2 3 424 14.1
walk 2 4 266 8.9 punch 3 3 225 7.5
walk 3 4 259 8.5 kick 3 507 16.9

Figure 5: The datasets used in our evaluation. Locomotion con-
trollers used mirrored copies of the data for symmetry, which are
not included in the totals. All clips are at 30 Hz.

pgy (yt|yt−1,xt,xt−1). The kernel function provides us with a
covariance over any set of poses for which the latent coordinates
are known, and we can compute a covariance over yt and yt−1 as

Σ = k(Xt−1,t,Xt−1,t)− k(Xt−1,t,X)K−1k(X,Xt−1,t),

where Xt−1,t is a matrix with xt−1 in the first row and xt in the
second.2 Since yt and yt−1 are jointly Gaussian, the conditional
distribution is Gaussian, with the mean and variance given by

µ = gy(xt) + Σ12Σ−1
22 (yt−1 − gy(xt−1))

σ = Σ11 − Σ12Σ−1
22 Σ21

prior to scaling and biasing. The conditional mean smoothly returns
the pose to gy(xt) following a deviation, and the speed of recovery
depends on the covariance between successive frames. To smoothly
satisfy the constraints, we simply replace the mean and variance in
Equation (8) with the conditional mean and variance given above.

6.3 Controller Switching

We can also use the conditional mean described in the previous sec-
tion to smoothly switch from one controller to another, for example
when the user chooses to change the current task or motion style.
We must simply find the position xt in the new controller’s latent
space that best resembles the current pose yt. This is done by opti-
mizing p(yt|xt) with respect to xt under the new model, using the
position of the closest example frame in the new model for initial-
ization. This optimization is similar to the one used by Grochow
et al. [2004], and can be performed at interactive rates. The mean
pose corresponding to xt may deviate from yt if the new controller
has different example motions, but the conditional mean provides a
smooth sequence of poses that blend into the new controller. Nat-
urally, this technique is only effective if the poses available to the
new controller do not vary too drastically from the old one. Other-
wise, a more sophisticated transition scheme may be required, such
as the transition controllers described by [Lee et al. 2009].

7 Evaluation

We evaluated our method on directional locomotion and karate
punches and kicks. In this evaluation, we analyze the results using
both motion capture and keyframed motions as input, and evalu-
ate the importance of the proposed connectivity prior by compar-
ing controllers trained with and without this term. We also com-
pare our controllers with a previous continuous control method by
Lee et al. [2010] and a graph-based discrete controller based on
prior work [Lee and Lee 2006; Treuille et al. 2007; McCann and
Pollard 2007]. Finally, we analyze how the method behaves as
the size of the dataset is increased. The accompanying video, to-
gether with an implementation of our method, is available from
http://graphics.stanford.edu/projects/ccclde.

2For the smoothest results, noise should not be added to the diagonal of
k(Xt−1,t,Xt−1,t), since the synthesized sequence will be noiseless.
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Figure 6: Comparison between our method, our method with a
standard GPDM without connectivity prior, motion fields, and a
discrete graph-based controller. Bars compare total reward over
1000 steps, graph shows deviation from target heading over time.

7.1 Controllers

Our controllers use either a directional or location-based task pa-
rameter space. Directional locomotion controllers use a one-
dimensional task parameter space consisting of the desired move-
ment direction in the coordinate frame of the character’s root, while
the martial arts controllers use a two-dimensional parameter space
consisting of the horizontal position of the target, in polar coordi-
nates around the character’s coordinate frame.

The reward function for locomotion tasks increases exponentially
as the difference between the current and desired velocity direction
approaches zero, in order to produce a sharp peak at the desired
heading. The reward function for martial arts tasks increases ex-
ponentially as the distance between the desired joint and the target
approaches zero, and is multiplied by a threshold function to ensure
the joint is traveling at sufficient velocity.

For each task, we constructed several controllers using various
datasets. The set of controllers shown in the accompanying video
is listed in Figure 5, along with the amount of data used for train-
ing. Locomotion controllers used four-dimensional latent spaces,
while the martial arts spaces used five dimensions. All latent space
figures show the first three dimensions. For walking and running
controllers, the data was mirrored to ensure that both left and right
turns are available. The table lists dataset sizes before mirroring.
Notably, our method was able to produce compelling walking and
running controllers from just two clips.

7.2 Nonhuman Characters

Example motions can be particularly scarce when they are produced
by an artist, which is often the case for characters that cannot be mo-
tion captured, such as animals or fantasy creatures. To demonstrate
that our method can produce controllers from small sets of such mo-
tions, we trained directional walking controllers from artist-created
animations of a horse, a dragon, and a dinosaur. These exam-
ples also demonstrate that our method can seamlessly animate both
bipedal and quadrupedal characters without special handling. The
datasets for these controllers are listed in Figure 5, and the accom-
panying video presents example animations.

7.3 Ablation and Comparisons

To evaluate the connectivity term proposed in Section 4.2, we tested
a set of controllers trained without this term, instead using the stan-
dard GPDM dynamics prior [Wang et al. 2008]. The results in
Figure 6 compare the total reward (without the quality term) ob-
tained by each controller on punching and walking tasks. Walking
controllers trained without the connectivity prior performed drasti-

http://graphics.stanford.edu/projects/ccclde


(a) (b)

Figure 7: Embeddings for the punching task (a) with and (b) with-
out the connectivity term. When using the standard GPDM prior
instead of the connectivity term, the embedding lacks the connec-
tions necessary for agile control.

cally worse, while karate punching could not be performed at all.
As shown in Figure 7, the standard GPDM could not embed the
karate data with any meaningful connections, making it unsuitable
for control. This indicates that the proposed connectivity term is
essential for using such models for interactive control tasks.

Figure 6 also shows the rewards obtained by the motion fields
method of Lee et al. [2010] and a discrete graph-based method
modeled on prior work [Lee and Lee 2006; McCann and Pollard
2007; Treuille et al. 2007]. The reward for the discrete controller
was integrated along graph edges for a fair comparison. Since mo-
tion fields do not use a probabilistic model to generalize the user-
provided examples, they require substantially more data to produce
compelling controllers. Although motion fields attained a higher
reward on the locomotion task than the graph controller, the small
dataset resulted in highly objectionable artifacts, as can be seen in
the accompanying video. We found that motion fields could pro-
duce walking results comparable to our small 4.5 second controller
with 21.3 seconds of data. Motion fields were unable to complete
the punching task with the datasets we had available. The discrete
graph-based method did not exhibit severe visual artifacts, but did
not possess the agility of continuous methods, as indicated by the
low reward it attained on the locomotion tasks.

7.4 Constrained Synthesis

We evaluated the constraints described in Section 6.1 and Ap-
pendix A on several controllers. All controllers in the accompa-
nying video use the skate cleanup constraint. We also present a
punching controller that uses a collision constraint to prevent the
character’s limbs from intersecting the target cylinder. In the ac-
companying video, the collision constraint can be seen to notice-
ably modify the character’s pose to prevent intersections, and the
character gracefully recovers after a collision without visible dis-
continuities due to the automatic probabilistic blending described
in Section 6.2. Finally, we show several examples of controllers
that use inverse kinematics constraints to alter the synthesized ani-
mation, including walking characters that keep their hands in their
pockets or point a weapon at a target, and a punching character
that is constrained to hold the target with the left hand. No addi-
tional data was used to produce these controllers. Images of the
constraints are shown in Figure 8, and example animations are pro-
vided in the accompanying video.

7.5 Controller Switching

We evaluated the controller switching technique described in Sec-
tion 6.3 by switching between walking and running, as well as

(a) (b) (c) (d)

Figure 8: We evaluated constrained synthesis with constraints that
(a) prevent the limbs from intersecting a cylindrical target, (b) keep
the left hand on the pole while punching, (c) keep the hands on the
hips, and (d) cause the character to point a weapon at a target.

punching and kicking. The controllers that were switched used
entirely different datasets, although the motions had considerable
qualitative similarity. As can be seen in the accompanying video,
an interesting effect of the conditional mean blending technique
from Section 6.2 is that tasks like running, which use faster mo-
tions, also exhibit quicker, more sudden transitions, while transi-
tions into walking are more gradual, reflecting the statistical prop-
erties of walking motions. As discussed in Section 6.3, the effec-
tiveness of this switching method depends on the similarity of the
motions in the two controllers, and switching between highly dis-
similar controllers may require more sophisticated machinery.

8 Discussion

We presented a method for animating interactively controlled
characters using a small set of user-provided example motions.
Our method continuously controls the character through a low-
dimensional space learned by our probabilistic motion model. The
learned motion space generalizes the examples, producing new
transitions and variations. By controlling the character in a con-
tinuous reduced space, we avoid the curse of dimensionality while
retaining the ability to continuously vary the character’s pose in
response to changes in the task and user input. As shown in the
accompanying video, our method can handle complex tasks such
as punching and kicking with just a few example motions, and can
rapidly respond to changes in user input.

8.1 Limitations on Larger Datasets

A common concern with GPLVM-based methods is their capac-
ity to handle large, heterogeneous datasets. We showed that ef-
fective controllers can be constructed from small sets of examples,
but not all tasks can be described with such small datasets. With
the aid of the connectivity prior, we could construct well-connected
embeddings from our entire walking and karate datasets (69 and
62 seconds in length, respectively). The quality of the resulting
controllers was comparable to those shown in the video, and the
karate controller exhibited a wider variety of motions. However,
the GPLVM is a nonparametric model, so the per-frame synthesis
time scales linearly with the size of the training dataset. Our unopti-
mized, single-threaded implementation could therefore only sustain
interactive animation rates on datasets under 30 seconds in length.
Switching from a state value function to a state-action Q-function
would improve runtime performance by a factor equal to the num-
ber of actions, since the poses resulting from each action would no
longer need to be computed, and sparse GP approximation tech-
niques could overcome the linear dependence on dataset size en-
tirely by using a constant number of basis functions [Quiñonero
Candela and Rasmussen 2005; Walder et al. 2008].

In addition to the synthesis cost, larger datasets also result in longer
training times. Since evaluating the objective in Equation (4) re-
quires inverting the kernel matrix, the training time scales cubically.



Sparse approximation techniques can overcome this limitation as
well, and have been effective for training larger GPLVM models
[Lawrence 2007].

Besides processing time, datasets with many heterogeneous mo-
tions also require greater care in selecting the latent space dimen-
sionality. The model generalizes better when dimensionality is low,
but if it is too low to represent the full variation in the data, the
controller may exhibit artifacts as dissimilar motions are placed
close together, or loss of agility as similar motions are placed far
apart. Small or homogeneous datasets are insensitive to dimension-
ality, but large heterogeneous datasets require more care. Auto-
matic methods for selecting latent space dimensionality can address
this limitation [Geiger et al. 2009; Titsias and Lawrence 2010].

8.2 Future Work

One interesting avenue for future work is to incorporate additional
domain knowledge into the model to improve generalization. For
example, our model is unaware of many physical constraints on
the character’s motion, such as contacts and balance. While high-
confidence poses appear physically plausible due to their similarity
to the data, low-confidence poses may not. The quality term in
the reward function prevents such regions from being visited, but
a more physically-aware model may allow more powerful general-
ization in the future.

Our probabilistic model learns the reduced space without consid-
ering the control task. This enables the same model to be used
with multiple controllers, but does not allow the dimensionality re-
duction process to emphasize task-relevant aspects of the data. An
interesting direction for future work is to more tightly connect the
two stages of our method, so that a more compact embedding could
be learned by leveraging knowledge about the intended task and
emphasizing those variations in the data that are most relevant.

Another exciting avenue for future work is to more effectively make
use of the entire distributions over poses produced by our model for
each point in the latent space. A hierarchical control scheme could
use the latent space to perform high-level planning while perform-
ing fine-grained low-level control in the space of full body poses,
subject to the distribution at the current latent position. For exam-
ple, our model could be used to guide a low-level physics-based
controller by providing it with a flexible objective that adjusts to
the current configuration of the character, or to provide high-level
planning for a manual manipulation controller to maneuver into po-
sition and manipulate an object. Another exciting direction for fu-
ture work is to apply dimensionality reduction techniques not just
to the space of motions, but also to the parameters of the task, in
order to handle complex tasks with many parameters.

Acknowledgements

We thank Mixamo and Yongjoon Lee for providing motion clips,
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A Constraints

The basis of the constraints described in this appendix is inverse
kinematics. In an inverse kinematics constraint, we wish to place
joint i at a location p. The form of the constraint is a quadratic
penalty for deviation from this location:

C(yt) = ‖F(yt)i − p‖2,

where F is the forward kinematics function that gives the position
of joint i for the pose yt. The gradient of this constraint can be
obtained with the chain rule using the Jacobian J of F . We can
also use the Jacobian to linearize the constraint as

J∆y = F(yt−1)i − p,

where ∆y = yt − yt−1. When the constraint violation in the pre-
vious frame is small, the linearized form is sufficient. However, we
found that even the nonlinear variant can be optimized sufficiently
fast to allow the controller to run in real time at 30 Hz.

Foot skate cleanup can be achieved by using the IK constraint to
fix the foot to remain in place during contacts. Previous methods
have suggested using annotated example clips to detect foot con-
tacts [Lee et al. 2010], which is compatible with our approach. To
avoid annotating the training data, we instead use a simple heuristic
to detect foot contacts and apply the constraint. We initiate a con-
tact when the foot’s height and velocity fall below fixed thresholds.
This contact is broken only if its desired velocity (according to the
conditional mean) has a positive vertical component and falls inside
a vertical cone, indicating that the foot is being lifted.

We can also use the IK formulation to constrain the character’s
limbs from penetrating solid objects. We demonstrate this by con-
straining the punching controller to avoid penetrating a cylindrical
target. The nonpenetration constraint is an IK constraint along the
direction orthogonal to the surface at the point of contact. When the
conditional mean penetrates the environment, we can approximate
this constraint as an equality for fast linearization. When there is
no penetration, the constraint is deactivated.

B Likelihood Gradients

In order to optimize the objective in Equation (4), we must compute
its gradients with respect to X and the hyperparameters ᾱ, β̄, W,
and Wẏ. The gradients of the GP terms LY , LẎ , and ΦD(X) are
discussed in previous work [Grochow et al. 2004], and the gradients
of the hyperparameter priors are straightforward to compute. The
gradient of the connectivity term with respect to X is given by

∂ΦC
∂X

= wc
∑
ij

∂Kd
ij

∂X

1

Kd
ij

= wc
∑
ij

∂ [exp(βH)]ij
∂X

1

Kd
ij

From [Kalbfleisch and Lawless 1985], the derivative of the matrix
exponential requires the eigenvalues λ and eigenvectors U of the
negative Laplacian H, which we compute with a symmetric QR
algorithm. The derivative is given by

∂ [exp(βH)]

∂X
= UVUT,

where V is defined as

Vij =

{
Gij

eβλi−eβλj
λi−λj

if i 6= j

βGiie
βλi if i = j

,

and G is defined as
G = UT ∂H

∂X
U.

The gradient of the Laplacian can be derived using the chain rule.


