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A. Additional Controlled Experiments

There are a number of hyperparameters and design
choices that affect performance. We present a set of con-
trolled experiments that validate each choice and provide
intuition on how these choices affect the results. These ex-
periments are performed on the validation set of the laser
scan data (the Dancing Children model).

A.1. Dimensionality

The most important parameter is the dimensionality of
the feature space. Figure 1 shows the performance of the
learned feature for five different settings of dimensionality.
As expected, increasing the dimensionality improves per-
formance. However, we observe diminishing returns after
n = 32.
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Figure 1. Precision of our learned feature as we increase the di-
mensionality of the embedding space.

A.2. Input Parameterization

Recall that our proposed input parameterization is
R = 17 subdivisions in the radial direction, E = 11 in the
elevation direction, A = 12 in the azimuth direction, and a
search radius of 17% of the diameter of the model. The re-
sultant dimensionality of the input histogram is N = 2,244.
In each experiment we select one of these parameters and

consider the parameterization resulting from changing this
value by ±2.

Figure 2 shows the precision for different values of the
number of radial subdivisions. The number of radial subdi-
visions is the only parameter where precision does not in-
crease as we increase the value of the parameter. As Figure
2 shows, R = 17 performs slightly better than the other two
settings.
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Figure 2. Precision of our learned feature as we increase the num-
ber of radial subdivisions.

If instead we increase both the number of radial subdivi-
sions and the search radius in tandem, as shown in Figure 3,
then precision continues to increase. The gain of going from
R = 17 with a search radius of 17% to R = 19 with a
search radius of 19% is smaller than the gain of going from
R = 15 with a search radius of 15% to R = 17 with a
search radius of 17%.

Figure 4 shows the precision for different values of the
number of elevation subdivisions. There is a gain of 1.7
percentage points in going from E = 9 to E = 11, and neg-
ligible gain thereafter.

Figure 5 shows the precision for different values of the
number of azimuth subdivisions. Precision increases as the
number of azimuth subdivisions increases, but the gains are
negligible.
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Figure 3. Precision of our learned feature as we increase the num-
ber of radial subdivisions and the search radius in tandem.
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Figure 4. Precision of our learned feature as we increase the num-
ber of elevation subdivisions.
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Figure 5. Precision of our learned feature as we increase the num-
ber of azimuth subdivisions.

A.3. Architecture Design

The architecture of our model consists of L = 5 hid-
den layers, each with H = 512 hidden units. As Figure 6
shows, L = 5 performs slightly better than using a model
architecture with L = 4 or L = 6 hidden layers. Further-
more there is a gain of 1.5 percentage points in going from

H = 256 to H = 512, with L = 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Percentage of model diameter (%)

0

10

20

30

40

50

P
re

ci
si

o
n
 (

%
)

L = 4
L = 5
L = 6
L = 5, H = 256

Figure 6. Precision of the learned feature as we vary the depth and
width of our model.

A.4. Other Design Choices

Alternatively, we could consider different loss functions
or different input parameterizations. Figure 7 shows the ef-
fect of two such modifications. The first uses SHOT fea-
tures as the input to our model, instead of our input pa-
rameterization. The second uses the contrastive loss for
training [1] instead of the triplet loss. Substituting SHOT
features for our input parameterization reduces precision
from 22.4% to 12%. Substituting the contrastive loss for
the triplet loss reduces precision to 2.75%.
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Figure 7. Effect of the input parameterization and the embedding
objective. Our input parameterization and loss are compared to us-
ing SHOT features as input (everything else held fixed) and using
a contrastive loss instead of the triplet loss (everything else fixed).

B. Additional Baselines

As an additional set of baselines we apply Principal
Components Analysis (PCA) to each of the baseline feature
descriptors to embed them into a 32-dimensional space.



Laser scan data. Figure 8 shows the precision of differ-
ent feature descriptors after applying PCA to embed each
into a 32-dimensional space on the laser scan test set. The
precision values for each feature after applying PCA are
27.9% for PCA USC, 26.5% for PCA SI, 21.2% for PCA
FPFH, 15.7% for PCA PFH, 14.8% for PCA RoPS, and
12% for PCA SHOT. These values can be compared to
the precision achieved by the original descriptors: 31.5%
for USC, 32.2% for SI, 21.2% for FPFH, 15.8% for PFH,
15.3% for RoPS, and 14.8% for SHOT. Most prior features
lose a few percentage points of precision when projected
into the lower-dimensional space. Both the original de-
scriptors and their lower-dimensional versions are consid-
erably less discriminative than our learned low-dimensional
descriptor.
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Figure 8. Precision of prior feature descriptors embedded into a
32-dimensional space using PCA, compared to CGF-32. Results
on the laser scan test set.

SceneNN data. Figure 9 shows the precision of differ-
ent feature descriptors after applying PCA to embed each
into a 32-dimensional space on the SceneNN test set. The
precision values for each feature after applying PCA are
22.4% for RoPS, 21% for PCA PFH, 20.7% for PCA FPFH,
20.6% for PCA USC, 18.2% for PCA SHOT, and 6.6%
for PCA SI. These values can be compared to the preci-
sion achieved by the original descriptors: 22.7% for RoPS,
21.1% for PFH, 20.7% for FPFH, 29.8% for USC, 20.2%
for SHOT, and 8.2% for SI. Most prior features lose a
few percentage points of precision when projected into the
lower-dimensional space. Both the original descriptors and
their lower-dimensional versions are considerably less dis-
criminative than our learned low-dimensional descriptor.

C. Approximate Nearest Neighbors

Approximate nearest neighbor algorithms accelerate
nearest neighbor queries in high-dimensional spaces by
loosening the constraint that the exact nearest neighbor
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Figure 9. Precision of prior feature descriptors embedded into a
32-dimensional space using PCA, compared to CGF-32. Results
on the SceneNN test set.

must be returned. Given a query point q, an approximate
nearest neighbor query returns a point p at distance within
a factor of K of the nearest-neighbor distance. The tradeoff
between speed and accuracy is controlled by the parameter
K.

We demonstrate that CGF-32 is robust to approximation.
Thus, in practice, our reported query times can be sped up
even further using approximate nearest neighbor queries, at
almost no loss in precision. The results for different values
of K are shown in Figure 10. For K = 20, CGF-32 loses
only 0.8 percentage points of precision at 1% of the model
diameter.

For the baseline features, at K = 20, FPFH loses 0.8 per-
centage points, PFH loses 1 percentage point, SHOT loses
1.6 percentage points, SI loses 2.3 percentage points, and
USC loses 9.9 percentage points.

D. Geometric Registration
Figure 11 (multiple pages) shows 20 randomly sampled

fragment pairs from the SceneNN test set and correspond-
ing alignments produced by FGR with CGF-32. This illus-
trates the quantitative results presented in Section 7.5 in the
paper.
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(a) FPFH (b) SHOT
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(c) PFH (d) USC
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Figure 10. Robustness of different feature spaces to approximate nearest neighbor search. As the approximation factor K increases, the
precision of retrieved matches decreases. Some feature spaces are more robust than others and the decline in precision as a factor of K
is smaller. For K = 20, our feature space loses only 0.8 percentage points in precision. USC is the least robust feature space, losing 9.9
percentage points for K = 20.
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Figure 11. Randomly sampled fragment pairs from the SceneNN test set (left, middle) and corresponding alignments produced by FGR
with CGF-32 (right).
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Figure 11 (cont.). Randomly sampled fragment pairs from the SceneNN test set (left, middle) and corresponding alignments produced by
FGR with CGF-32 (right).
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Figure 11 (cont.). Randomly sampled fragment pairs from the SceneNN test set (left, middle) and corresponding alignments produced by
FGR with CGF-32 (right).
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Figure 11 (cont.). Randomly sampled fragment pairs from the SceneNN test set (left, middle) and corresponding alignments produced by
FGR with CGF-32 (right).


