
Guided Policy Search

Sergey Levine svlevine@stanford.edu
Vladlen Koltun vladlen@stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305 USA

Abstract

Direct policy search can effectively scale
to high-dimensional systems, but complex
policies with hundreds of parameters often
present a challenge for such methods, requir-
ing numerous samples and often falling into
poor local optima. We present a guided pol-
icy search algorithm that uses trajectory op-
timization to direct policy learning and avoid
poor local optima. We show how differential
dynamic programming can be used to gener-
ate suitable guiding samples, and describe a
regularized importance sampled policy opti-
mization that incorporates these samples into
the policy search. We evaluate the method by
learning neural network controllers for planar
swimming, hopping, and walking, as well as
simulated 3D humanoid running.

1. Introduction

Reinforcement learning is a powerful framework for
controlling dynamical systems. Direct policy search
methods are often employed in high-dimensional ap-
plications such as robotics, since they scale gracefully
with dimensionality and offer appealing convergence
guarantees (Peters & Schaal, 2008). However, it is
often necessary to carefully choose a specialized pol-
icy class to learn the policy in a reasonable number
of iterations without falling into poor local optima.
Substantial improvements on real-world systems have
come from specialized and innovative policy classes
(Ijspeert et al., 2002). This specialization comes at
a cost in generality, and can restrict the types of be-
haviors that can be learned. For example, a policy
that tracks a single trajectory cannot choose different
trajectories depending on the state. In this work, we
aim to learn policies with very general and flexible rep-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

resentations, such as large neural networks, which can
represent a broad range of behaviors. Learning such
complex, nonlinear policies with standard policy gra-
dient methods can require a huge number of iterations,
and can be disastrously prone to poor local optima.

In this paper, we show how trajectory optimization can
guide the policy search away from poor local optima.
Our guided policy search algorithm uses differential
dynamic programming (DDP) to generate “guiding
samples,” which assist the policy search by exploring
high-reward regions. An importance sampled variant
of the likelihood ratio estimator is used to incorporate
these guiding samples directly into the policy search.

We show that DDP can be modified to sample from
a distribution over high reward trajectories, making
it particularly suitable for guiding policy search. Fur-
thermore, by initializing DDP with example demon-
strations, our method can perform learning from
demonstration. The use of importance sampled pol-
icy search also allows us to optimize the policy with
second order quasi-Newton methods for many gradient
steps without requiring new on-policy samples, which
can be crucial for complex, nonlinear policies.

Our main contribution is a guided policy search algo-
rithm that uses trajectory optimization to assist pol-
icy learning. We show how to obtain suitable guiding
samples, and we present a regularized importance sam-
pled policy optimization method that can utilize guid-
ing samples and does not require a learning rate or
new samples at every gradient step. We evaluate our
method on planar swimming, hopping, and walking, as
well as 3D humanoid running, using general-purpose
neural network policies. We also show that both the
proposed sampling scheme and regularizer are essen-
tial for good performance, and that the learned policies
can generalize successfully to new environments.

2. Preliminaries

Reinforcement learning aims to find a policy π to con-
trol an agent in a stochastic environment. At each time

Guided Policy Search

step t, the agent observes a state xt and chooses an
action according to π(ut|xt), producing a state transi-
tion according to p(xt+1|xt,ut). The goal is specified
by the reward r(xt,ut), and an optimal policy is one
that maximizes the expected sum of rewards (return)
from step 1 to T . We use ζ to denote a sequence of
states and actions, with r(ζ) and π(ζ) being the total
reward along ζ and its probability under π. We focus
on finite-horizon tasks in continuous domains, though
extensions to other formulations are also possible.

Policy gradient methods learn a parameterized policy
πθ by directly optimizing its expected return E[J(θ)]
with respect to the parameters θ. In particular, like-
lihood ratio methods estimate the gradient E[∇J(θ)]
using samples ζ1, . . . , ζm drawn from the current pol-
icy πθ, and then improve the policy by taking a step
along this gradient. The gradient can be estimated
using the following equation (Peters & Schaal, 2008):

E[∇J(θ)]=E[r(ζ)∇ log πθ(ζ)]≈ 1

m

m∑
i=1

r(ζi)∇ log πθ(ζi),

where ∇ log πθ(ζi) decomposes to
∑
t∇ log πθ(ut|xt),

since the transition model p(xt+1|xt,ut) does not de-
pend on θ. Standard likelihood ratio methods require
new samples from the current policy at each gradient
step, do not admit off-policy samples, and require the
learning rate to be chosen carefully to ensure conver-
gence. In the next section, we discuss how importance
sampling can be used to lift these constraints.

3. Importance Sampled Policy Search

Importance sampling is a technique for estimating an
expectation Ep[f(x)] with respect to p(x) using sam-
ples drawn from a different distribution q(x):

Ep [f(x)] = Eq

[
p(x)

q(x)
f(x)

]
≈ 1

Z

m∑
i=1

p(xi)

q(xi)
f(xi).

Importance sampling is unbiased if Z = m, though

we use Z =
∑
i
p(xi)
q(xi)

throughout as it provides lower

variance. Prior work proposed estimating E[J(θ)] with
importance sampling (Peshkin & Shelton, 2002; Tang
& Abbeel, 2010). This allows using off-policy samples
and results in the following estimator:

E[J(θ)] ≈ 1

Z(θ)

m∑
i=1

πθ(ζi)

q(ζi)
r(ζi). (1)

The variance of this estimator can be reduced further
by observing that past rewards do not depend on fu-
ture actions (Sutton et al., 1999; Baxter et al., 2001):

E[J(θ)] ≈
T∑
t=1

1

Zt(θ)

m∑
i=1

πθ(ζi,1:t)

q(ζi,1:t)
r
(
xit,u

i
t

)
, (2)

where πθ(ζi,1:t) denotes the probabiliy of the first t
steps of ζi, and Zt(θ) normalizes the weights. To in-
clude samples from multiple distributions, we follow
prior work and use a fused distribution of the form
q(ζ) = 1

n

∑
j qj(ζ), where each qj is either a previous

policy or a guiding distribution constructed with DDP.

Prior methods optimized Equation (1) or (2) directly.
Unfortunately, with complex policies and long rollouts,
this often produces poor results, as the estimator only
considers the relative probability of each sample and
does not require any of these probabilities to be high.
The optimum can assign a low probability to all sam-
ples, with the best sample slightly more likely than
the rest, thus receiving the only nonzero weight. Tang
and Abbeel (2010) attempted to mitigate this issue by
constraining the optimization by the variance of the
weights. However, this is ineffective when the distri-
butions are highly peaked, as is the case with long roll-
outs, because very few samples have nonzero weights,
and their variance tends to zero as the sample count in-
creases. In our experiments, we found this problem to
be very common in large, high-dimensional problems.

To address this issue, we augment Equation (2) with a
novel regularizing term. A variety of regularizers are
possible, but we found the most effective one to be the
logarithm of the normalizing constant:

Φ(θ) =

T∑
t=1

[
1

Zt(θ)

m∑
i=1

πθ(ζi,1:t)

q(ζi,1:t)
r(xit,u

i
t)+wr logZt(θ)

]
.

This objective is maximized using an analytic gradient
derived in Appendix A of the supplement. It is easy to
check that this estimator is consistent, since Zt(θ)→ 1
in the limit of infinite samples. The regularizer acts
as a soft maximum over the logarithms of the weights,
ensuring that at least some samples have a high proba-
bility under πθ. Furthermore, by adaptively adjusting
wr, we can control how far the policy is allowed to de-
viate from the samples, which can be used to limit the
optimization to regions that are better represented by
the samples if it repeatedly fails to make progress.

4. Guiding Samples

Prior methods employed importance sampling to reuse
samples from previous policies (Peshkin & Shelton,
2002; Kober & Peters, 2009; Tang & Abbeel, 2010).
However, when learning policies with hundreds of pa-
rameters, local optima make it very difficult to find a
good solution. In this section, we show how differential
dynamic programming (DDP) can be used to supple-
ment the sample set with off-policy guiding samples
that guide the policy search to regions of high reward.

Guided Policy Search

4.1. Constructing Guiding Distributions

An effective guiding distribution covers high-reward
regions while avoiding large q(ζ) densities, which result
in low importance weights. We posit that a good guid-
ing distribution is an I-projection of ρ(ζ) ∝ exp(r(ζ)).
An I-projection q of ρ minimizes the KL-divergence
DKL(q||ρ) = Eq[−r(ζ)] − H(q), where H denotes en-
tropy. The first term forces q to be high only in regions
of high reward, while the entropy maximization favors
broad distributions. We will show that an approxi-
mate Gaussian I-projection of ρ can be computed using
a variant of DDP called iterative LQR (Tassa et al.,
2012), which optimizes a trajectory by repeatedly solv-
ing for the optimal policy under linear-quadratic as-
sumptions. Given a trajectory (x̄1, ū1), . . . , (x̄T , ūT)
and defining x̂t = xt − x̄t and ût = ut − ūt, the dy-
namics and reward are approximated as

x̂t+1 ≈ fxtx̂t + futût

r(xt,ut) ≈ x̂T
t rxt + ûTrut +

1

2
x̂T
t rxxtx̂t +

1

2
ûT
t ruutût

+ ûT
t ruxtx̂t + r(x̄t, ūt).

Subscripts denote the Jacobians and Hessians of the
dynamics f and reward r, which are assumed to exist.1

Iterative LQR recursively estimates the Q-function:

Qxxt=rxxt+f
T
xtVxxt+1fxt Qxt=rxt+f

T
xtVxt+1

Quut=ruut+f
T
utVxxt+1fut Qut=rut+f

T
utVxt+1

Quxt=ruxt+f
T
utVxxt+1fxt,

as well as the value function and linear policy terms:

Vxt = Qxt −QT
uxtQ

−1
uutQu kt = −Q−1uutQut

Vxxt = Qxxt −QT
uxtQ

−1
uutQux Kt = −Q−1uutQuxt.

The deterministic optimal policy is then given by

g(xt) = ūt + kt + Kt(xt − x̄t). (3)

By repeatedly computing this policy and following it
to obtain a new trajectory, this algorithm converges to
a locally optimal solution. We now show how the same
algorithm can be used with the framework of linearly
solvable MDPs (Dvijotham & Todorov, 2010) and the
related concept of maximum entropy control (Ziebart,
2010) to build an approximate Gaussian I-projection of
ρ(ζ) ∝ exp(r(ζ)). Under this framework, the optimal
policy πG maximizes an augmented reward, given by

r̃(xt,ut) = r(xt,ut)−DKL(πG(·|xt)||p(·|xt)),
1In our implementation, the dynamics are differentiated

with finite differences and the reward is differentiated an-
alytically.

where p is a “passive dynamics” distribution. If p is
uniform, the expected return of a policy πG is

EπG [r̃(ζ)] = EπG [r(ζ)] +H(πG),

which means that if πG maximizes this return, it is
an I-projection of ρ. Ziebart (2010) showed that the
optimal policy under uniform passive dynamics is

πG(ut|xt) = exp(Qt(xt,ut)− Vt(xt)), (4)

where V is a modified value function given by

Vt(xt) = log

∫
exp (Qt(xt,ut)) dut.

Under linear dynamics and quadratic rewards, it can
be shown that V has the same form as the deriva-
tion above, and Equation 4 is a linear Gaussian with
the mean given by g(xt) and the covariance given by
−Q−1uut. This stochastic policy corresponds approx-
imately to a Gaussian distribution over trajectories.
We can therefore sample from an approximate Gaus-
sian I-projection of ρ by following the stochastic policy

πG(ut|xt) = G(ut; g(xt),−Q−1uut).

It should be noted that πG(ζ) is only Gaussian un-
der linear dynamics. When the dynamics are nonlin-
ear, πG(ζ) approximates a Gaussian around the nomi-
nal trajectory. Fortunately, the feedback term usually
keeps the samples close to this trajectory, making them
suitable guiding samples for the policy search.

4.2. Adaptive Guiding Distributions

The distribution in the preceding section captures
high-reward regions, but does not consider the current
policy πθ. We can adapt it to πθ by sampling from an I-
projection of ρθ(ζ) ∝ exp(r(ζ))πθ(ζ), which is the op-
timal distribution for estimating Eπθ [exp(r(ζ))].2 To
construct the approximate I-projection of ρθ, we sim-
ply run the DDP algorithm with the reward r̄(xt,ut) =
r(xt,ut) + log πθ(ut|xt). The resulting distribution is
then an approximate I-projection of ρθ(ζ) ∝ exp(r̄(ζ)).

In practice, we found that many domains do not re-
quire adaptive samples. As discussed in the evaluation,
adaptation becomes necessary when the initial samples
cannot be reproduced by any policy, such as when they
act differently in similar states. In that case, adapted
samples will avoid different actions in similar states,
making them more suited for guiding the policy.

2While we could also consider the optimal sampler for
Eπθ [r(ζ)], such a sampler would also need to also cover re-
gions with very low reward, which are often very large and
would not be represented well by a Gaussian I-projection.

Guided Policy Search

4.3. Incorporating Guiding Samples

We incorporate guiding samples into the policy search
by building one or more initial DDP solutions and sup-
plying the resulting samples to the importance sam-
pled policy search algorithm. These solutions can be
initialized with human demonstrations or with an of-
fline planning algorithm. When learning from demon-
strations, we can perform just one step of DDP start-
ing from the example demonstration, thus construct-
ing a Gaussian distribution around the example. If
adaptive guiding distributions are used, they are con-
structed at each iteration of the policy search starting
from the previous DDP solution.

Although our policy search component is model-free,
DDP requires a model of the system dynamics. Nu-
merous recent methods have proposed to learn the
model (Abbeel et al., 2006; Deisenroth & Rasmussen,
2011; Ross & Bagnell, 2012), and if we use initial ex-
amples, only local models are required. In Section 8,
we also discuss model-free alternatives to DDP.

One might also wonder why the DDP policy πG is not
itself a suitable controller. The issue is that πG is time-
varying and only valid around a single trajectory, while
the final policy can be learned from many DDP solu-
tions in many situations. Guided policy search can
be viewed as transforming a collection of trajectories
into a controller. This controller can adhere to any pa-
rameterization, reflecting constraints on computation
or available sensors in partially observed domains. In
our evaluation, we show that such a policy generalizes
to situations where the DDP policy fails.

5. Guided Policy Search

Algorithm 1 summarizes our method. On line 1, we
build one or more DDP solutions, which can be ini-
tialized from demonstrations. Initial guiding samples
are sampled from these solutions and used on line 3 to
pretrain the initial policy πθ? . Since the samples are
drawn from stochastic feedback policies, πθ? can al-
ready learn useful feedback rules during this pretrain-
ing stage. The sample set S is constructed on line 4
from the guiding samples and samples from πθ? , and
the policy search then alternates between optimizing
Φ(θ) and gathering new samples from the current pol-
icy πθk . If the sample set S becomes too big, a subset
Sk is chosen on line 6. In practice, we simply choose
the samples with high importance weights under the
current best policy πθ? , as well as the guiding samples.

The objective Φ(θ) is optimized on line 7 with LBFGS.
This objective can itself be susceptible to local optima:
when the weight on a sample is very low, it is effec-

Algorithm 1 Guided Policy Search

1: Generate DDP solutions πG1 , . . . , πGn
2: Sample ζ1, . . . , ζm from q(ζ) = 1

n

∑
i πGi(ζ)

3: Initialize θ? ← arg maxθ
∑
i log πθ?(ζi)

4: Build initial sample set S from πG1 , . . . , πGn , πθ?

5: for iteration k = 1 to K do
6: Choose current sample set Sk ⊂ S
7: Optimize θk ← arg maxθ ΦSk(θ)
8: Append samples from πθk to Sk and S
9: Optionally generate adaptive guiding samples

10: Estimate the values of πθk and πθ? using Sk
11: if πθk is better than πθ? then
12: Set θ? ← θk
13: Decrease wr
14: else
15: Increase wr
16: Optionally, resample from πθ?

17: end if
18: end for
19: Return the best policy πθ?

tively ignored by the optimization. If the guiding sam-
ples have low weights, the optimization cannot benefit
from them. To mitigate this issue, we repeat the op-
timization twice, once starting from the best current
parameters θ?, and once by initializing the parameters
with an optimization that maximizes the log weight
on the highest-reward sample. Prior work suggested
restarting the optimization from each previous policy
(Tang & Abbeel, 2010), but this is very slow with com-
plex policies, and still fails to explore the guiding sam-
ples, for which there are no known policy parameters.

Once the new policy πθk is optimized, we add samples
from πθk to S on line 8. If we are using adaptive guid-
ing samples, the adaptation is done on line 9 and new
guiding samples are also added. We then use Equa-
tion 2 to estimate the returns of both the new policy
and the current best policy πθ? on line 10. Since Sk
now contains samples from both policies, we expect the
estimator to be accurate. If the new policy is better, it
replaces the best policy. Otherwise, the regularization
weight wr is increased. Higher regularization causes
the next optimization to stay closer to the samples,
making the estimated return more accurate. Once the
policy search starts making progress, the weight is de-
creased. In practice, we clamp wr between 10−2 and
10−6 and adjust it by a factor of 10. We also found
that the policy sometimes failed to improve if the sam-
ples from πθ? had been unusually good by chance. To
address this, we draw additional samples from πθ? on
line 16 to prevent the policy search from getting stuck
due to an overestimate of the best policy’s value.

Guided Policy Search

6. Experimental Evaluation

We evaluated our method on planar swimming, hop-
ping, and walking, as well as 3D running. Each task
was simulated with the MuJoCo simulator (Todorov
et al., 2012), using systems of rigid links with noisy
motors at the joints.3 The policies were represented by
neural network controllers that mapped current joint
angles and velocities directly to joint torques. The re-
ward function was a sum of three terms:

r(x,u) = −wu ||u||2 − wv(vx − v?x)2 − wh(py − p?y)2,

where vx and v?x are the current and desired horizon-
tal velocities, py and p?y are the current and desired
heights of the root link, and wu, wv, and wh deter-
mine the weight on each objective term. The weights
for each task are given in Appendix B of the supple-
ment, along with descriptions of each simulated robot.

The policy was represented by a neural network with
one hidden layer, with a soft rectifying nonlinearity
a = log(1 + exp(z)) at the first layer and linear con-
nections to the output layer. Gaussian noise was added
to the output to create a stochastic policy. The pol-
icy search ran for 80 iterations, with 40 initial guiding
samples, 10 samples added from the current policy at
each iteration, and up to 100 samples selected for the
active set Sk. Adaptive guiding distributions were only
used in Section 6.2. Adaptation was performed in the
first 40 iterations, with 50 DDP iterations each time.

The initial guiding distributions for the swimmer and
hopper were generated directly with DDP. To illustrate
the capacity of our method to learn from demonstra-
tion, the initial example trajectory for the walker was
obtained from a prior locomotion system (Yin et al.,
2007), while the 3D humanoid was initialized with ex-
ample motion capture of human running.

When using examples, we regularized the reward with
a tracking term equal to the squared deviation from
the example states and actions, with a weight of 0.05.
This term serves to keep the guiding samples close to
the examples and ensures that the policy covariance is
positive definite. The same term was also used with
the swimmer and hopper for consistency. The tracking
term was only used for the initial guiding distributions,
and was not used during the policy search.

The swimmer, hopper, and walker are shown in Fig-
ure 1, with plots of the root position under the learned
policies and under the initial DDP solution. The 3D
humanoid is shown in Figure 5.

3The standard deviation of the noise at each joint was
set to 10% of the standard deviation of its torques in the
initial DDP-generated gait.

Figure 1. Plots of the root trajectory for the swimmer, hop-
per, and walker. The green lines are samples from learned
policies, and the black line is the DDP solution.

6.1. Comparisons

In the first set of tests, we compared to three variants
of our algorithm and three prior methods, using the
planar swimmer, hopper, and walker domains. The
time horizon was 500, and the policies had 50 hidden
units and up to 1256 parameters. The first variant did
not use the regularization term.4 The second, referred
to as “non-guided,” did not use the guiding samples
during the policy search. The third variant also did
not use the guiding samples in the policy objective,
but used the guiding distributions as “restart distri-
butions” to specify new initial state distributions that
cover states we expect to visit under a good policy,
analogously to prior work (Kakade & Langford, 2002;
Bagnell et al., 2003). This comparison was meant to
check that the guiding samples actually aided policy
learning, rather than simply focusing the policy search
on “good” states. All variants initialize the policy by
pretraining on the guiding samples.

The first prior method, referred to as “single exam-
ple,” initialized the policy using the single initial exam-
ple, as in prior work on learning from demonstration,
and then improved the policy with importance sam-
pling but no guiding samples, again as in prior work
(Peshkin & Shelton, 2002). The second method used
standard policy gradients, with a PGT or GPOMDP-
type estimator (Sutton et al., 1999; Baxter et al.,
2001). The third method was DAGGER, an imita-
tion learning algorithm that aims to find a policy that
matches the “expert” DDP actions (Ross et al., 2011).

The results are shown in Figure 2 in terms of the mean
reward of the 10 samples at each iteration, along with
the value of the initial example and a shaded interval
indicating two standard deviations of the guiding sam-
ple values. Our algorithm learned each gait, matching
the reward of the initial example. The comparison to
the unregularized variant shows that the proposed reg-
ularization term is crucial for obtaining a good policy.
The non-guided variant, which only used the guiding
samples for pretraining, sometimes found a good solu-
tion because even a partially successful initial policy

4We also evaluated the ESS constraint proposed by
Tang and Abbeel, but found that it performed no better
on our tasks than the unregularized variant.

Guided Policy Search

guiding samples

initial trajectory

complete GPS

unregularized

non-guided
restart distribution

single example

policy gradient

DAGGER

walker, 20 hidden units

iteration

m
ea

n
re

w
ar

d

10 20 30 40 50 60 70 80

-5k

-4k

-3k

-2k

-1k

0k
walker, 50 hidden units

iteration

m
ea

n
re

w
ar

d

10 20 30 40 50 60 70 80

-5k

-4k

-3k

-2k

-1k

0k
hopper, 50 hidden units

iteration

m
ea

n
re

w
ar

d

10 20 30 40 50 60 70 80

-5k

-4k

-3k

-2k

-1k

0k
swimmer, 50 hidden units

iteration

m
ea

n
re

w
ar

d

10 20 30 40 50 60 70 80
-1.2k

-1.1k

-1.0k

-0.9k

Figure 2. Comparison of guided policy search (GPS) with ablated variants and prior methods. Our method successfully
learns each gait, while methods that do not use guiding samples or regularization fail to make progress. All methods use
10 rollouts per iteration. Guided variants (GPS, unregularized, restart, DAGGER) also use 40 guiding samples.

may succeed on one of its initial samples, which then
serves the same function as the guiding samples by
indicating high-reward regions. However, a successful
non-guided outcome hinged entirely on the initial pol-
icy. This is illustrated by the fourth graph in Figure 2,
which shows a walking policy with 20 hidden units that
is less successful initially. The full algorithm was still
able to improve using the guiding samples, while the
non-guided variant did not make progress. The restart
distribution variant performed poorly. Wider initial
state distributions greatly increased the variance of
the estimator, and because the guiding distributions
were only used to sample states, their ability to also
point out good actions was not leveraged.

Standard policy gradient and “single example” learn-
ing from demonstration methods failed to learn any of
the gaits. This suggests that guiding samples are cru-
cial for learning such complex behaviors, and initializa-
tion from a single example is insufficient. DAGGER
also performed poorly, since it assumed that the ex-
pert could provide optimal actions in all states, while
the DDP policy was actually only valid close to the
example. DAGGER therefore wasted a lot of effort on
states where the DDP policy was not valid, such as
after the hopper or walker fell.

walker torques

time step

R
M

S
 to

rq
ue

 (
N

m
)

1 10 20 30 40 50 60 70 80
0

2

4

6

8

10

GPS
DDP
samples

Interestingly, the GPS poli-
cies often used less torque
than the initial DDP solu-
tion. The plot on the right
shows the torque magni-
tudes for the walking pol-
icy, the deterministic DDP policy around the example,
and the guiding samples. The smoother, more compli-
ant behavior of the learned policy can be explained in
part by the fact that the neural network can produce
more subtle corrections than simple linear feedback.

6.2. Adaptive Resampling

The initial trajectories in the previous section could all
be reproduced by neural networks with sufficient train-
ing, making adaptive guiding distributions unneces-
sary. In the next experiment, we constructed a walking

example that switched to another gait after 2.5s, mak-
ing the initial guiding samples difficult to recreate with
a stationary policy. As discussed in Section 4.2, adapt-
ing the guiding distribution to the policy can produce
more suitable samples in such cases.

walker, adaptation test

iteration

m
ea

n
re

w
ar

d

10 20 30 40 50 60 70 80

-3k

-2k

-1k

0k

adapted

not adaptated

The plot on the right shows
the results with and with-
out adaptive samples. With
adaptation, our algorithm
quickly learned a success-
ful gait, while without it, it
made little progress.5 The supplemental video shows
that the final adapted example has a single gait that
resembles both initial gaits. In practice, adaptation is
useful if the examples are of low quality, or if the obser-
vations are insufficient to distinguish states where they
takes different actions. As the examples are adapted,
the policy encourages the DDP solution to be more
regular. In future work, it would be interesting to see
if this iterative process can find trajectories that are
too complex to be found by either method alone.

6.3. Generalization

Next, we explore how our policies generalize to new en-
vironments. We trained a policy with 100 hidden units
to walk 4m on flat ground, and then climb a 10◦ in-
cline. The policy could not perceive the slope, and the
root height was only given relative to the ground. We
then moved the start of the incline and compared our
method to the initial DDP policy, as well as a simpli-
fied trajectory-based dynamic programming (TBDP)
approach that aggregates local DDP policies and uses
the policy of the nearest neighbor to the current state
(Atkeson & Stephens, 2008). Prior TBDP methods
add new trajectories until the TBDP policy achieves
good results. Since the initial DDP policy already suc-
ceeds on the training environment, only this initial pol-
icy was used. Both methods therefore used the same
DDP solution: TBDP used it to build a nonparametric
policy, and GPS used it to generate guiding samples.

5Note that the adapted variant used 20 samples per
iteration: 10 on-policy and 10 adaptive guiding samples.

Guided Policy Search

inclined terrain walking

incline location

m
ea

n
re

w
ar

d

-4.0m -2.4m -0.8m 0.8m 2.4m 4.0m
-7k

-6k

-5k

-4k

-3k

-2k

-1k

0k

GPS

TBDP
DDP

GPS:

TBDP:

DDP:

+1.2m rollouts:

Figure 3. Comparison of GPS, TBDP, and DDP at varying
incline locations (left) and plots of their rollouts (right).
GPS and TBDP generalized to all incline locations.

training terrain:

test 1:

test 2:

test 3:

test 4:

GPS
[-828]

GPS
[-851]

GPS
[-832]

GPS
[-806]

TBDP
[-6375]

TBDP
[-6643]

TBDP
[-7118]

TBDP
[-6030]

DDP [-8016]

DDP [-7955]

DDP [-7885]

DDP [-7654]

Figure 4. Rollouts of GPS, TBDP, and DDP on test ter-
rains, shown as colored trajectories, with mean rewards
in brackets. All DDP rollouts and most TBDP rollouts
fall within a few steps, and all TBDP rollouts fall before
reaching the end, while GPS generalizes successfully.

As shown in Figure 3, GPS generalized to all positions,
while the DDP policy, which expected the incline to
start at a specific time, could only climb it in a small
interval around its original location. The TBDP solu-
tion was also able to generalize successfully.

In the second experiment, we trained a walking policy
on terrain consisting of 1m and 2m segments with vary-
ing slopes, and tested on four random terrains. The
results in Figure 4 show that GPS generalized to the
new terrains, while the nearest-neighbor TBDP pol-
icy did not, with all rollouts eventually failing on each
test terrain. Unlike TBDP, the GPS neural network
learned generalizable rules for balancing on sloped ter-
rain. While these rules might not generalize to much
steeper inclines without additional training, they in-
dicate a degree of generalization significantly greater
than nearest-neighbor lookup. Example rollouts from
each policy are shown in the supplemental video.6

6The videos can be viewed on the project website at
http://graphics.stanford.edu/projects/gpspaper/index.htm

test 1:

test 2:

test 3:

test 4:

GPS
[-161]

GPS
[-157]

GPS
[-174]

GPS
[-184]

TBDP
[-3418]

TBDP
[-3425]

TBDP
[-3787]

TBDP
[-3649]

Figure 5. Humanoid running on test terrains, with mean
rewards in brackets (left), along with illustrations of the 3D
humanoid model (right). Our approach again successfully
generalized to the test terrains, while the TBDP policy is
unable to maintain balance.

6.4. Humanoid Running

In our final experiment, we used our method to learn
a 3D humanoid running gait. This task is highly dy-
namic, requires good timing and balance, and has
63 state dimensions, making it well suited for ex-
ploring the capacity of our method to scale to high-
dimensional problems. Previous locomotion methods
often rely on hand-crafted components to introduce
prior knowledge or ensure stability (Tedrake et al.,
2004; Whitman & Atkeson, 2009), while our method
used only general purpose neural networks.

As in the previous section, the policy was trained on
terrain of varying slope, and tested on four random
terrains. Due to the complexity of this task, we used
three different training terrains and a policy with 200
hidden units. The motor noise was reduced from 10%
to 1%. The guiding distributions were initialized from
motion capture of a human run, and DDP was used to
find the torques that realized this run on each train-
ing terrain. Since the example was recorded on flat
ground, we used more mild 3◦ slopes.

Rollouts from the learned policy on the test terrains
are shown in Figure 5, with comparisons to TBDP.
Our method again generalized to all test terrains, while
TBDP did not. This indicates that the task required
nontrivial generalization (despite the mild slopes), and
that GPS was able to learn generalizable rules to main-
tain speed and balance. As shown in the supplemental
video, the learned gait also retained the smooth, life-
like appearance of the human demonstration.

http://graphics.stanford.edu/projects/gpspaper/index.htm

Guided Policy Search

7. Previous Work

Policy gradient methods often require on-policy sam-
ples at each gradient step, do not admit off-policy
samples, and cannot use line searches or higher order
optimization methods such as LBFGS, which makes
them difficult to use with complex policy classes (Pe-
ters & Schaal, 2008). Our approach follows prior meth-
ods that use importance sampling to address these
challenges (Peshkin & Shelton, 2002; Kober & Peters,
2009; Tang & Abbeel, 2010). While these methods re-
cycle samples from previous policies, we also introduce
guiding samples, which dramatically speed up learning
and help avoid poor local optima. We also regular-
ize the importance sampling estimator, which prevents
the optimization from assigning low probabilities to all
samples. The regularizer controls how far the policy
deviates from the samples, serving a similar function
to the natural gradient, which bounds the information
loss at each iteration (Peters & Schaal, 2008). Unlike
Tang and Abbeel’s ESS constraint (2010), our regular-
izer does not penalize reliance on a few samples, but
does avoid policies that assign a low probability to all
samples. Our evaluation shows that the regularizer
can be crucial for learning effective policies.

Since the guiding distributions point out high reward
regions to the policy search, we can also consider prior
methods that explore high reward regions by using
restart distributions for the initial state (Kakade &
Langford, 2002; Bagnell et al., 2003). Our restart dis-
tribution variant is similar to Kakade and Langford
with α = 1. In our evaluation, this approach suffers
from the high variance of the restart distribution, and
is outperformed significantly by GPS.

We also compare to a nonparametric trajectory-based
dynamic programming method. While several TBDP
methods have been proposed (Atkeson & Morimoto,
2002; Atkeson & Stephens, 2008), we used a sim-
ple nearest-neighbor variant with a single trajectory,
which is suitable for episodic tasks with a single ini-
tial state. Unlike GPS, TBDP cannot learn arbitrary
parametric policies, and in our experiments, GPS ex-
hibited better generalization on rough terrain.

The guiding distributions can be built from expert
demonstrations. Many prior methods use expert ex-
amples to aid learning. Imitation methods such as
DAGGER directly mimic the expert (Ross et al.,
2011), while our approach maximizes the actual return
of the policy, making it less vulnerable to suboptimal
experts. DAGGER fails to make progress on our tasks,
since it assumes that the DDP actions are optimal in
all states, while they are only actually valid near the
example. Additional DDP optimization from every

visited state could produce better actions, but would
be quadratic in the trajectory length, and would still
not guarantee optimal actions, since the local DDP
method cannot recover from all failures.

Other previous methods follow the examples directly
(Abbeel et al., 2006), or use the examples for super-
vised initialization of special policy classes (Ijspeert
et al., 2002). The former methods usually produce
nonstationary feedback policies, which have limited ca-
pacity to generalize. In the latter approach, the policy
class must be chosen carefully, as supervised learning
does not guarantee that the policy will reproduce the
examples: a small mistake early on could cause dras-
tic deviations. Since our approach incorporates the
guiding samples into the policy search, it does not rely
on supervised learning to learn the examples, and can
therefore use flexible, general-purpose policy classes.

8. Discussion and Future Work

We presented a guided policy search algorithm that
can learn complex policies with hundreds of parame-
ters by incorporating guiding samples into the policy
search. These samples are drawn from a distribution
built around a DDP solution, which can be initialized
from demonstrations. We evaluated our method using
general-purpose neural networks on a range of chal-
lenging locomotion tasks, and showed that the learned
policies generalize to new environments.

While our policy search is model-free, it is guided by a
model-based DDP algorithm. A promising avenue for
future work is to build the guiding distributions with
model-free methods that either build trajectory follow-
ing policies (Ijspeert et al., 2002) or perform stochastic
trajectory optimization (Kalakrishnan et al., 2011).

Our rough terrain results suggest that GPS can gen-
eralize by learning basic locomotion principles such as
balance. Further investigation of generalization is an
exciting avenue for future work. Generalization could
be improved by training on multiple environments, or
by using larger neural networks with multiple layers or
recurrent connections. It would be interesting to see
whether such extensions could learn more general and
portable concepts, such as obstacle avoidance, pertur-
bation recoveries, or even higher-level navigation skills.

Acknowledgements

We thank Emanuel Todorov, Tom Erez, and Yuval
Tassa for providing the simulator used in our experi-
ments. Sergey Levine was supported by NSF Graduate
Research Fellowship DGE-0645962.

Guided Policy Search

References

Abbeel, P., Coates, A., Quigley, M., and Ng, A. An ap-
plication of reinforcement learning to aerobatic he-
licopter flight. In Advances in Neural Information
Processing Systems (NIPS 19), 2006.

Atkeson, C. and Morimoto, J. Nonparametric rep-
resentation of policies and value functions: A
trajectory-based approach. In Advances in Neural
Information Processing Systems (NIPS 15), 2002.

Atkeson, C. and Stephens, B. Random sampling of
states in dynamic programming. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 38(4):
924–929, 2008.

Bagnell, A., Kakade, S., Ng, A., and Schneider, J. Pol-
icy search by dynamic programming. In Advances in
Neural Information Processing Systems (NIPS 16),
2003.

Baxter, J., Bartlett, P., and Weaver, L. Experi-
ments with infinite-horizon, policy-gradient estima-
tion. Journal of Artificial Intelligence Research, 15:
351–381, 2001.

Deisenroth, M. and Rasmussen, C. PILCO: a model-
based and data-efficient approach to policy search.
In International Conference on Machine Learning
(ICML), 2011.

Dvijotham, K. and Todorov, E. Inverse optimal con-
trol with linearly-solvable MDPs. In International
Conference on Machine Learning (ICML), 2010.

Ijspeert, A., Nakanishi, J., and Schaal, S. Move-
ment imitation with nonlinear dynamical systems
in humanoid robots. In International Conference
on Robotics and Automation, 2002.

Kakade, S. and Langford, J. Approximately opti-
mal approximate reinforcement learning. In Inter-
national Conference on Machine Learning (ICML),
2002.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor,
P., and Schaal, S. STOMP: stochastic trajectory
optimization for motion planning. In International
Conference on Robotics and Automation, 2011.

Kober, J. and Peters, J. Learning motor primitives for
robotics. In International Conference on Robotics
and Automation, 2009.

Peshkin, L. and Shelton, C. Learning from scarce ex-
perience. In International Conference on Machine
Learning (ICML), 2002.

Peters, J. and Schaal, S. Reinforcement learning of
motor skills with policy gradients. Neural Networks,
21(4):682–697, 2008.

Ross, S. and Bagnell, A. Agnostic system identification
for model-based reinforcement learning. In Inter-
national Conference on Machine Learning (ICML),
2012.

Ross, S., Gordon, G., and Bagnell, A. A reduction of
imitation learning and structured prediction to no-
regret online learning. Journal of Machine Learning
Research, 15:627–635, 2011.

Sutton, R., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural
Information Processing Systems (NIPS 11), 1999.

Tang, J. and Abbeel, P. On a connection between
importance sampling and the likelihood ratio policy
gradient. In Advances in Neural Information Pro-
cessing Systems (NIPS 23), 2010.

Tassa, Y., Erez, T., and Todorov, E. Synthesis and
stabilization of complex behaviors through online
trajectory optimization. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012.

Tedrake, R., Zhang, T., and Seung, H. Stochastic pol-
icy gradient reinforcement learning on a simple 3d
biped. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2004.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo:
A physics engine for model-based control. In
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012.

Whitman, E. and Atkeson, C. Control of a walking
biped using a combination of simple policies. In 9th
IEEE-RAS International Conference on Humanoid
Robots, 2009.

Yin, K., Loken, K., and van de Panne, M. SIMBICON:
simple biped locomotion control. ACM Transactions
Graphics, 26(3), 2007.

Ziebart, B. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. PhD the-
sis, Carnegie Mellon University, 2010.

Guided Policy Search

A. Objective Gradients

To compute the gradient ∇Φ(θ), we first write the gra-
dient in terms of the gradients of Zt(θ) and πθ:

∇Φ(θ) =

T∑
t=1

[
1

Zt(θ)

m∑
i=1

∇πθ(ζi,1:t)
q(ζi,1:t)

r(xit,u
i
t)−

∇Zt(θ)
Zt(θ)2

m∑
i=1

πθ(ζi,1:t)

q(ζi,1:t)
r(xit,u

i
t) + wr

∇Zt(θ)
Zt(θ)

]
.

From the definition of Zt(θ), we have that

∇Zt(θ)
Zt(θ)

=
1

Zt(θ)

m∑
i=1

∇πθ(ζi,1:t)
q(ζi,1:t)

.

Letting J̃t(θ) = 1
Zt(θ)

∑m
i=1

πθ(ζi,1:t)
q(ζi,1:t)

r(xit,u
i
t), we can

rewrite the gradient as

∇Φ(θ) =

T∑
t=1

1

Zt(θ)

m∑
i=1

∇πθ(ζi,1:t)
q(ζi,1:t)

[
r(xit,u

i
t)−J̃t(θ)+wr

]
=

T∑
t=1

1

Zt(θ)

m∑
i=1

πθ(ζi,1:t)

q(ζi,1:t)
∇ log πθ(ζi,1:t)ξ

i
t,

using the identity ∇πθ(ζ) = πθ(ζ)∇ log πθ(ζ). When
the policy is represented by a large neural network,
it is convenient to write the gradient as a sum where
the output at each state appears only once, to produce
a set of errors that can be fed into a standard back-
propagation algorithm. For a neural network policy
with uniform output noise σ and mean µ(xt), we have

∇ log πθ(ζi,1:t) =
∑
t

∇ log πθ(ut|xt)

=
∑
t

∇µ(xt)
ut − µ(xt)

σ2
,

and the gradient of the objective is given by

∇Φ(θ) =

T∑
t=1

m∑
i=1

∇µ(xit)
uit − µ(xit)

σ2

T∑
t′=t

1

Zt′(θ)

πθ(ζi,1:t′)

q(ζi,1:t′)
ξit′ .

The gradient can now be computed efficiently by feed-
ing the terms after ∇µ(xit) into the standard back-
propagation algorithm.

B. Dynamic System Descriptions

This appendix describes the dynamical systems cor-
responding to the simulated robots in the swimming,
hopping, and walking tasks. Images of each robot are
provided in Figure 1 of the paper.

Swimmer: The swimmer is a 3-link snake, with 10
state dimensions for the position and angle of the head,
the joint angles, and the corresponding velocities, as
well as 2 action dimensions for the torques. The sur-
rounding fluid applies a drag on each link, allowing the
snake to propel itself. The simulation step is 0.05s, the
reward weights are wu = 0.0001, wv = 1, and wh = 0,
and the desired velocity is v?x = 2m/s.

Hopper: The hopper has 4 links: torso, upper leg,
lower leg, and foot. The state has 12 dimensions, and
the actions have 3. To make it easier to optimize a gait
with DDP, we employed a softened contact model as
proposed in (Tassa et al., 2012). The reward weights
are wu = 0.001, wv = 1, and wh = 10, and the desired
velocity and height are v?x = 1.5m/s and p?y = 1.5m. A
lower time step of 0.02s was used to handle contacts.

Walker: The walker has 7 links, corresponding to
two legs and a torso, 18 state dimensions and 6 torques.
The reward weights are wu = 0.0001, wv = 1, and
wh = 10, and the desired velocity and height are v?x =
1.2m/s and p?y = 1.5m. The time step is 0.01s.

3D Humanoid: The humanoid consists of 13 links,
with a free-floating 6 DoF base, 4 ball joints, 3 joints
with 2 DoF, and 5 hinge joints, for a total of 29 degrees
of freedom. Ball joints are represented by quaternions,
while their velocities are represented by 3D vectors,
so the entire model has 63 dimensions. The reward
weights are are wu = 0.00001, wv = 1, and wh = 10,
and the desired velocity and height are v?x = 2.5m/s
and p?y = 0.9m. The time step is 0.01s. Due to the
complexity of this model, the joint noise was reduced
from 10% of example torque variance to 1%.

