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Abstract— We present a hand-held system for real-time,
interactive acquisition of residential floor plans. The system
integrates a commodity range camera, a micro-projector, and
a button interface for user input and allows the user to freely
move through a building to capture its important architectural
elements. The system uses the Manhattan world assumption,
which posits that wall layouts are rectilinear. This assumption
allows generating floor plans in real time, enabling the operator
to interactively guide the reconstruction process and to resolve
structural ambiguities and errors during the acquisition. The
interactive component aids users with no architectural training
in acquiring wall layouts for their residences. We show a
number of residential floor plans reconstructed with the system.

I. INTRODUCTION

Acquiring an accurate floor plan of a home is a challenging
task, yet it is a requirement in many situations that involve
remodeling or selling a property. Original blueprints are often
hard to find, especially for older residences. In practice,
contractors and interior designers use point-to-point laser
measurement devices to acquire a set of distance measure-
ments. Based on these measurements, an expert creates a
floor plan that respects the measurements and represents the
layout of the residence.

In this paper, we present a hand-held system for indoor
architectural reconstruction. The system eliminates the man-
ual post-processing necessary for reconstructing the layout
of walls in a residence. Instead, an operator with no archi-
tectural expertise can interactively guide the reconstruction
process by moving freely through an interior until all walls
have been observed by the system.

Our system is composed of a laptop connected to a
commodity range sensor, a lightweight optical projector, and
an input button interface (Figure 1, left). The real-time depth
sensor is the main input modality. We use the Microsoft
Kinect, a lightweight commodity device that outputs VGA-
resolution range and color images at video rates. The data is
processed in real time to create the floor plan by focusing on
flat surfaces and ignoring clutter. The generated floor plan
can be used directly for remodeling or real-estate applica-
tions, or to produce a 3D model of the interior for applica-
tions in virtual environments. In Section V, we demonstrate
a number of residential wall layouts reconstructed with our
system.

The attached projector is initially calibrated to have an
overlapping field of view with the same image center as the
depth sensor and projects the reconstruction status onto the
surface being scanned. Under normal lighting, the projector

does not provide sophisticated rendering. Rather, projection
allows the user to visualize the reconstruction process. Then,
the user can detect reconstruction errors that arise due to
deficiencies in the data capture path, and can complete
missing data in response. The user can also note which
walls have been included in the model and easily resolve
ambiguities with a simple input device.

II. RELATED WORK

A number of approaches have been proposed for indoor
reconstruction in computer graphics, computer vision, and
robotics. Real-time indoor reconstruction has been recently
explored either with a depth sensor [1] or an optical camera
[2]. The key to real-time performance is the fast registration
of successive frames. Similar to [1], we fuse both color
and depth information to register frames. Furthermore, our
approach extends real-time acquisition and reconstruction, by
allowing the operator to visualize the current reconstruction
status without consulting a computer screen. By making the
feedback loop immediate, the operator can resolve failures
and ambiguities while the acquisition session is in progress.

Previous approaches are also limited to a dense 3-D
reconstruction (registration of point cloud data) with no
higher-level information, which is memory intensive. A few
exceptions include [3], which detects high level features
(lines and planes) to reduce complexity and noise. The high
level structures, however, do not necessarily correspond to
actual meaningful structure. In contrast, our system identifies
and focuses on significant architectural elements using the
Manhattan world assumption, which is based on the observa-
tion that many indoor scenes are largely rectilinear [4]. This
assumption has been widely used for indoor scene recon-
struction from images to overcome the inherent limitations
of image data [5][6]. The stereo method only reconstructs
locations of image feature points, and the Manhattan world
assumption successfully fills the area between the sparse
feature points during a post-processing step. Similarly, our
system differentiates between architectural features and mis-
cellaneous objects in the space, produces a clean architectural
floor plan, and simplifies the representation of the environ-
ment. Even with the Manhattan world assumption, however,
the system still cannot fully resolve ambiguities introduced
by large furniture items and irregular features in the space
without user input. This interactive capability relies on the
system’s ability to integrate new input into a global map of
the space in real time.



421

332

217

494

61

10

63

76

269

319

345

Fig. 1. Our hand-held system is composed of a projector, a Microsoft Kinect sensor, and an input button (left). The system uses augmented reality
feedback (middle left) to project the status of the current model onto the environment and to enable real-time acquisition of residential wall layouts (middle
right). The floor plan (middle right) and visualization (right) were generated using data captured by our system.

Simplifying the representation also reduces the computa-
tional burden of processing the map. Registration of suc-
cessive point clouds results in an accumulation of errors,
especially for a large environment, and requires a global
optimization step in order to build a consistent map. This
is similar to reconstruction tasks encountered in robotic
mapping and is usually solved by bundle adjustment, a
costly off-line process [7][8]. Employing the Manhattan
world assumption simplifies the map construction to a one-
dimensional, closed-form problem.

The augmented reality component of our system is in-
spired by the SixthSense project [9]. Instead of simply aug-
menting a user’s view of the world, however, our projected
output serves to guide an interactive reconstruction process.
Directing the user in this way is similar to re-photography
[10], where a user is guided to capture a photograph from
the same viewpoint as in a previous photograph. By using
a micro-projector as the output modality, our system allows
the operator to focus on interacting with the environment.

III. SYSTEM OVERVIEW AND USAGE

The data acquisition process is initiated by pointing the
sensor to a corner, where three mutually orthogonal planes
meet. This defines the Manhattan-world coordinate system.
The attached projector will indicate successful initialization
by overlaying blue-colored planes with white edges onto the
scene (Figure 2 (a)). After the initialization, the user scans
each room individually as he or she loops around it holding
the device. If the movement is too fast or if there are not
enough features, a red projection guides the user to recover
the position of the device (Figure 2 (b)).

The system extracts flat surfaces that align with the
Manhattan coordinate system and creates complete recti-
linear polygons, even when connectivity between planes is
occluded. Sometimes, the user might not want some of the
extracted planes (parts of furniture or open doors) to be
included in the model even if they satisfy the Manhattan-
world constraint. When the user clicks the input button
(left click), the extracted wall toggles between inclusion
(indicated as blue) and exclusion (indicated as grey) to the
model (Figure 2 (c)). As the user finishes scanning a room, he
or she walks toward another room. A new rectilinear polygon
is initiated by a right click. Another rectilinear polygon

is similarly created by including the selected planes, and
the room is correctly positioned into the global coordinate
system. The model is updated in real time and stored in either
a CAD format or a 3-D mesh format that can be loaded into
most 3-D modeling software.

IV. DATA ACQUISITION PROCESS

At each time step t, the sensor produces a new frame of
data, Ft = {Xt, It,Pt, T t}. The sensor output is composed
of a range image Xt (a 2-D array of depth measurements)
and a color image It. During the acquisition process, we
represent the relationship between the planes in global map
Mt and the measurement in the current frame Xt as Pt, a
2-D array of plane labels for each pixel. T t represents the
transformation from the frame Ft, which is the measure-
ment relative to the current sensor position, to the global
coordinate system, which is where the map Mt is defined.
Throughout the data capture session, the system maintains
the global map Mt, and the two most recent frames, Ft−1

and Ft. Additionally, the frame with the last observed
corner Fc is stored to recover the sensor position when lost.
Instead of storing information from all frames, we keep the
total computational and memory requirements minimal by
incrementally updating the global map only with components
that need to be added to the final model.

The map Mt is composed of loops of axis-parallel planes
Ltr. Each room has its own loop of planes. Each plane has its
axis label (x, y, or z) and the offset value (e.g. x = x0), as
well as its left or right plane if the connectivity is observed.
A plane can be selected or ignored based on user input. The
selected planes are extracted from Ltr as the loop of the
room Rt

r, which can be converted into the floor plan as a
2-D rectilinear polygon. Both Ltr and Rt

r are constrained to
have alternating axis labels (x and y). For the z direction
(vertical direction), we are only keeping the ceiling and the
floor. We also keep the sequence of observation (Sx,Sy , and
Sz) of offset values for each axis direction, and we store the
measured distance and the uncertainty of the measurement
between planes.

The overall reconstruction process is summarized in Fig-
ure 2. As mentioned in Sec. III, the process is initiated by
extracting three mutually orthogonal planes, when a user
points the system to one of the corners. To detect planes
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Fig. 2. System overview and usage (Section III). When an acquisition session is initiated by observing a corner, the user is notified by a blue projection
(a). After the initialization, the system updates the camera pose by registering consecutive frames. If a registration failure occurs, the user is notified by
a red projection and is required to adjust the data capture path (b). Otherwise, the updated camera configuration is used to detect planes that satisfy the
Manhattan-world constraint in the environment and to integrate them into the global map. The user interacts with the system by selecting planes in the
space (c). When the acquisition session is completed, the acquired map is used to construct a floor plan consisting of user-selected planes.

in the range data, we fit plane equations to groups of range
points and their corresponding normals using the RANSAC
algorithm [11]: we first randomly sample a few points, then
fit a plane equation to them. Then, we test the detected plane
by counting the number of points that can be explained by
the plane equation. After convergence, the detected plane
is classified as valid only if the detected points constitute
a large, connected portion of the depth information within
the frame. If there are three planes detected and they are
orthogonal to each other, we assign the x, y and z axes
to be the normal directions of these three planes, which
form the right-handed coordinate system for our Manhattan
world. Now the map Mt has two planes (ignoring the floor
or ceiling), and the transformation T t between Mt and Ft

is also found.
A new measurement Ft is registered with the previous

frame Ft−1 by aligning depth and color features (Sec. IV-
A). This registration is used to update T t−1 to a new
transformation T t. Then, we extract planes that satisfy the
Manhattan world from T t(Ft) (Sec. IV-B). If the extracted
planes already exist in Ltr, the current measurement is
compared with the global map and the registration is refined
(Sec. IV-C). If there is a new plane extracted, or if there is
user input to specify the map structure, the map is updated
accordingly (Sec. IV-D).

A. Pair-wise registration

To propagate information from previous frames and to
detect new planes in the scene, each incoming frame must be
registered with respect to the global coordinate system. To
start this process, we find the relative registration between

(a) (b)

(c) (d)

Fig. 3. (a) Flat wall features (depicted as the triangle and circle) are
observed from two different locations. Diagram (b) shows both observations
with respect to the camera coordinate system. Without features, using
projection-based ICP can lead to registration errors in the image-plane
direction (c), while utilizing the features will provide better registration
(d).

the two most recent frames, Ft−1 and Ft. In using both the
depth point clouds (Xt−1, Xt) and optical images (It−1, It),
the frames can efficiently be registered in real time (about
20 fps).

Given two sets of point clouds, Xt−1 = {xt−1
i }Ni=1 and

Xt = {xti}Ni=1, and the transformation for the previous
point cloud T t−1, the correct rigid transformation T t will
minimize the error between correspondences in the two sets:

min
yi,T t

∑
i

‖wi(T t−1(xt−1
i )− T t(yti))‖2 (1)



Fig. 4. Silhouette points. There are two different types of depth disconti-
nuity: the boundaries of a shadow made on the background by a foreground
object (empty circles), and the boundaries of a foreground object (filled
circles). The meaningful depth features are the foreground points, which
are the silhouette points used for our registration pipeline.

yti ∈ Xt is the corresponding point for xt−1
i ∈ Xt−1. Once

the correspondence is known, minimizing Eq. (1) becomes a
closed-form solution [12]. Traditionally, the correspondence
was found by searching for the closest point, which is
computationally expensive. Real-time registration methods
reduce the cost by projecting the 3-D points onto a 2-
D image plane and assigning correspondences to points
that project onto the same pixel locations [13]. However,
projection will only reduce the distance in the ray direction;
the offset parallel to the image plane cannot be adjusted. This
phenomenon can result in the algorithm not compensating for
the translation parallel to the plane and therefore shrinking
the size of the room (Figure 3).

Our pair-wise registration is similar to [13], but it com-
pensates for the displacement parallel to the image plane
using image features and silhouette points. Intuitively, we use
homography to compensate errors parallel to the plane if the
structure can be approximated into a plane, and silhouette
points are used to compensate remaining errors when the
features were not planar. We first compute the optical flow
between color images It and It−1 and find a homography (a
transformation found from tracked image features between
them), which represents the displacement parallel to the
image plane. Then, we use the homography to compute
dense correspondences between the two frames. From the
second iteration, the correspondence is found by projecting
individual points onto the image plane.

Additionally, we modify the correspondence for silhouette
points (points of depth discontinuity in the foreground,
shown in Figure 4). For silhouette points in Xt−1, we find the
closest silhouette points in Xt within a small search window
from the original corresponding location. If the matching
silhouette point exists, the correspondence is weighted more.
(We used wi = 100 for silhouette points and wi = 1 for
non-silhouette points.) Then, the registration between the two
frames for the current iteration can be given as a closed-form
solution. The process iterates until it converges.

1) Registration Failure: The real-time registration is a
crucial part of our algorithm for accurate reconstruction.
Even with the hybrid approach using both color and depth
features, the registration can fail, and it is important to detect
the failure immediately and to recover the position of the
sensor. The registration failure is detected either (1) if the
pair-wise registration does not converge or (2) if there were

not enough color and depth features. The first case can be
easily detected as we run the algorithm. The second case
is detected if the optical flow did not find homography
(i.e. there is a lack of color feature) and there were not
enough matched silhouette points (i.e. there is a lack of depth
feature).

In cases of registration failure, the projected image turns
red, indicating that the user should return the system’s view-
point to the most recently observed corner. This movement
usually takes only a small amount of back-tracking, as the
failure is detected within milliseconds of leaving the previous
successfully registered area. Similar to the initialization step,
the system extracts planes from Xt using RANSAC and
matches the planes with the desired corner. We show the
process of overcoming a registration failure in Figure 2 (b).
The user then deliberately moves the sensor along the path
with richer features or steps back to have a wider field of
view.

B. Plane extraction

Based on the transformation T t, we extract axes-aligned
planes and associated edges. The planes and detected features
will provide higher-level information that relates the raw
point cloud Xt to the global map Mt. Because we are
only considering the planes that satisfy the Manhattan-world
coordinate system, we can simplify the plane detection
procedure.

The planes that were visible from the previous frame
can be easily found by using the correspondence. From the
pair-wise registration (Sec. IV-A), we have the point-wise
correspondence between the previous frame and the current
frame. The plane label Pt−1 from the previous frame is
updated simply by being copied over to the corresponding
location. Then, we refine Pt by alternating between fitting
points and fitting parameters.

A new plane can be found by projecting remaining points
for the x, y, and z axes. For each axis direction, we build a
histogram with the bin size 20cm and test the plane equation
for populated bins. Compared to the RANSAC procedure for
initialization, the Manhattan world assumption reduces the
number of degrees of freedom from three to one, making
plane extraction more efficient.

For extracted planes, the boundary edges are also ex-
tracted; we detect groups of boundary points that can be
explained by an axis-parallel line segment. We also keep
the information of relative positions for extracted planes
(left/right). As long as the sensor is not flipped upside-
down, this provides an important cue to build a room with
the correct topology, even when the connectivity between
neighboring planes was not observed.

1) Data association: After the planes are extracted, the
data association process finds the link between the global
map Mt and the extracted planes to be Pt, a 2-D array of
plane labels for each pixel. The plane labels that existed from
previous frame were automatically found while extracting
the plane by copying over the plane labels using correspon-
dences.



The plane labels for the newly detected plane can be found
by comparing T t(Ft) and Mt. In addition to the plane
equation, the relative position with respect to other observed
planes are used to label the one. If the plane was not observed
before, a new plane will be added into Ltr based on the left-
right information. The adjacent walls should have alternating
axis directions (a x = xi wall should be connected to a
y = yj wall). If the two observed walls have the same axis
direction, we add the unobserved wall between them on the
boundary of the planes to form a complete loop.

After the data association step, we update the sequence
of observation S. The planes that have been assigned as
previously observed are used for global adjustment (Sec. IV-
C). If a new plane was observed, the room Rt

r will be
updated accordingly (Sec. IV-D).

C. Global adjustment

Due to noise in the point cloud, frame-to-frame registration
is not perfect, and error accumulates over time. This is a
common problem in pose estimation. Large-scale localization
approaches use bundle adjustment to contain error accu-
mulation [7], [8]. Enforcing this global constraint involves
detecting landmark objects, or stationary objects observed at
different times during a sequence of measurements. Usually
this global adjustment becomes an optimization problem in
many dimensions. The problem is formulated by constraining
the landmarks to predefined global locations, and by solving
an energy function that encodes noise in a pose estimation
of both sensor and landmark locations. The Manhattan world
assumption allows us to reduce the error accumulation effi-
ciently in real time by refining our registration estimate and
by optimizing the global map.

1) Refining the registration: After data association, we
perform a second round of registration with respect to the
global map Mt to reduce the error accumulation in T t by
incremental, pair-wise registration. The extracted planes Pt,
if already observed by the system, have been assigned to
the planes in Mt that have associated plane equations. For
example, suppose a point T t(xu,v) = (x, y, z) has a plane
label Pt(u, v) = pk (assigned to plane k). If plane k has
normal parallel to the x axis, the plane equation in the global
map Mt can be written as x = x0 (x0 ∈ R). Then, the
registration should be refined to minimize ‖x − x0‖2. This
can be found by defining the corresponding point for xu,v
as (x0, y, z). The corresponding points are likewise assigned
for every point with plane assignment in Pt. Given the
correspondence, we can refine the registration between the
current frame Ft and the global map Mt. This second round
of registration reduces the error in the axis direction. In our
example, the refinement is active while the plane x = x0 is
visible and reduces the uncertainty in the x direction with
respect to the global map. The error in the x direction is not
accumulated during the interval.

2) Optimizing the map: As error accumulates, the recon-
structed map Mt may also require global adjustment in each
axis direction. The Manhattan world assumption simplifies
this global optimization into two separate, one-dimensional

Fig. 5. As errors accumulate in T t and in measurements, the map Mt

becomes inconsistent. By comparing previous and recent measurements, the
system can correct for inconsistency and update the value of c such that
c = a.

problems (we are ignoring the z direction for now, but the
idea can be extended to a 3-D case).

Figure 5 shows a simple example in the x-axis direction.
Suppose an overhead view of a rectangular room. There
should be two walls whose normals are parallel to the x-axis.
The sensor detects the first wall (x = a), sweeps around
the room, observes another wall (x = b), and returns to
the previously observed wall. Because of error accumulation,
parts of the same wall have two different offset values (x = a
and x = c), but by observing the left-right relationship
between walls, the system infers that the two walls are indeed
the same wall.

To optimize the offset values, we track the sequence of
observations Sx = {a, b, c} and the variances at the point
of observation for each wall, as well as the constraints
represented by the pair of the same offset values Cx =
{(c11, c12) = (a, c)}. We introduce two random variables,
∆1 and ∆2, to constrain the global map optimization. ∆1

is a random variable with mean m1 = b − a and variance
σ2

1 that represents the error between the moment when the
sensor observed the x = a wall and the moment it observed
the x = b wall. Likewise, a random variable ∆2 represents
the error with mean m2 = c− b and variance σ2

2 .
Whenever a new constraint is added, or when the system

observes a plane that was previously observed, the global
adjustment routine is triggered. This is usually when the user
finished scanning a room by looping around it and returning
to the first wall measured. By confining the axis direction,
the global adjustment becomes a one-dimensional quadratic
equation:

minSx

∑
i

(
‖∆i−mi‖2

σ2
i

)
s. t. cj1 = cj2, ∀(cj1, cj2) ∈ Cx.

(2)

D. Map update

Our algorithm ignores most irrelevant features using the
Manhattan-world constraint. However, the system cannot
distinguish architectural components from other axis-aligned
objects using Manhattan world assumption. For example,
furniture, open doors, parts of other rooms that might be
visible, or reflections from mirrors may be detected as axis-
aligned planes. We solve the challenging cases by allowing
the user to manually specify the planes that he or she would
like to include in the final model. This manual specification



Fig. 6. Selection. In sequence (a), the user is observing two new planes in the scene (colored white) and one currently included plane (colored blue). The
user selects one of the new planes by pointing at it and clicking. Then, the second new plane is added. All planes are blue in the final frame, confirming
that all planes have been successfully selected. Sequence (b) shows a configuration where the user has decided not to include the large cabinet. Sequence
(c) shows successful selection of the ceiling and the wall despite clutter.

consists of simply clicking the input button during scanning
when pointing at a plane, as shown in Figure 6. If the user
enters a new room, a right click of the button indicates
the user wishes to include this room and to optimize it
individually. The system creates a new loop of planes and
any newly observed planes are added to the loop.

Whenever a new plane is added to Ltr or there is user
input to specify the room structure, the map update routine
extracts a 2-D rectilinear polygon Rt

r from Ltr with the help
of user input. We start by adding all selected planes into Rt

r

as well as whichever unselected planes in Ltr are necessary
to have alternating axis direction. The planes with observed
boundary edges have priority to be added.

V. EVALUATION

The current practice in architecture and real estate is to use
a point-to-point laser device to measure distances between
pairs of parallel planes. Making such measurements requires
a clear, level line of sight between two planes, which may be
time-consuming to find due to furniture, windows, and other
obstructions. After making all the distance measurements, a
user is required to manually draw a floor plan that respects
the measurements. Roughly 10-20 minutes was needed to
take the distance measurements in each apartment. Using
our system, the data acquisition process took approximately
2-5 minutes per home to initiate, run, and generate the full
floor plan. Table I summarizes the timing data for each data
set. The average frame rate is 7.5 frames per second running
on an Intel 2.50GHz Dual Core laptop.

In Figure 7, we visually compare the reconstructed floor
plans. The floor plans in blue are reconstructed using point-
to-point laser measurements, and the floor plans in red are
reconstructed by our system. For each home, the topology of
the reconstructed walls agrees with the manually-constructed

floor plan. In all cases the detection and labeling of planar
surfaces by our algorithm enabled the user to add or remove
these surfaces from the model in real time, allowing the
final model to be constructed using only the important
architectural elements from the scene.

The overlaid floor plans in Figure 7(c) show that that
the relative placement of the rooms may be misaligned.
This is because our global adjustment routine optimizes
rooms individually, thus error can accumulate in transitions
between rooms. The algorithm could be extended to enforce
global constraints on the relative placement of rooms, such
as maintaining a certain wall thickness and/or aligning the
outer-most walls, but such global constraints may induce
other errors.

Table I contains a quantitative comparison of the errors.
The reported depth resolution of the sensor is 0.01m at 2m,
and for each model we have an average of 0.075m error
per wall. The relative error stays in the range of 2-5%,
which shows that the accumulation of small registration error
continues to increase as more frames are processed.

Fundamentally, the limitations of our method reflect those
of the Kinect sensor, namely, the processing power of the
laptop and the assumptions made in our approach. As the
accuracy of depth data is worse than visual features, our
approach exhibits larger errors compared to visual SLAM.
Some of the uncertainty can be reduced by adapting ap-
proaches from well-explored visual SLAM literature. Still,
we are limited when we cannot detect meaningful features.
The Kinect sensor’s reported measurement range is between
1.2 and 3.5m from an object; outside that range, data is noisy
or unavailable. As a consequence, data in narrow hallways
or large atriums is difficult to collect.

Another source of potential error is a user outpacing the
operating rate of approximately 7.5 fps. This frame rate
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Fig. 7. (a) Manually constructed floor plans generated from point-to-point laser measurements, (b) floor plans acquired with our system, and (c) overlay.
For house 4, some parts (pillars in large open space, stairs, and an elevator) are ignored by the user. The system still uses the measurements from those
parts and other objects to correctly understand the relative positions of the rooms.

already allows for a reasonable data capture pace, but with
more processing power, the pace of the system could always
be guaranteed to exceed normal human motion.

VI. CONCLUSION AND FUTURE WORK

We have presented an interactive system that allows a user
to capture accurate architectural information and to auto-
matically generate a floor plan. Leveraging the Manhattan
world assumption, we create a representation that is tractable

in real time while ignoring clutter. The current status of
the reconstruction is projected on the scanned environment
to enable the user to provide high-level feedback to the
system. This feedback helps overcome ambiguous situations
and allows the user to interactively specify the important
planes that should be included in the model.

More broadly, our interactive system can be extended to
other applications in indoor environments. For example, a



data no. of run fps average error
set frames time m %
1 1465 2m 56s 8.32 0.115 4.14
2 1009 1m 57s 8.66 0.064 1.90
3 2830 5m 19s 8.88 0.053 2.40
4 1129 2m 39s 7.08 0.088 2.34
5 1533 3m 52s 6.59 0.178 3.52
6 2811 7m 4s 6.65 0.096 3.10

ave. 1795 3m 57s 7.54 0.075 2.86

TABLE I
ACCURACY COMPARISON BETWEEN FLOOR PLANS RECONSTRUCTED BY

OUR SYSTEM, AND MANUALLY CONSTRUCTED FLOOR PLANS

GENERATED FROM POINT-TO-POINT LASER MEASUREMENTS.

Fig. 8. The system, having detected the planes in the scene, also allows
the user to interact directly with the physical world. Here the user adds a
window to the room by dragging a cursor across the wall (left). This motion
updates the internal model of the world (right).

user could visualize modifications to the space as in Figure 8,
where we show a user clicking and dragging a cursor across
a plane to “add” a window. This example illustrates the range
of possible uses of our system.
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