
Fast MRF Optimization with Application to Depth Reconstruction
Supplementary Material

Qifeng Chen∗ Vladlen Koltun†

In the supplementary material, we provide more infor-
mation on some proofs concerning the lower envelope and
the algorithms for its construction.

1. Lower Envelope Complexity
Here we provide proofs concerning the number of in-

tersections between pairs of shifted penalty functions. For
simplicity of exposition, we restrict ourselves here to
strictly differentiable penalties. The proof for the L1

penalty, which is neither strictly convex nor differentiable,
is trivial.

Lemma 1.1. If f(x) : R → R is a strictly convex differen-
tiable function and g(x) = f(x+ a) + b where a 6= 0, then
f and g intersect at most once.

Proof. We prove by contradiction. Suppose f and g inter-
sect at x0 and x1 (x0 < x1). Let ∆ = x1 − x0. Then

f(x1)− f(x0) = g(x1)− g(x0) =⇒
f(x1)− f(x0) = f(x1 + a)− f(x0 + a) =⇒
f(x1)− f(x0)

∆
=

f(x1 + a)− f(x0 + a)

∆
=⇒

h(x0) = h(x0 + a),

where h(x) = f(x+∆)−f(x)
∆ is an increasing function be-

cause f ′ is increasing and

h′(x) =
f ′(x+ ∆)− f ′(x)

∆
> 0.

Therefore h(x0) = h(x0 + a) implies that a = 0. This
contradicts our assumption that a 6= 0.

Lemma 1.2. If f(x) : R → R is a strictly concave differ-
entiable function and g(x) = f(x + a) + b where a 6= 0,
then f and g intersect at most once.

Proof. The negated functions −f and −g are strictly con-
vex differentiable functions. According to Lemma 1.1, −f
and −g intersect at most once. Therefore f and g intersect
at most once.
∗Stanford University
†Adobe Research

Lemma 1.3. If f(x) : R → R is a strictly convex differ-
entiable function and g(x) : R → R is a strictly concave
function, then f and g intersect at most twice.

Proof. Let h(x) = f(x) − g(x) and h is convex. f(x) =
g(x) is equivalent to h(x) = 0. There are at most two solu-
tions for h(x) = 0 since h is convex.

Lemma 1.4. If f(x) = log(1 + x2

2ε2) is the Lorentzian
penalty and g(x) = f(x + a) + b where a 6= 0, then f
and g intersect at most twice.

Proof. We solve f(x) = g(x) for x,

log(1 +
x2

2ε2
) = log(1 +

(x+ a)2

2ε2
) + b =⇒

1 +
x2

2ε2
= eb(1 +

(x+ a)2

2ε2
) =⇒

0 =
eb − 1

2ε2
x2 +

aeb

ε2
x+

a2eb

2ε2
+ eb − 1.

If b 6= 0, this is a quadratic equation and there are at most
two solutions for x and f intersects g at most twice. If b =
0, this is a linear equation and f intersects g at most once.

Lemma 1.5. If f(x) = (x2 + ε2)α is the generalized Char-
bonnier penalty where α ∈ (0, 1

2) and g(x) = f(x+ a) + b
where a 6= 0, then f and g intersect at most twice.

Proof. Without loss of generality, we assume that a < 0
and b < 0. If a > 0, we reflect g and f over the y axis;
if b > 0, we reflect g and f over the x axis. If b = 0,
f(x) = g(x) can be reduced to x = −a2 and there is only
one intersection.

We observe that lim
x→−∞

f(x) − g(x) = −b > 0 and

lim
x→+∞

f(x) − g(x) = −b > 0. f is above g at ±∞. This

implies that f and g can only intersect an even number of
times. Thus we only need to show that f and g intersect at
most three times.
f is a piecewise convex and concave function. The sec-

ond derivative is

f ′′(x) = 2α
(
ε2 + x2

)α−2 (
ε2 + (2α− 1)x2

)
,

1

-50 -40 -30 -20 -10 0 10 20 30 40 50
2

3

4

5

6

7

8

 f
1

 f
2

 f
3

g
1
 

g
2
 

g
3
 

Figure 1. f(x) = (x2 + ε2)α where ε = 10 and α = 0.25.
g(x) = f(x + a) + b where a = −10 and b = −0.8. The red
curves are f1 and g1, the green curves are f2 and g2, and the blue
curves are f3 and g3.

so f ′′(x) > 0 iff x ∈ (−t, t), where t = ε√
1−2α

. Thus f is
convex on (−t, t) and concave on (−∞,−t] and [t,+∞).
Similarly, g is convex on (−t − a, t − a) and concave on
[−∞,−t− a] and [t− a,+∞).

We analyze how g intersects f in terms of their three
convex or concave parts. See Figure 1 for illustration. We
denote f1 = {f(x) : x ≤ −t} (concave), f2 = {f(x) :
−t < x < t} (convex), f3 = {f(x) : x ≥ t} (concave),
g1 = {g(x) : x ≤ −t − a} (concave), g2 = {g(x) : −t −
a < x < t − a} (convex), and g3 = {g(x) : x ≥ t −
a} (concave). The proof proceeds by the following three
claims:

• g1 intersects f at most twice. To show this, consider
two cases:

– g1 intersects f3. In this case, g1 intersects f3 once
because g1 is decreasing and f3 is increasing. g1

does not intersect f2 because g1 intersecting f3

implies g1(t) > f3(t) and g1(x) > g1(t) >
f3(t) > f2(x) for any x defined on both g1 and
f2. g1 intersects f1 at most once by Lemma 1.2.

– g1 does not intersect f3. In this case, g1 intersects
f1 at most once by Lemma 1.2. g1 intersects f2

at most twice by Lemma 1.3. However, it is im-
possible that g1 intersects f2 twice while g1 in-
tersects f1 once, because g1 intersecting f2 twice
implies that g1(−t) < f1(−t) and g1 intersect-
ing f1 once implies g1(−t) > f1(−t) (recall that

lim
x→−∞

g(x)− f(x) < 0).

• g2 intersects f at most once. g2 intersects f2 at most
once by Lemma 1.1. g2 does not intersect f1 because
the domains of g2 and f1 do not overlap. g2 does not
intersect f3 because g2(x) < g(t − a) = f(t) + b <
f(t) ≤ f3(x) for any x defined on both g2 and f3.

𝑓𝑘𝑚−1

𝑓𝑘𝑚

𝑓𝑖

𝑥0

Figure 2. fkm is above the lower envelope as fi(x0) ≤ fkm(x0)
and should be removed from S.

• g3 does not intersect f . g3 does not intersect f1 and f2

because the domains of g3, f1 and f2 do not overlap.
g3 does not intersect f3 because g3(x) = f3(x+ a) +
b < f3(x+ a) < f3(x) for any x defined on g3.

In summary, f and g intersect at most three times. Since f
and g can only intersect an even number of times, f inter-
sects g at most twice.

2. Lower Envelope Construction
Let e be the lower envelope of the functions

{f0, . . . , fD−1}:

fk(d) = C(x− 1, y, k) + ρ(d− k),

e(d) = min
0≤k<D

fk(d),

where ρ is a convex function.
If fj intersects fk (j < k), by Lemma 1.1, fj(d) <

fk(d) iff d < Λ(fj , fk) where Λ(fj , fk) is the intersection
point between fj and fk. This allows us to represent e by a
subset of functions S = {fk1 , . . . , fkm} (ki < ki+1):

e(d) = fki(d),

where d ∈ [Λ(fki−1 , fki),Λ(fki , fki+1)]. Each function in
S contributes a single contiguous curve to the lower enve-
lope and functions above the lower envelope are not in S.

The lower envelope can be constructed by incrementally
adding fi. Suppose we have computed the lower envelope
of {f0, . . . , fi−1}, represented by S = {fk1 , . . . , fkm} .
Now we compute the lower envelope of {f0, . . . , fi} by up-
dating S:

1. If fi is totally above fkm , then ignore fi and S remains
the same.

2. Otherwise, fi will contribute to the lower envelope,
as illustrated in Figure 2. Let x0 = Λ(fkm−1 , fkm). If
fi(x0) ≤ fkm(x0), fkm will be totally above the lower en-
velope after adding fi and we will remove fkm from S. We
keep removing the last function in S if it is above the lower
envelope after adding fi and then we will add fi to S.

Each function can only be added once and removed once.
The algorithm thus runs in time O(D) assuming Λ can be
evaluated in constant time.

Truncated functions. For truncated penalty functions
min{ρ, T}, we can derive the lower envelope e′ as

e′(d) = min(e(d), T ′),

T ′ = T + min
d

C(x− 1, y, d).

Thus for truncated penalties we can simply construct the
lower envelope of the unrestricted penalties and then cut
it with a single horizontal line. This introduces at most a
linear number of cuts, which can be computed in linear time
by sweeping the lower envelope e.

