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Figure 1: Trees created by users of our prototype exploratory modeling tool. Modeling times for trees in the first row ranged between 3 and
15 minutes; trees in the second row were created in 15 minutes to an hour.

Abstract

Enabling ordinary people to create high-quality 3D models is a
long-standing problem in computer graphics. In this work, we draw
from the literature on design and human cognition to better under-
stand the design processes of novice and casual modelers, whose
goals and motivations are often distinct from those of professional
artists. The result is a method for creating exploratory modeling
tools, which are appropriate for casual users who may lack rigidly-
specified goals or operational knowledge of modeling techniques.

Our method is based on parametric design spaces, which are of-
ten high dimensional and contain wide quality variations. Our sys-
tem estimates the distribution of good models in a space by tracking
the modeling activity of a distributed community of users. These
estimates, in turn, drive intuitive modeling tools, creating a self-
reinforcing system that becomes easier to use as more people par-
ticipate.

We present empirical evidence that the tools developed with our
method allow rapid creation of complex, high-quality 3D models
by users with no specialized modeling skills or experience. We
report analyses of usage patterns garnered throughout the year-long
deployment of one such tool, and demonstrate the generality of the
method by applying it to several design spaces.
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1 Introduction

The increasing popularity of three-dimensional participatory media
such as networked virtual worlds [Miller 2007], game mods [New-
man 2006], and machinima [Marino 2004] has resulted in unprece-
dented involvement of ordinary people in 3D modeling activities.
For instance, more than one hundred million original 3D models
were created in 2008 and 2009 by players of the video game Spore
[Maxis Software 2008]. However, despite this surge of interest
from the general population, most 3D modeling tools remain no-
toriously complex and require considerable specialized training to
be used effectively. This paper investigates the design of modeling
tools for novice and casual users.

When developing such tools, it is important to understand the na-
ture of the design tasks to which they will be applied. In this paper,
we draw from the literature on design and human cognition to dis-
tinguish between routine and exploratory modeling processes. Rou-
tine design processes focus on the realization of a well-specified
goal through a sequence of pragmatic steps. In contrast, exploratory
design begins with loosely-specified goals and proceeds in an op-
portunistic, serendipitous fashion. The application of this distinc-
tion to 3D modeling is one of the main contributions of this work.

Although casual users often approach modeling tasks with vague
or general goals, the vast majority of prior research in computer
graphics has focused on routine modeling. This paper presents a
method for creating exploratory modeling tools that can be suc-
cessfully used by novice and casual users with little or no prior 3D
modeling experience.

Given some selected model, our tools automatically construct
high-quality alternative models and present these alternatives to the
user. To provide this functionality, our method employs a distinct
parametric space for each target visual domain. Such a space is
defined by a mapping from a set of n real-valued parameters to a
renderable entity, and the collection of valid parameter configura-
tions, taken together, form an n-dimensional design space.



High-dimensional parametric spaces provide a compact repre-
sentation for a wide range of visual models and are ubiquitous in
graphics and engineering [Hoschek and Dankwort 1994]. Unfortu-
nately, in many such spaces the probability that a random parameter
configuration corresponds to a desirable model is negligible. As a
result, it can be difficult to generate high-quality alternatives for a
given model. To address this problem, our system uses adaptive
kernel density estimation to approximate the distribution of desir-
able models in the space based on the set of models created by
the entire user community. As models are saved by users, their
parameter configurations are uploaded to a central server and in-
corporated into the density estimate. The deployed modeling tools
sample from this estimate and other related distributions whenever
alternatives are needed. The introduction of large-scale collabora-
tion to 3D modeling is another contribution of our work.

Both the current model and suggested alternatives are visualized
on a dynamic map of the design space. Users explore this map with
the mouse, and modeling reduces to selecting desirable points from
it. To construct the map, our system requires a method for embed-
ding points from the design space into the plane. Unfortunately,
traditional dimensionality reduction techniques are of limited util-
ity if the intrinsic dimensionality of the desirable portions of the
space is high, or if the full extent of quality regions is not known.
We resolve this problem with a visualization algorithm developed
specifically for spaces with complex, high-dimensional structure.
We obtain a semantically-organized overview of the design space
via crowdsourcing, and use this overview in conjunction with the
computed density function to dynamically embed regions of the
space on demand. These regions are chosen to correspond to the
user’s indicated areas of interest, guiding navigation towards high-
quality models without restricting it to any particular submanifold
of the space.

We have developed a modular software system to test these ex-
ploratory modeling techniques, and used it to prototype design tools
for spaces of trees, humans, and bidirectional reflectance distribu-
tion functions (BRDFs). In December of 2007, we released a proto-
type tree modeling tool to the public. In the twelve months that fol-
lowed, this software was downloaded by over 17,000 unique users,
resulting in the creation of more than 6,000 new models. We report
on the results of this deployment, which demonstrate the efficacy of
our approach.

2 Related Work

Routine modeling interfaces. Several inventive schemes for
routine modeling have been proposed. Funkhouser et al. [2004]
describe a system in which the user searches a large database of
preexisting models for particular component parts, which are then
composited together to form a new object. In the Teddy system
[Igarashi et al. 1999], the user sketches the silhouette of a 3D shape
with a series of freeform strokes. SmoothSketch [Karpenko and
Hughes 2006] interprets these sketched curves as perceptual con-
tours and fills in hidden cusps. FiberMesh [Nealen et al. 2007]
extends the sketching metaphor by embedding the defining curves
as manipulable handles on the surface of the shape.

Another prominent technique for reconstructing real-world ob-
jects is image- and video-based modeling. A recent highlight in
image-based modeling is Furukawa and Ponce [2007]; for a video-
based approach see VideoTrace [van den Hengel et al. 2007].

Exploratory modeling interfaces. Although the graphics re-
search community has focused primarily on routine 3D modeling
tools, several systems display exploratory components. Igarashi
and Hughes [2001] describe Chateau, a CAD tool that suggests pos-
sible modeling operations based on geometric relationships speci-
fied by the user. Tsang et al. [2004] propose a suggestive interface
for 3D sketching, in which curves drawn by the user are matched

against a database of previously-created geometry to generate sug-
gestions. In the game industry, both Spore’s creation tools [Maxis
Software 2008] and a number of avatar creators such as Nintendo’s
Mii Channel [2006] display some exploratory focus and have seen
widespread use. In these systems, models are assembled from pre-
built component parts that can be quickly swapped and reconfig-
ured.

In other visual domains, exploratory design has been more thor-
oughly investigated. Marks et al. [1997] describe a set of inter-
faces for parameter setting in graphics and animation that present
a discrete set of landmark configurations via sampling and allow
users to choose between them. Kovar and Gleicher [2001] propose
a simplex-based method that allows a small number of PostScript
drawings to be transformed via constrained and unconstrained sam-
pling guided by user feedback. Ngan et al. [2006] describe an in-
terface for parameter setting in a space of bidirectional reflectance
distribution functions, making extensive use of an original image-
based distance metric. Most recently, Shapira et al. [2009] present
an exploratory interface for image recoloring based on Gaussian
Mixture Models.

Large-scale collaboration. Collaboration technologies are play-
ing an increasingly prominent role in computing. Since its introduc-
tion in the early 90s [Goldberg et al. 1992], collaborative filtering,
in which the preferences of many users are aggregated to generate
personalized recommendations for individuals, has become a Web
mainstay [Linden et al. 2003; Adomavicius and Tuzhilin 2005].
More recently, community-scale self-interested activity has been
used for image labeling, object recognition, and the collection of
semantic information [von Ahn and Dabbish 2004; Su et al. 2007].

Recent work in computer graphics leverages large image collec-
tions sourced from the Web. Snavely et al. [2006] present an in-
terface for interactive exploration of image collections taken at par-
ticular geographic locations, leading to an engaging virtual tourism
experience. Lalonde et al. [2007] use image collections to seam-
lessly embed new objects in existing photographs. Finally, Hays
and Efros [2007] describe a scene completion algorithm using an
Internet-scale image database.

Parametric spaces in graphics. High-dimensional parametric
spaces are central to computer graphics, dating back to the land-
mark face modeling work of Parke [1974]. More recently, Blanz
and Vetter [1999] construct a space of 3D faces from 200 exam-
ples, in which high-level attributes that correspond to meaningful
features like age, weight, and gender can be represented as vec-
tors and learned. Allen et al. [2003] extend this approach to entire
human models, reconstructing a space of body shapes from 250
scanned human figures using a sophisticated registration algorithm.
Spaces for other natural phenomena abound, in domains as diverse
as computational botany [Weber and Penn 1995] and appearance
modeling [Matusik et al. 2003].

3 Design and Cognition

In order to develop an effective modeling system for any class of
users, it is necessary to consider their goals and motivations. To
inform our understanding of the spectrum of modeling processes,
we draw extensively from the literature on design and human cog-
nition.

One natural way to classify modeling processes is by the degree
of completeness in the goal specification [Visser 2006]. At one end
of this spectrum lies what is commonly referred to in the literature
as routine design. In routine modeling processes, the user begins
design with a well-specified goal: generally the replication of a
precise mental image or plan [Brown and Chandrasekaran 1989].
Routine processes are highly directed: modeling begins with some
initial (usually empty) state, and then proceeds sequentially until



Figure 2: (Left) A screenshot of our exploratory tree modeling tool, with the display window and map window visible. (Right) The optional
routine slider interface.

the goal is reached [Tweedie 1995]. The process is comprised of
a series of well-understood pragmatic steps [Navinchandra 1991],
each one chosen to decrease the distance between the current state
and the goal [Kirsh and Maglio 1994].

At the other end of the spectrum lie exploratory modeling pro-
cesses. Exploratory modeling is open-ended: the user begins the
design process with an under-specified goal, and the precise form
of the final model is established through experimentation [Brown
and Chandrasekaran 1989]. Exploratory modeling processes are
highly nonlinear: candidate models are iteratively considered and
rejected as the design space is explored. Since the final product is
not comprehended in full detail at the onset, progress is made op-
portunistically and serendipitously [Tweedie 1995]. Many of the
actions taken by the exploratory modeler are epistemic rather than
pragmatic in nature [Kirsh and Maglio 1994], serving to refine the
user’s understanding of the space of possible designs rather than
moving directly towards the final product.

Although most real-world design is neither purely routine nor
purely exploratory, the majority of professional 3D modeling is
widely believed to be routine in nature: the domain knowledge
professional designers amass over the course of their careers of-
ten allows them to clearly specify the desired product and for-
mulate a well-defined procedure for its design [Brown and Chan-
drasekaran 1989]. In contrast, casual modelers are less likely to
take on modeling tasks with rigidly defined goals, and tend to lack
operational knowledge of modeling tools and techniques. Novice
and casual users, therefore, are particularly likely to benefit from
tools that support exploratory modeling. Furthermore, casual and
professional designers alike make extensive use of exploratory de-
sign processes during brainstorming and ideation, since the poten-
tial for innovation and creativity increases as design becomes more
exploratory [Gero 1990]. It is for these reasons that we initiate an
investigation of exploratory 3D modeling.

Design is fundamentally about choice, and the manner in which
meaningfully distinct choices are presented to users is a central
determining factor in the success of any design process [Buxton
2007]. Given a candidate design, our exploratory modeling system
constructs high-quality alternatives and presents them to the user.
It is well established that the development and evaluation of such
alternatives contribute to the continual elaboration and reformula-

tion of the underlying design task [Kolodner and Wills 1993]. This
feedback loop is widely held to be an essential part of good design.

To visualize the suggested models, we employ a dynamic map of
the design space. Maps are amongst the most ubiquitous graphical
representations, and present even novice users with a familiar con-
ceptual model for the design process. Moreover, interactive maps
promote experiential cognition, making them ideally suited to ex-
ploratory modeling processes [MacEachern 1994].

4 Modeling Interface

When our modeling tool is loaded, it connects to a central server
and updates its local copy of the database of parameter configu-
rations corresponding to models created by the user community
at large. The tool then constructs a probability distribution over
the design space using adaptive kernel density estimation (Section
5). This probability density function approximates the distribu-
tion of desirable models in the space and is used to generate high-
quality alternatives. Whenever alternatives to a particular model
are needed, the tool samples from the density function in the local
neighborhood of that model (Section 6).

The modeling interface consists of a map window and a display
window, presented side by side (see Figure 2, left). Users are al-
ways situated at a point in the space, and there is always a fully-
formed model in front of them. At any given time, the map window
shows a set of icons corresponding to points from the design space.
As the user mouses over the map, the display window updates to
a visualization of the corresponding model, smoothly interpolating
between the visible icon points. Users may pan the map (by click-
ing and dragging) and zoom it (by double-clicking, or adjusting a
slider). Navigating to an unexplored map region causes new icons
to appear. The interface of our tree modeling tool is demonstrated
in the video accompanying this paper.

The map initializes to a set of icons that are representative of the
distribution of desirable models in the space, arranged in a seman-
tically meaningful layout. In a typical modeling session, the user
explores this overview and picks a particular model to investigate.
As the user zooms towards the model, the surrounding map regions
are populated with high-quality alternatives. The degree to which
these generated alternatives differ from the current selection is pro-
portional to the level of zoom.



Figure 3: 100 landmark points from the parametric space of trees, embedded into the plane via PCA (left), Isomap (center), and our
crowdsourced semantic layout algorithm (right). Observe that both linear and nonlinear dimensionality reduction techniques fail to preserve
meaningful semantic structure in the embedding. In contrast, our crowdsourced layout provides a good overview of the space.

As modeling progresses, the user explores the map, iteratively
considering candidate models. Settling on a particular model may
take anywhere from a few minutes to more than an hour, depending
on the user’s design goals and time budget. When the user saves a
local copy of the model, its parameter configuration is uploaded to
the server.

4.1 Semantic Overview

It is well-established that users depend upon landmarks for map
navigation [Tversky et al. 2007]. Our method maintains a subset
of representative landmark points from the design space, which
are used to govern the map layout. These landmarks are chosen
from the database of user-created models via the greedy cluster-
ing algorithm of Feder and Greene [1988], which computes a 2-
approximation to discrete k-center clustering in O(N log k) time.
We pick k to ensure that the resultant clusters provide good cover-
age for all points in the database using the cluster quality metrics of
Raskutti and Leckie [1999]. As new points are submitted, we de-
termine their best-fit cluster and mark points for which this cluster
does not provide a good covering. The set of landmarks is recom-
puted whenever sufficiently many of these poorly-covered points
have been accumulated.

Once an initial set of landmarks has been chosen, we must deter-
mine a 2D map location for each one. We have experimented exten-
sively with state-of-the-art algorithms for dimensionality reduction
including PCA, MDS, Isomap, and LLE. Although any of these
unsupervised embedding techniques can be used by our method,
they are generally ill-suited for our purposes. Many interesting
parametric design spaces have high intrinsic dimensionality; for in-
stance, our analysis of the database of user-created models in the
tree space indicates an intrinsic dimensionality of around 50. Tech-
niques that seek to minimize residual variance or distortion cannot
produce good 2D embeddings in such conditions (see Figure 3, left,
center). Moreover, although these quality measures are appropriate
in many circumstances, they do not always promote embeddings
that have strong semantic structure. This is particularly the case for
high-dimensional spaces with complex morphology, in which good
perceptual metrics may be difficult to formulate.

Experiments have shown that people naturally organize space
into semantically meaningful regions characterized by distinctive
landmarks [Tversky et al. 2007]. To produce such semantically
meaningful layouts, we employ a crowdsourcing approach. When-
ever the set of landmarks is recomputed, our method allows a few
designated users to enter a map-editing mode and adjust the land-
mark positions directly. This requires no particular expertise or
time commitment, since the number of landmarks grows slowly rel-
ative to the total size of the database. This crowdsourcing approach
yields a high-level semantic overview that is both meaningful to
modelers and adaptable as the needs of the user community evolve
(see Figure 3, right).

4.2 Exploration and Alternatives

Users explore the map by panning and zooming, iteratively re-
centering the map window on a particular model interpolated from
the set of icons. If the region surrounding this model has been insuf-
ficiently explored, the tool creates a set of similar alternative models
and places them nearby (see Figure 4). These models are generated
by sampling from the density function in the local neighborhood
of the centered model. Models produced in this manner are kept
only for the duration of the session and not propagated to a central
database or other modeling tools. Although these sampled models
introduce an element of nondeterminism into the system, once an
icon is placed on the map it stays there for the remainder of the
session.

When the user pans or zooms to a particular region of the map,
we determine the set of landmarks and sampled points with map po-
sitions that lie within that region. We iterate through these points,
attempting to display each corresponding icon without overlap.
Strict preference is given to landmark points during this process,
and previously-sampled points are displayed in the order in which
they were created. This process ends when the number of visible
icons reaches a target threshold, or when the set of potential icons
is exhausted. In this latter case, new points are sampled from the
density estimate and placed in empty regions via Poisson disk sam-
pling.

4.3 Routine Mechanisms

Although our method is fundamentally geared towards exploratory
modeling, we expose two mechanisms that are primarily routine in
nature. The first is a set of sliders by which the individual param-
eters of a model can be adjusted (Figure 2, right). This interface is
useful for fine-tuning models that have been selected from the map.

The second mechanism is an interface for setting constraints. In
our tools, users can select a set of parameters for which desired
values are known, set those values via sliders, and then apply them
as constraints to the map as a whole (for instance, a user can easily
limit her exploration of the space of human avatars to the subset of
models with blue eyes). The technical details of this process are
described in Section 6.2.

Figure 4: (Left) Interpolating between landmark points (outlined
in black) in a design space of polygons. (Right) Using sampling to
introduce local variation. The sampled point is outlined in red.



Figure 5: (Left) Typical points sampled from the computed density functions of trees (top) and humans (bottom). (Right) Typical points
chosen uniformly at random from these parametric spaces.

5 Density Estimation

To generate high-quality alternatives to a given parameter config-
uration, we use the set of models created by the user community
to estimate the density of desirable models in the space. This es-
timate must be computed with some care, since the distribution of
quality is highly nonuniform in many interesting parametric spaces
(see Figure 5). Let {xi} be a set of N database points from an
n-dimensional design space D, assumed to be drawn from an un-
known probability density function f(x). Since we wish to develop
a general method that is applicable to a wide variety of distinct
spaces, we cannot make any assumptions about the intrinsic struc-
ture of f(x): therefore, we are faced with a nonparametric density
estimation problem.

Multivariate nonparametric density estimation is a well studied
problem with applications in numerous fields. One of the most pop-
ular techniques is the sample-point kernel estimator, first introduced
by Parzen [1962], in which an approximation f̂(x) of f(x) is re-
covered by centering a smooth kernel Ki(x) at each of the points
in the training set:

f̂(x) =
1
N

NX

i=1

Ki(x).

Under reasonable assumptions, it can be shown that kernel methods
converge at least as quickly as any other nonparametric estimation
technique. We employ this approximation with Gaussian kernels:

Ki(x) = G(x;xi,Σi) =

1

(2π)n/2 |Σi|1/2
exp

»
−1

2
(x− xi)

T Σ−1
i (x− xi)

–
,

where Σi is a bandwidth matrix chosen as described in Section 5.1.

5.1 Bandwidth Estimation

For kernel density estimation to perform well in practice, one must
choose the bandwidth matrices—which control the size and shape
of the individual kernels—with some care. For n ≤ 3, the optimal
structure of Σi can be determined analytically, but these results do
not generalize to higher dimensions [Scott and Sain 2004]. Like-
wise, iterative cross-validation techniques that attempt to learn the
optimal kernel structure can be prohibitively expensive in higher
dimensions.

Approaches based on the sample covariance of the k
th nearest

neighbors of a given point have been shown to perform well for
n > 4, but may suffer from sharp discontinuities as the set of near-
est neighbors does not vary smoothly across the space. Therefore,
we employ a fixed-mean version of the distance-weighted empirical
covariance matrix described by Bengio and Vincent [2004]. This
approach is predicated on a “soft” weighted-neighborhood notion
of locality, thereby ensuring a continuous density estimate. For a
kernel centered at a point x, the bandwidth matrix has entries

Σs,t =
NX

i=1

ωi

ˆ
(xi)s − (x)s

˜ ˆ
(xi)t − (x)t

˜
,

where ωi are normalized weights. We choose

ωi =
G(xi;x, α�x− xd(k)�2I)PN

j=1 G(xj ;x, α�x− xd(k)�2I)
,

where α is a smoothing parameter and xd(k) is the k
th nearest

neighbor of x amongst the {xi}; in our implementation, we take
k = n. In this manner, the width of each weighting kernel is pro-
portional to the distance from its center to its k

th nearest neighbor,
which allows each bandwidth matrix to smoothly adapt to the lo-
cal shape and scale of the underlying distribution. If the database
points in some region of the space lie on or near a low-dimensional
manifold, the shape of a kernel centered in that region will coincide
with the principal directions of that manifold.

5.2 Bandwidth Shrinkage

Unfortunately, all bandwidth estimators based on empirical covari-
ances exhibit serious defects when N is not much larger than n.
For instance, unless N � n, Σ will be ill-conditioned. Worse still,
when N < n, Σ loses full rank, becomes singular, and is no longer
positive definite. These limitations are highly relevant, since one of
the key properties of our method is that it can function even with
few initial database points.

To overcome these deficiencies, we modify the shrinkage esti-
mator of Schäfer and Strimmer [2005] to apply to weighted co-
variance matrices, and employ it in all of our bandwidth compu-
tations. This involves computing a shrinkage target matrix Φ and
optimal intensity λ, and then substituting the shrinkage estimator



Figure 6: (Left) The probability distribution f̂(x) for a collection
of 2D points, computed with adaptive kernel density estimation.
(Right) The local distribution 1

ϕG(x;x0,Σ0)f̂(x), with x0 and an
isocontour of G(x;x0,Σ0) shown in red.

Σ� = λΦ + (1 − λ)Σ everywhere for Σ. By employing this es-
timator, we are able to compute accurate bandwidth matrices with
favorable numerical properties for arbitrary combinations of N and
n. The relevant mathematical details are presented in Appendix A.

6 Sampling

Once the density estimate has been constructed, we sample from
it and other related distributions in order to generate alternatives to
the current model. Since f̂(x) is a uniform mixture of Gaussians,
we can sample from it by choosing an index i ∈ [1, 2, . . . , N ] uni-
formly at random and then drawing a sample from the correspond-
ing G(x;xi,Σi).

In parametric design, each parameter is typically restricted to lie
in a compact range of valid values. For example, a parameter rep-
resenting the joint angle of a human elbow must be appropriately
constrained between 0 and 180 degrees. Therefore, we employ the
multivariate truncated Gaussian simulator of Robert [1995] in all
our sampling schemes. This simulator efficiently produces draws
from truncated multivariate Gaussian distributions via a clever re-
jection sampling technique.

6.1 Local Sampling

To sample from f̂(x) in the local neighborhood of a particular
model x0, we draw samples from probability distributions of the
form

1
ϕ

G
`
x;x0,Σ0

´
· f̂(x), (�)

where ϕ is a normalizing constant and Σ0 is chosen as in Sec-
tion 5.1 with k an order of magnitude larger than n. Intuitively,
we bias the sample to be close to x0 while still generally adhering
to the probability distribution (see Figure 6). By taking the band-
width smoothing parameter α to be inversely proportional to the
designer’s confidence in x0, we can control the degree of variation
produced by the sampling: in our implementation, α is chosen pro-
portional to the current zoom level of the map. To perform this
sampling efficiently, we substitute for f̂(x) in (�) and rearrange
terms to obtain

1
ϕN

NX

i=1

„
G

`
x;x0,Σ0

´
G

`
x;xi,Σi

´«
=

1
ϕN

NX

i=1

„
G

`
x0;xi,Σ0 + Σi

´
G

`
x;x�i,Σ

�
i

´«
,

where

Σ�
i =

`
Σ−1

0 + Σ−1
i

´−1
and

x�i = Σ�
i

`
Σ−1

0 x0 + Σ−1
i xi

´
.

Each of the summands is now a scaled Gaussian and the contri-
bution of summand i to the probability mass is proportional to the
constant G (x0;xi,Σ0 + Σi). Thus we can sample from (�) by
choosing an index 1 ≤ i ≤ N with probability

G (x0;xi,Σ0 + Σi)P
i G (x0;xi,Σ0 + Σi)

and then drawing a sample from G (x;x�i,Σ
�
i). Computing these

probabilities with floating point arithmetic requires some care: see
Appendix B for details.

6.2 Constrained Sampling

For modeling tasks in which desired values for p of the n param-
eters are known a priori, we may, with an appropriate reordering,
consider the conditional probability distribution f̂(x1 | x2), where
x1 and x2 are subvectors of x of dimensionality n − p and p rep-
resenting the varying and fixed parameters, respectively. Given
matching decompositions

x =

»
x1

x2

–
, xi =

»
xi1
xi2

–
, and Σi =

»
Σi11 Σi12
Σi21 Σi22

–
,

we observe that

f̂(x1 | x2) =
1
N

NX

i=1

Ki(x1 | x2) =
1
N

NX

i=1

G(x1;xi1|2 ,Σi1|2),

where

xi1|2 = xi1 + Σi12Σ
−1
i22(x2 − xi2) and

Σi1|2 = Σi11 −Σi12Σ
−1
i22Σi21 .

Since the conditional probability of a multivariate Gaussian dis-
tribution is another multivariate Gaussian distribution of lower di-
mensionality, our sampling framework adapts seamlessly to the
presence of such constraints.

7 Parametric Spaces

To assess the applicability of our method, we investigated three dis-
parate design spaces: a modified version of the tree space devel-
oped by Weber and Penn [1995] (n = 91), an extension of the
space of human body shapes of Allen et al. [2003] (n = 130),
and the anisotropic Phong BRDF space of Ashikhmin and Shirley
[2000] (n = 9). In each case, we seeded the space with a number
of real-world examples corresponding to observed trees (N = 19),
scanned human shapes (N = 124), and measured reflectance func-
tions (N = 42), respectively.

We focused the bulk of our efforts on trees for a number of rea-
sons: they are familiar to casual users and expert modelers alike,
have complex structure, are ubiquitous in multi-user virtual envi-
ronments, and are difficult for novices to rapidly produce in existing
modeling tools. We made relatively minor modifications to Weber
and Penn’s original space, mostly altering parameters that triggered
conditional modes of execution and removing parameters that were
visually unimportant or linearly dependent. A thorough evaluation
of our tree modeling tool is reported in Section 8.

Realistic human models are among the most sought-after assets
in modern graphical applications and are known to be difficult and
time-consuming to produce using traditional modeling tools. The



Figure 7: Typical samples from the computed distribution of human body shapes (zoom in for detail).

space of human body shapes developed by Allen et al., therefore,
was another natural choice. We made slight alterations to the orig-
inal space, adding a few extra parameters related to skin color and
appearance in order to make the produced models more realistic
(see Figure 7). Exploratory modeling is especially valuable in this
space, since Allen’s original parameters defy semantic interpreta-
tion and are difficult to manipulate directly.

We also tested our method on the standard anisotropic BRDF
model of Ashikhmin and Shirley: a low-dimensional parametric
space specifically constructed to contain only good parameter con-
figurations. Somewhat surprisingly, density estimation is valu-
able even in this space. In particular, materials with unlikely dif-
fuse/specular combinations are properly assigned low probabilities
by the estimate and avoided during modeling (see Figure 8).

8 Implementation and Evaluation

We have developed a modular software toolkit for creating ex-
ploratory modeling tools, consisting of a client modeling applica-
tion written in C++ and a server framework written in Ruby with an
SQL backend. In December of 2007, we released a prototype tree
modeling tool to the public. In the twelve months that followed, a
burgeoning community of users expanded the initial database of 19
seed trees (Figure 10) to more than 6,200 new models. Several rep-
resentative examples of these unique and diverse trees are presented
in Figure 11.

To analyze the effectiveness of the tool, all user interactions
were anonymously logged and periodically uploaded to a central
server. We report statistical analyses of the collected user data and
responses to a short user survey.

8.1 Log Analysis

We analyzed 6,901 user logs, detailing the creation of 4,865 tree
models. The average creation time per tree was 15.1 minutes, while
63.2% of trees were created in less than 10 minutes, and the longest
1% of modeling sessions took between 1 and 3 hours. These results
demonstrate that the tool enables users to create high-quality mod-
els in relatively short periods of time: it would be difficult even for
professional modelers to create many of the trees shown in Figure
11 so quickly using existing modeling software.

We also investigated the relative impact of the exploratory and
routine mechanisms exposed by the tool. On average, users spent
only 22.7% of each modeling session adjusting parameters via slid-
ers or applying constraints.

8.2 User Survey

After the number of downloads exceeded 5000, we conducted a
short survey of registered users. These users were presented with a
series of statements about the software and asked to evaluate them
on the standard 5-point Likert scale. Completed surveys from 72
respondents were received. Only 15% of the respondents rated their
knowledge of 3D modeling as “fluent” or “expert”. The survey
results are summarized in Figure 9.

The responses seem to largely validate our method, with a ma-
jority of users indicating that the prototype allowed them to create
compelling models and was less cumbersome than existing tools.
Especially encouraging was the degree to which users found that
the software allowed them to express their personal sense of aes-
thetics and provided an engaging and even inspiring experience.

9 Discussion and Future Work

Further investigation of exploratory 3D modeling techniques has
great potential to produce more accessible tools for casual and
novice modelers, and support creativity and innovation in novices
and experts alike. While our work takes a step in this direction, the
presented method is not without limitations. It is, for instance, fun-
damentally ill-suited for routine design tasks, such as the replication
of a particular, precise model specification. It is also appropriate
only for domains with good parametric representations. Developing
parametric spaces for new visual domains (in the spirit of [Weber
and Penn 1995; Allen et al. 2003]) remains an interesting challenge.
More generally, developing exploratory 3D modeling tools that do
not rely on parametric spaces is a key avenue for future research.
Particularly promising is the potential for integrating exploratory
modeling techniques with traditional geometry processing methods
and grammar-based procedural modeling tools.

There is also much more to be learned about the cognitive as-
pects of 3D modeling. In particular, there is a pronounced need
for ethnographic research in this area: we are aware of no formal
comprehensive studies of the behavior and motivations of 3D mod-
elers. We believe that a more complete understanding of the spec-
trum of design processes employed by both casual and professional
modelers will eventually lead to significantly improved tools for 3D
content creation.

Figure 8: Even in the nine-dimensional space of BRDFs, sampling
from the computed density function (top) is more likely to produce
visually-appealing points than random sampling (bottom).
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I used the map to explore variants of particular trees

Software allows me to create compelling trees

Software allows me to express myself

Software is engaging

Software is more cumbersome than existing tools

I used the map to explore what trees are possible

I was inspired by trees I saw in the map

The map positively a!ected the tree I made

Zooming in the map was helpful

The forest map was not helpful

The sliders were not helpful

I used the sliders to adjust particular aspects of trees

I never understood all of the sliders

Likert scale ratings:

μ=3.93, σ=0.75 

μ=3.60, σ=0.91 

μ=3.89, σ=0.83 

μ=2.47, σ=0.87 

μ=3.99, σ=0.89 

μ=3.60, σ=1.04 

μ=3.79, σ=0.96 

μ=3.68, σ=0.89 

μ=3.23, σ=1.06 

μ=2.10, σ=0.93 

μ=2.24, σ=0.94 

μ=4.13, σ=0.78 

μ=2.37, σ=1.25 

Figure 9: Survey results from 72 users of the tree modeling tool.
1 = ‘strongly disagree’, 3 = ‘neutral’, and 5 = ‘strongly agree’. Er-
ror bars indicate one standard deviation.
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A Computing the Shrinkage Estimate

Given a bandwidth matrix Σ as defined in Section 5.1, we compute
a modified version of the “diagonal, unequal variance” shrinkage
estimator from Schäfer and Strimmer [2005]. The target matrix Φ
and optimal shrinkage intensity λ are given by

Φs,t =


Σs,s if s = t

0 if s �= t
and λ =

P
s �=t

dV ar (Σs,t)P
s �=t Σ

2
s,t

.

Here dV ar (Σs,t) is an estimate of the variance of the individual
elements of Σ. Setting wis,t = [(xi)s−(x)s][(xi)t−(x)t], w̄s,t =PN

i=1 ωiwis,t , and ω̄ = 1
N

PN
i=1 ωi, it is clear that each individual

Σs,t is a weighted mean of the wis,t . With this observation, we
may employ the variance estimate from Gatz and Smith [1995] to
the elements of our distance-weighted covariance matrices:

dV ar(Σs,t) =
N

N − 1

"
NX

i=1

`
ωiwis,t − ω̄w̄s,t

´2

− 2w̄s,t

NX

i=1

(ωi − ω̄)
`
ωiwis,t − ω̄w̄s,t

´

+ w̄
2
s,t

NX

i=1

(ωi − ω̄)2
#
.

Note that, in practice, λ must be clamped to the range [0, 1].
This estimator possesses a number of favorable properties. It is

roughly as efficient to compute as Σ and has guaranteed minimum
mean-squared error. It is also fully automatic and nonparametric,
requiring no parameter tuning and relying on no assumptions about
the structure of the underlying distribution except the existence of
the first moment. Furthermore, the resultant matrix is always well-
conditioned and positive definite, and can therefore be efficiently
inverted. Moreover, for spaces where n is so large as to make even
a single realtime matrix inversion intractable, the estimator admits

a principled simplification. By forcing λ = 1, we obtain a set of
kernels in which all of the parameters are assumed to be indepen-
dent and the resultant bandwidth matrices are all diagonal, making
inversion (and sampling) trivial.

B Log-Likelihood Kernels

To compute the discrete probability distribution that is central to the
local sampling of Section 6.1 without under- or over-flow, we use a
standard technique from machine learning folklore and apply a log
transformation to each kernel. Observe that

L(x; x̄,Σ) = log (G(x; x̄,Σ)) =

− 1
2

“
n log(2π) + log |Σ| + (x− x̄)T Σ−1(x− x̄)

”
,

where

log |Σ| = log |L||L∗| = 2 log
nY

s=1

Ls,s = 2
nX

s=1

log Ls,s.

Each L(x; x̄,Σ) can be computed even for large n, but naı̈vely in-
verting the log transformation may still result in underflow. Instead,
we set γ = exp[−Lm], where Lm = maxj [L(x0;xj ,Σ0 + Σj)],
and observe that

GiP
j Gj

=
γ

γ

exp[Li]P
j exp[Lj ]

=
exp[Li − Lm]P
j exp[Lj − Lm]

,

where Gi = G (x0;xi,Σ0 + Σi) and Li = log Gi. This rescaling
forces the unnormalized weight of the most-likely index in the re-
sultant distribution to one, yielding a stable sampling even when the
relative weights of the remaining indices all underflow themselves.
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