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Abstract

We propose a differentiable cloth simulator that can be embedded as a layer in deep
neural networks. This approach provides an effective, robust framework for model-
ing cloth dynamics, self-collisions, and contacts. Due to the high dimensionality
of the dynamical system in modeling cloth, traditional gradient computation for
collision response can become impractical. To address this problem, we propose to
compute the gradient directly using QR decomposition of a much smaller matrix.
Experimental results indicate that our method can speed up backpropagation by
two orders of magnitude. We demonstrate the presented approach on a number of
inverse problems, including parameter estimation and motion control for cloth.

1 Introduction

Differentiable physics simulation is a powerful family of techniques that applies gradient-based
methods to learning and control of physical systems [7; 8; 29; 13; 25]. It can enable optimization for
control, and can also be integrated into neural network frameworks for performing complex tasks.
Our work focuses on cloth simulation, which relates to applications in robotics, computer vision, and
computer graphics [6; 19; 3; 31; 23; 16; 11]. Our goal is to enable differentiable cloth simulation,
which can provide a unified approach to a variety of inverse problems that involve cloth.

Differentiable cloth simulation is challenging due to a number of factors, which include the high
dimensionality of cloth (as compared for example to rigid bodies [7]) and the need to handle contacts
and collision. For example, a simple 16×16 grid-based cloth mesh has 289 vertices, 867 variables, and
512 faces when triangulated. Typical resolutions for garments would be at least many thousands, if
not millions, of vertices and faces. Previous work that tackled differentiable simulation with collisions
set up a static linear solver to account for all constraints [7]. In our simple example with cloth, the
number of pairwise constraints would be at least 289×512 = 140K for vertex-face collisions alone,
which renders existing methods impractical even for this simple system. Even if a dynamic solver
is applied upon collision, solving a dense linear system with such high dimensionality makes the
gradient computation infeasible.

In this paper, we propose a differentiable cloth simulation algorithm that overcomes the above
difficulties. First, we use dynamic collision detection since the actual collision pairs are very
sparse. The collision response is solved by quadratic optimization, for which we can use implicit
differentiation to compute the gradient. We directly solve the equations derived from implicit
differentiation by using the QR decomposition of the constraint matrix, which is much smaller than
the original linear system and is often of low rank. This approach reduces the gradient computation
to a linear system of a small upper triangular matrix (the R component of the decomposition), which
enables fast simulation and backpropagation.

Our experiments indicate that the presented method makes differentiable cloth simulation practical.
Using our method, the largest size of the linear system is 10x-20x smaller than the original solver
in the backpropagation of the collision response, and the solver is 60x-130x faster. We demonstrate
the potential of differentiable cloth simulation in a number of application scenarios, such as physical
parameter estimation and motion control of cloth. With only a few samples, the differentiable
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simulator can optimize its input variables to fit the data, thereby inferring physical parameters from
observations and reaching desired control goals.

2 Related Work

Differentiable physics. With recent advances in deep learning, there has been increasing interest in
differentiable physics simulation, which can be combined with other learning methods to provide
physically consistent predictions. Belbute-Peres et al. [7] and Degrave et al. [8] proposed rigid body
simulators using a static formulation of the linear complementarity problem (LCP) [5; 4]. Toussaint
et al. [29] developed a robot reasoning system that can achieve user-defined tasks and is based
on differentiable primitives. Hu et al. [13] implemented a differentiable simulator for soft robots
based on the Material Point Method (MPM). They store the object data at every simulation step so
that the gradient can be computed out of the box. Schenck and Fox [25] embedded particle-based
fluid dynamics into convolutional neural networks, with precomputed signed distance functions for
collision handling. They solved or avoided collisions by assuming special object shapes, transferring
to an Eulerian grid, or solving the corresponding collision constraint equation.

None of these methods can be applied to cloth simulation. First, cloth is a 2D surface in a 3D world;
thus methods that use an Eulerian grid to compute material density, such as MPM [13], are not
applicable. Second, the collision constraints in cloth simulation are more dynamic and complex
given the high number of degrees of freedom; thus constructing a static dense LCP for the entire
system [7; 8] or constructing the overall state transition graph [29] is inefficient and usually impossible
for cloth of common resolution, since contact can happen for every edge-edge or vertex-face pair.
Lastly, the shape of cloth changes constantly so self-collision cannot be handled by precomputed
signed distance functions [25].

In contrast, our method uses dynamic collision detection and computes the gradients of the collision
response by performing implicit differentiation on the quadratic optimization used for computing
the response. We utilize the low dimensionality and rank of the constraint matrix in the quadratic
optimization and minimize the computation needed for the gradient propagation by giving an explicit
solution to the linear system using QR decomposition of the constraint matrix.

Deep learning and physics. Supervised deep networks have been used to approximate physical
dynamics. Mrowca et al. [21] and Li et al. [17] learned interaction networks to model particle systems.
Ingraham et al. [14] trained a model to predict protein structures from sequences using a learnable
simulator; the simulator predicts the deformation energy as an approximation to the physical process.
Deep networks have also been used to support the simulation of fluid dynamics [28; 15; 20]. Our
method differs from many works that use deep networks to approximate physical systems in that
we backpropagate through the true physical simulation. Thus our method conforms to physical law
regardless of the scale of the problem. It can also naturally accept physical parameters as input, which
enables learning from data.

Deep learning and cloth. Coupling cloth simulation with deep learning has become a popular way
to solve problems such as detail refinement, garment retargeting, and material estimation. Yang et
al. [31] proposed a recurrent model to estimate physical cloth parameters from video. Lähner et
al. [16] trained a GAN to generate wrinkles on a coarse garment mesh which can then be automatically
registered to a human body using PCA. Gundogdu et al. [11] trained a graph convolutional framework
to generate drapes and wrinkles given a roughly registered mesh. Santesteban et al. [24] developed
an end-to-end retargeting network using a parametric human body model with displacements to
represent the cloth.

These applications may benefit from our method. For garment retargeting problems, the relationship
between body pose and vertex displacement is made explicit via the computed gradient, which can
then be applied in network regularization for better performance. For parameter estimation, the
differentiable simulation provides an optimization-based solution rather than a learning-based one.
Instead of learning statistics from a large amount of data, we can directly apply gradient-based
optimization via the simulator, which does not require any training data.
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3 Differentiable Cloth Simulation

In this section, we introduce the main algorithms for the gradient computation. In general, we
follow the computation flow of the common approach to cloth simulation: discretization using the
finite element method [9], integration using implicit Euler [2], and collision response on impact
zones [22; 12]. We use implicit differentiation in the linear solve and the optimization in order to
compute the gradient with respect to the input parameters. The discontinuity introduced by the
collision response is negligible because the discontinuous states constitute a zero-measure set. During
the backpropagation in the optimization, the gradient values can be directly computed after QR
decomposition of the constraint matrix.

3.1 Overview

We begin by defining the problem formally and providing common notation. A triangular mesh
M = {V, E ,F} consists of sets of vertex states, edges, and faces, where the state of the vertices
includes both position x and velocity v. Given a cloth meshMt together with obstacle meshesMobs

t
at step t, a cloth simulator can compute the mesh stateMt+1 at the next step t + 1 based on the
computed internal and external forces and the collision response. A simple simulation pipeline is
shown in Algorithm 1, where M is the mass matrix, f is the force, and a is the acceleration. For more
detailed description of cloth simulation, please refer to Appendix B. All gradients except the linear
solve (Line 4 in Algorithm 1) and the collision response (Line 7) can be computed using automatic
differentiation in PyTorch [26].

Algorithm 1 Cloth simulation
1: v0 ← 0
2: for t = 1 to n do
3: M, f ← compute_forces(x,v)
4: at ←M−1f
5: vt ← vt−1 + at∆t
6: xt ← xt−1 + vt∆t
7: xt ← xt+ collision_response(xt,vt,xobst ,vobst )
8: vt ← (xt − xt−1)/∆t
9: end for

3.2 Derivatives of the Physics Solve

In modern simulation algorithms, implicit Euler is often used for stable integration results. Thus the
mass matrix M used in Algorithm 1 often includes the Jacobian of the forces (see Appendix B for
the exact formulation). We denote it below as M̂ in order to mark the difference. A linear solve
will be needed to compute the acceleration since it is time consuming to compute M̂−1. We use
implicit differentiation to compute the gradients of the linear solve. Given an equation M̂a = f with
a solution z and the propagated gradient ∂L∂a |a=z, where L is the task-specific loss function, we can
use the implicit differentiation form

M̂∂a = ∂f − ∂M̂a (1)
to derive the gradient as

∂L
∂M̂

= −daz
> ∂L

∂f
= d>a , (2)

where da is obtained from the linear system

M̂>da =
∂L
∂a

>
. (3)

The proof is as follows. We take ∂L
∂f as an example here, the derivation of ∂L

∂M̂
is shown in Ap-

pendix A.1:
∂L
∂f

=
∂L
∂a
· ∂a
∂f

= d>a M̂ · M̂†I = d>a . (4)
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The first equality is given by the chain rule, the second is given by Equations 1 and 3, and M̂† is the
pseudoinverse of matrix M̂.

3.3 Dynamic Collision Detection and Response

As mentioned in Sec. 1, a static collision solver is not suitable for cloth because the total number
of possible collision pairs is very high: quadratic in the number of faces. A common approach in
cloth simulation is to dynamically detect collision on the fly and compute the response. We use a
bounding volume hierarchy for collision detection [27], and non-rigid impact zones [12] to compute
the collision response.

Specifically, we solve a cubic equation to detect the collision time t of each vertex-face or edge-edge
pair that is sufficiently close to contact:

(x1 + v1t) · (x2 + v2t)×(x3 + v3t) = 0, (5)

where xk and vk (k = 1, 2, 3) are the relative position and velocity to the first vertex. A solution
that lies in [0, 1] means that a collision is possible before the next simulation step. After making
sure that the pair indeed intersects at time t, we set up one constraint for this collision, forcing the
signed distance of this collision pair at time t to be no less than the thickness of the cloth δ. The
signed distance of the vertex-face or edge-edge pair is linear to the vertex position x. The set of all
constraints then makes up a quadratic optimization problem as discussed later in Sec. 3.4.

For backpropagation, we need to compute the derivatives of the solution t since it is related to the
parameters of the constraints. We use implicit differentiation here to simplify the process. Generally,
given a cubic equation ax3 + bx2 + cx+ d = 0, its implicit differentiation is of the following form:

(3ax2 + 2bx+ c)∂x = ∂ax3 + ∂bx2 + ∂cx+ ∂d. (6)

Therefore we have [
∂x
∂a

∂x
∂b

∂x
∂c

∂x
∂d

]
=

1

3ax2 + 2bx+ c

[
x3 x2 x 1

]
. (7)

3.4 Derivatives of the Collision Response

A general approach to integrating collision constraints into physics simulation has been proposed
by Belbute-Peres et al. [7]. However, as mentioned in Sections 1 and 2, constructing a static LCP is
often impractical in cloth simulation because of high dimensionality. Collisions that actually happen
in each step are very sparse compared to the complete set. Therefore, we use a dynamic approach
that incorporates collision detection and response.

Collision handling in our implementation is based on impact zone optimization [22]. It finds all
colliding instances using continuous collision detection (Sec. 3.3) and sets up the constraints for
all collisions. In order to introduce minimum change to the original mesh state, we develop a QP
problem to solve for the constraints. Since the signed distance function is linear in x, the optimization
takes a quadratic form:

minimize
z

1

2
(z− x)>W(z− x) (8)

subject to Gz + h ≤ 0 (9)

where W is a constant diagonal weight matrix related to the mass of each vertex, and G and h are
constraint parameters (see Appendix B for more details). We further denote the number of variables
and constraints by n and m, i.e. x ∈ Rn, h ∈ Rm, and G ∈ Rm×n. Note that this optimization is a
function with inputs x, G, and h, and output z. Our goal here is to derive ∂L

∂x , ∂L∂G , and ∂L
∂h given ∂L

∂z ,
where L refers to the loss function.

When computing the gradient using implicit differentiation [1], the dimensionality of the linear
system (Equation 13) can be too high. Our key observation here is that n >>m > rank(G), since
one contact often involves 4 vertices (thus 12 variables) and some contacts may be linearly dependent
(e.g. multiple adjacent collision pairs). OptNet [1] solves a linear equation of size m+ n, which is
more than necessary. We introduce a simpler and more efficient algorithm below to minimize the size
of the linear equation.
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3.4.1 QR Decomposition

To make things simpler, we assume that G is of full rank in this section. At global minimum z∗ and
λ∗ of the Lagrangian, the following holds for stationarity and complementary slackness conditions:

Wz∗ −Wx + G>λ∗ = 0 (10)
D(λ∗)(Gz∗ + h) = 0, (11)

with their implicit differentiation as[
W G>

D(λ∗)G D(Gz∗ + h)

] [
∂z
∂λ

]
=

[
M∂x− ∂G>λ∗

−D(λ∗)(∂Gz∗ + ∂h)

]
, (12)

where D() transforms a vector to a diagonal matrix. Using similar derivation to Sec. 3.2, solving the
equation [

W G>D(λ∗)
G D(Gz∗ + h)

] [
dz

dλ

]
=

[
∂L
∂z

>

0

]
(13)

can provide the desired gradient:

∂L
∂x

= dTz W (14)

∂L
∂G

= −D(λ∗)dλz
∗> − λ∗d>z (15)

∂L
∂h

= −dTλD(λ∗). (16)

(See Appendix A.2 for the derivation.) However, as mentioned before, directly solving Equation 13
may be computationally expensive in our case. We show that by performing a QR decomposition, the
solution can be derived without solving a large system.

Figure 1: Impact of perturbation. A
small perturbation of the target position
will cause the final result to move along
the constraint surface.

To further reduce computation, we assume that no con-
straint is ‘over-satisfied’, i.e. Gz∗ + h = 0. We will
remove these assumptions later in Sec. 3.4.2. We compute
the QR decomposition of

√
W
−1

G>:
√
W
−1

G> = QR. (17)

The solution of Equation 13 can be expressed as

dz =
√
W
−1

(I−QQ>)
√
W
−1 ∂L
∂z

>
(18)

dλ = D(λ∗)−1R−1Q>
√
W
−1 ∂L
∂z

>
, (19)

where
√
W
−1

is the inverse of the square root of a diago-
nal matrix. The result above can be verified by substitution
in Equation 13.

The intuition behind Equation 18 is as follows. When perturbing the original point x in an opti-
mization, the resulting displacement of z will be moving along the surface of Gx + h = 0, which
will become perpendicular to the normal when the perturbation is small. (Fig. 1 illustrates this idea
in two dimensions.) This is where the term I − QQ> comes from. Note that

√
W
−1

G> is an
n×m matrix, where n >>m and the QR decomposition will only take O(nm2) time, compared to
O((n+m)3) in the original dense linear solve. After that we will need to solve a linear equation in
Equation 19, but it is more efficient than solving Equation 13 since it is only of size m, and R is an
upper-triangular matrix. In our collision response case, where n ≤ 12m, our method can provide up
to 183x acceleration in theory. The speed-up in our experiments (Sec. 4) ranges from 60x to 130x for
large linear systems.
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3.4.2 Low-rank Constraints

The algorithm above cannot be directly applied when G is low-rank, or when some constraint is not
at boundary. This will cause R or D(λ∗) to be singular. We now show that the singularity can be
avoided via small modifications to the algorithm.

First, if λk = 0 for the kth constraint then dλk doesn’t matter. This is because the final result contains
only components of D(λ∗)dλ but not dλ alone, as shown in Equations 15 and 16. Intuitively, if the
constraint is over-satisfied, then perturbing the parameters of that constraint will not have impact on
z. Based on this observation, we can remove the constraints in G when their corresponding λ is 0.

Next, if G is of rank k, where k < m, then we can rewrite Equation 17 as

√
W
−1

G> = Q1[R1 R2], (20)

where Q1 ∈ Rn×k, R1 ∈ Rk×k, and R2 ∈ Rk×(m−k). Getting rid of R2 (i.e. removing those
constraints from the beginning) does not affect the optimization result, but may change λ so that
the computed gradients are incorrect. Therefore, we need to transfer the Lagrange multipliers to the
linearly independent terms first:

λ1 ← λ1 + R−11 R2λ2, (21)

where λ1 and λ2 are the Lagrange multipliers corresponding to the constraints on R1 and R2.

4 Experiments

We conduct three experiments to showcase the power of differentiable cloth simulation. First, we
use an ablation study to quantify the performance gained by using our method to compute the
gradient. Next, we use the computed gradient to optimize the physical parameters of cloth. Lastly,
we demonstrate the ability to control cloth motion.

4.1 Ablation Study

As mentioned in Sec. 3.4.1, our method for computing the gradients of the optimization can achieve a
speed-up of up to 183x in theory. We conduct an ablation study to verify this estimate in practice. In
order to clearly measure the timing difference, we design a scenario with many collisions. We put
a piece of cloth into an upside-down square pyramid, so that the cloth is forced to fold, come into
frequent contact with the pyramid, and collide with itself, as shown in Fig. 2.

Figure 2: Example frame from the abla-
tion study. A piece of cloth is crumpled
inside a square pyramid, so as to gener-
ate a large number of collisions.

We measure the running time of backpropagation in each
quadratic optimization and also the running time of the
physics solve as a reference. With all other variables fixed,
we compare to the baseline method where the gradients are
computed by directly solving Equation 13. Timings are
listed in Tab. 1. In this experiment, the backpropagation
of the physics solve takes from 0.007s to 0.5s, which,
together with the timings of the baseline, implies that the
collision handling step is the critical bottleneck when there
are many collisions in the scene. The results in Tab. 1 show
that our proposed method can significantly decrease the
matrix size required for computation and thus the actual
running time, resolving the bottleneck in backpropagation.

The experimental results also match well with the theory
in Sec. 3.4. Each collision involves a vertex-face or edge-edge pair, which both have 4 vertices and
12 variables. Therefore, the original matrix size (n+m = 13m) should be about 13 times bigger
than in our method (m). In our experiment, the ratio of the matrix size is indeed close to 13. Possible
reasons for the ratio not being exactly 13 include (a) multiple collision pairs that share the same
vertex, making n smaller, and (b) the constraint matrix can be of low rank, as described in Sec. 3.4.2,
making the effective m smaller in practice.
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Mesh
resolution

Baseline Ours Speedup
Matrix size Runtime (s) Matrix size Runtime (s) Matrix size Runtime

16x16 599± 76 0.33± 0.13 66 ± 26 0.013 ± 0.0019 8.9 25
32x32 1326± 23 1.2± 0.10 97 ± 24 0.011 ± 0.0023 13 112
64x64 2024± 274 4.6± 0.33 242 ± 47 0.072 ± 0.011 8.3 64

Table 1: Statistics of the backward propagation with and without our method for various mesh
resolutions. We report the average values in each cell with the corresponding standard deviations. By
using our method, the runtime of gradient computation is reduced by up to two orders of magnitude.

4.2 Material Estimation

In this experiment, our aim is to learn the material parameters of cloth from observation. The scene
features a piece of cloth hanging under gravity and subjected to a constant wind force, as shown
in Fig. 3. We use the material model from Wang et al. [30]. It consists of three parts: density d,
stretching stiffness S, and bending stiffness B. The stretching stiffness quantifies how large the
reaction force will be when the cloth is stretched out; the bending stiffness models how easily the
cloth can be bent and folded.

We used the real-world dataset from Wang et al. [30], which consists of 10 different cloth materials.
There are in total 50 frames of simulated data. The first 25 frames are taken as input and all 50 frames
are used to measure accuracy. This is a case-by-case optimization problem. Our goal is to fit the
observed data in each sequence as well as possible, with no “training set” used for training.

Figure 3: Example frame from
the material estimation scene
for cloth blowing in the wind.

In our optimization setup, we use SGD with learning rate ranging
from 0.01 to 0.1 and momentum from 0.9 to 0.99, depending on the
convergence speed. The initial guess is the set of average values
across all materials. We define the loss as the average MSE across all
frames. In order to speed up optimization, we gradually increase the
number of frames used. Specifically, we first optimize the parameters
using only 1 simulated frame. We proceed to the second frame after
the loss decreases to a certain threshold. This optimization scheme
can help obtain a relatively good guess before additional frames are
involved.

As a simple baseline, we measure the total external force and divide
it by the observed acceleration to compute the density. For the
stretching stiffness, we simplify the model to an isotropic one and
record the maximum deformation magnitude along the vertical axis.
Since the effect of the bending stiffness is too subtle to observe, we directly use the averaged value as
our prior. We also compare our method with the L-BFGS optimization by Wang et al. [30] using
finite difference. We used the PyTorch L-BFGS implementation and set the learning rate ranging
from 0.1 to 0.2 depending on the convergence speed.

For the performance measurement, we use the Frobenius norm normalized by the target as the metric
for the material parameters:

E(P) =
‖P−P0‖F
‖P0‖F

, (22)

where P and P0 are the estimated and the target physics parameters, which stand for either density d,
stretching stiffness S, or bending stiffness B. In order to show the final visual effect, we also measure
the average distance of the vertices between the estimated one and the target normalized by the size
of the cloth as another metric:

E(X) =
1

nTL

∑
1≤i≤T,1≤j≤n

‖Xi,j −Yi,j‖2, (23)

where L is the size of the cloth, and X and Y are T×n×3 matrices denoting the n simulated vertex
positions across T frames using the estimated parameter and the target, respectively.

Tab. 2 shows the estimation result. We achieve a much smaller error in most measurements in
comparison to the baselines. The reason the stiffness matrices do not have low error is that (a) a large
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part of them describes the nonlinear stress behavior that needs a large deformation of the cloth and
is not commonly observed in our environment, (b) different stiffness values can sometimes provide
similar results, and (c) the bending force for common cloth materials is too small compared to gravity
and the wind forces to make an impact. The table shows that the linear part of the stiffness matrix
is optimized well. With the computed gradient using our model, one can effectively optimize the
unknown parameters that dominate the cloth movement to fit the observed data. We show in the
supplementary video that the estimated parameters yield very similar qualitative behavior to the
original observation.

Compared with regular simulators, our simulator is designed to be embedded in deep networks. When
gradients are needed, our simulator shows significant improvement over finite-difference methods, as
shown in Tab. 2. Regular simulators need to run one simulation for each input variable to compute the
gradient, while our method only needs to run once for all gradients to be computed. Therefore, the
more input variables there are during learning, the greater the performance gain that can be achieved
by our method over finite-difference methods.

Method Runtime
(sec/step/iter)

Density
error (%)

Non-ln streching
stiffness error (%)

Ln streching
stiffness error (%)

Bending stiffness
error (%)

Simulation
error (%)

Baseline - 68 ± 46 74 ± 23 160 ± 119 70 ± 42 12 ± 3.0
L-BFGS [30] 2.89 ± 0.02 4.2 ± 5.6 64 ± 34 72 ± 90 70 ± 43 4.9 ± 3.3
Ours 2.03 ± 0.06 1.8 ± 2.0 57 ± 29 45 ± 41 77 ± 36 1.6 ± 1.4

Table 2: Results on the material parameter estimation task. Lower is better. ‘Ln’ stands for ‘linear’.
Values of the material parameters are the Frobenius norms of the difference normalized by the
Frobenius norm of the target. Values of the simulated result are the average pairwise vertex distance
normalized by the size of the cloth. Our gradient-based method yields much smaller error than the
baselines.

4.3 Motion Control

Figure 4: Example frame from the mo-
tion control experiment: dropping cloth
into a basket.

We further demonstrate the power of our differentiable
simulator by optimizing control parameters. The task is
to drop a piece of cloth into a basket, as shown in Fig. 4.
The cloth is originally placed on a table that is away from
the basket. The system then applies external forces to the
corners of the cloth to lift it and drop it into the basket.
The external force is applied for 3 seconds and can be
changed during this period. The basket is a box with an
open top. A planar obstacle is placed between the cloth
and the basket to increase the difficulty of the task.

We define the loss here as the squared distance between
the center of mass of the cloth and the bottom of the basket.
To demonstrate the ability to embed the simulator into neural networks, we also couple our simulator
with a two-layer fully-connected (FC) network that takes the mesh states as input and outputs the
control forces. Our methods here are compared to two baselines. One of the baselines is a simple
method that computes the momentum needed at every time step. The entire cloth is treated as a
point mass and an external force is computed at each time step to control the point mass towards the
goal. Obstacles are simply neglected in this method. The other baseline is the PPO algorithm, as
implemented in Ray RLlib [18]. The reward function is defined as the negative of the distance of the
center of mass of the cloth to the bottom of the basket. Please refer to the Appendix for additional
details.

Method Error (%) Samples

Point mass 111 –
PPO [18] 432 10,000
Ours 17 53
Ours+FC 39 108

Table 3: Motion control results. The table
reports the smallest distance to the target posi-
tion, normalized by the size of the cloth, and
the number of samples used during training.

Tab. 3 shows the performance of the different meth-
ods and their sample complexity. The error shown in
the table is the distance defined above normalized by
the size of the cloth. Our method achieves the best
performance with a much smaller number of simula-
tion steps. The bottom of the basket in our setting has
the same size as the cloth, so a normalized error of
less than 50%, as our methods achieve, implies that
the cloth is successfully dropped into the basket.
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5 Conclusion
We presented a differentiable cloth simulator that can compute the analytical gradient of the simulation
function with respect to the input parameters. We used dynamic collision handling and explicitly
derived its gradient. Implicit differentiation is used in computing gradients of the linear solver and
collision response. Experiments have demonstrated that our method accelerates backpropagation by
up to two orders of magnitude.

We have demonstrated the potential of differentiable cloth simulation in two application scenarios:
material estimation and motion control. By making use of the gradients from the physically-aware
simulation, our method can optimize the unknown parameters faster and more accurately than
gradient-free baselines. Using differentiable simulation, we can learn the intrinsic properties of cloth
from observation.

One limitation of our existing implementation is that the current simulation architecture is not
optimized for large-scale vectorized operations, which introduces some overhead. This can be
addressed by a specialized, optimized simulation system based solely on tensor operations.
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Appendix A Derivations of the Gradient Computation

A.1 Proof of Equation 2

We now show that ∂L
∂M̂

= −daz
>. For convenience of expression, we split the matrix M̂ into

elements {M̂i,j}. Setting irrelevant variables to zero, we obtain from Equation 1 that:

M̂∂a = −∂M̂z =

 0

−∂M̂i,jzj
0

 (24)

Hence, we have:

∂a

∂M̂i,j

= M̂†

(
0
−zj
0

)
(25)

Similar to Equation 4, we arrive at:

∂L
∂M̂i,j

=
∂L
∂a
· ∂a

∂M̂i,j

= d>a M̂ · M̂†
(

0
−zj
0

)
= −daizj (26)

Combining all elements in M̂ together we have:

∂L
∂M̂

= −daz
> (27)

A.2 Proof of Equation 13-16

Let ẑ = [z λ]
>. Using Equation 12 we have:

∂ẑ

∂x
=

[
W G>

D(λ∗)G D(Gz∗ + h)

]† [
W
0

]
(28)

∂ẑ

∂h
=

[
W G>

D(λ∗)G D(Gz∗ + h)

]† [
0

−D(λ∗)

]
(29)

Then, the chain rule can yield the results as:

∂L
∂x

=
∂L
∂ẑ
· ∂ẑ
∂x

(30)

=
[
d>z d>λ

] [ W G>

D(λ∗)G D(Gz∗ + h)

]
·
[

W G>

D(λ∗)G D(Gz∗ + h)

]† [
W
0

]
(31)

= d>z W (32)

∂L
∂h

=
∂L
∂ẑ
· ∂ẑ
∂h

(33)

=
[
d>z d>λ

] [ W G>

D(λ∗)G D(Gz∗ + h)

]
·
[

W G>

D(λ∗)G D(Gz∗ + h)

]† [
0

−D(λ∗)

]
(34)

= −d>λD(λ∗) (35)

Similarly as Appendix A.1, we split the matrix G into elements {Gi,j}. From Equation 12 we have:

[
W G>

D(λ∗)G D(Gz∗ + h)

]
∂ẑ =

[
−∂G>λ∗
−D(λ∗)∂Gz∗

]
=


0

−∂Gi,jλ
∗
i

0
−λ∗i ∂Gi,jz

∗
j

0

 (36)
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which indicates that:

∂ẑ

∂Gi,j
=

[
W G>

D(λ∗)G D(Gz∗ + h)

]† 
0
−λ∗i
0

−λ∗i z∗j
0

 (37)

So the chain rule gives:

∂L
∂Gi,j

=
∂L
∂ẑ
· ∂ẑ

∂Gi,j
(38)

=
[
d>z d>λ

] [ W G>

D(λ∗)G D(Gz∗ + h)

]
·
[

W G>

D(λ∗)G D(Gz∗ + h)

]† 
0
−λ∗i
0

−λ∗i z∗j
0

 (39)

= −dzj
λ∗i − dλi

λ∗i z
∗
j (40)

Combining all elements in G together, we have:

∂L
∂G

= −λ∗d>z −D(λ∗)dλz
∗> (41)

Appendix B Cloth Simulation Basics

Generally, cloth simulation includes three steps: force computation, dynamic solve, and collision
handling. Extra steps, such as plasticity handling and strain limiting, are omitted since they are not
essential components of a basic cloth simulation.

B.1 Force Computation

For external forces, the most common ones are gravity and wind forces, which are both straightforward.
We focus on internal, constraint and frictional forces here.

Clothes are usually modeled as a 2D manifold mesh in 3D space. We apply Finite Element Method
(FEM) to compute internal forces. For each triangle face in the mesh, we compute the deformation
gradient as a variable of the strain:

F =
∂x

∂X
(42)

Here, x is the current 3D position of the triangle, and X is their coordinate in the 2D material space.
Then, the stress (or internal forces) is computed using the deformation gradient F. Usually a strain
energy E is defined and we use its negative gradient as the force. In our base simulator, the stress
is defined as a piece-wise linear function regarding the Green-Lagrange Strain, defined by Wang et
al. [30]:

E =
1

2
(F>F− I) (43)

Note that due to the geometric modeling of the cloth, there is no force caused by the thickness of
the cloth. Most simulators use an extra ‘bending force’ as a compensation, following Grinspun et
al. [10]. The bending force is defined between two adjacent faces when their dihedral angle is not a
resting one.

The other two categories are relatively simpler. Constraint forces are defined as the negative gradient
of the constraint energy, while frictional forces are created when two objects are in close proximity
and have relative motions.

B.2 Dynamic Solve

In the simplest case, we solve Ma = f for the acceleration and update the position and velocity
accordingly, as shown in Algorithm 1. This Forward Euler method suffers from the well-known
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stability issue and often limits the time step size for the simulation. In order to take larger step for
faster simulation, Backward Euler is often used. More specifically, we want our acceleration to match
the force computed in the next time step:

M
∆v

∆t
= f(x + ∆x) = f(x + ∆t(v + ∆v)) (44)

By using Taylor Expansion, we have:

(M−∆t2
∂f

∂x
)∆v = ∆tf(x + ∆tv) (45)

So the matrix used in the linear solve (Sec. 3.2) is defined as:

M̂ = M−∆t2
∂f

∂x
(46)

As long as we have the Jacobian of the forces ∂f
∂x , we can compute a more stable result of ∆v and

can apply larger ∆t, as discussed by Baraff and Witkin [2].

B.3 Collision Handling

As introduced in Sec. 3.3, we used continuous collision detection between two simulation steps to
detect all possible collisions. When two faces collide with each other, there are two different collision
types: vertex-face collision and edge-edge collision. The common trait is that at time of collision,
the four involved vertices are in the same plane. Based on this, we can develop and solve a cubic
equation regarding the time of collision, t (Sec. 3.3).

When the collision is detected, we need to form the corresponding constraint at time t:(
4∑
k=1

wkxk(t)

)
· n ≥ d (47)

Here, wk is the weight parameter, xk(t) is the vertex position at time t, n is the normal of the plane,
and d is the cloth thickness. The weight parameters are determined using barycentric coordinates of
the intersection point in the face (in the vertex-face collision case) or on the edges (in the edge-edge
collision case).

Figure 5: A motion control scene with
more obstacles. The cloth needs to drop
down and slide through the slopes to get
to the target position.

We consider w and n as constants during the optimization,
and xk(t) is linearly interpolated between two time steps.
So it is a linear constraint regarding x. Combining all
constraints together, we have:

Gx + h ≤ 0 (48)
as shown in Equation 9.

In the collision response phase, we want to introduce mini-
mum energy to move the vertex away so that all constraints
can be satisfied. Therefore, we form this optimization as a
QP problem, as shown in the main text (Sec. 3.4). This is
also why the objective function is weighted by the mass.

Appendix C Characterization of Control
Task

The initial control force is set to zero. The control network consists of two FC layers, where the
input (size 81×2×3) is the position and velocity of each vertex, the hidden layer is of size 200, and
the output is the control force (size 4×3). The learning rate is 10−4 and the momentum is 0.5. The
reported result is the best among 10 trials.

Appendix D Collision-rich Motion Control

We here demonstrate an example of motion control application with richer collisions. As shown in
Figure 5, there is a series of obstacles above the basket that preclude the cloth from falling directly
into it. The variable settings are the same as described in Sec. 4.3. Our differentiable simulation
provides the task with correct gradients so that the cloth is deposited into the basket.
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