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1 Network Architecture for Direct Regression

The architecture of the direct regression baseline network is shown in Table 1. It is
based on the PoinNet architecture [2] to achieve permutation invariance. The architec-
ture replaces the weighted least-squares layer with a max-pooling step over the feature
maps along the point dimension, followed by a MLP.

Table 1. Network architecture for direct regression.

Layer # in # out L-ReLU Instance norm Max pooling

1 – 64 X X 7

2 64 128 X X 7

3 128 1024 X X 7

4 1024 512 X X 7

5 512 256 X X X
6 256 128 X 7 7

7 128 64 X 7 7

8 64 9 X 7 7

2 Generating Virtual Correspondences

To generate the set of virtual correspondences we first define a regular grid over the
image of size M ×N :

gxy =
(
xN, yM

)>
, x, y ∈ {0, δ, 2δ, . . . , 1}, (1)

where δ = 0.01 denotes the step size in the grid. Let Fgt denote the groundtruth funda-
mental matrix. We generate the set of virtual correspondences by projecting the points
to the epipolar geometry using the Optimal Triangulation method [1]:

p̃gt
i , p̃

′gt
i =argmin

p,p′∈R2

d(gi,p)
2 + d(gi,p

′)2

subject to p̂>Fgtp̂′ = 0, (2)

where p̂ = (p>, 1)> denotes point p in homogeneous coordinates and d(a,b) denotes
the geometric distance. We have that pgt

i = (p̃gt
i , p̃

′gt
i ) ∈ R4.
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3 Homography estimation

The basis for homography estimation is formed by the Direct Linear Transform (DLT).
Specifically, we have

(A(P))2i−1:2i =

(
−p̂>i 0 (p̂′i)1p̂

>
i

0 −p̂>i (p̂′i)2p̂
>
i

)
, g(x) = (T′)−1(x)3×3T = H. (3)

We use the symmetric transfer error for computing residuals and the loss:

r(pi,H) =
∥∥∥ (Hp̂i)1:2

(Hp̂i)3
− p′i

∥∥∥+ ∥∥∥ (H-1p̂′
i)1:2

(H-1p̂′
i)3
− pi

∥∥∥ . (4)

The training loss is again given as the mean clamped residual to the groundtruth cor-
respondences of each stage, where groundtruth correspondences are generated by sam-
pling a regular grid and distorting it according to the groundtruth homography.

4 Proof of Proposition 1

We need to solve the optimization problem

xj+1 = argmin
x: ‖x‖=1

{∥∥Wj(θ)Ax
∥∥2}

= argmin
x: ‖x‖2=1

‖Bx‖2 . (5)

To solve this problem, we form the Lagrangian:

L(x, λ) = ‖Bx‖2 + λ(1− ‖x‖2) (6)

The optimality conditions are

B>Bx− λx = 0 (7)

1− ‖x‖2 = 0 (8)

Rewriting (7) to

B>Bx = λx (9)

implies that x is an Eigenvector of B>B, with associated Eigenvalue λ. It follows that

xj+1 = argmin
x: ‖x‖2=1

‖Bx‖2 (10)

= argmin
x: ‖x‖2=1

x>B>Bx (11)

= argmin
x: ‖x‖2=1

λ ‖x‖2 (12)

Since ‖x‖ = 1 by definition, we can see that (12) is minimized for the smallest eigen-
value λi. To see the connection to the singular value decomposition: Let B = UΣV>.
The columns of V correspond to the Eigenvectors of B>B, and their associated non-
zero singular values are the square-roots of the non-zero Eigenvalues.
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5 Failure Cases

Due to the structure of our approach, failure cases are similar to the baselines: Misiden-
tificatication of inliers due to very high outlier ratios and inaccuracies due to nearly
degenerate configurations of the inlier set. Examples of failure cases are shown in Fig-
ure 1.

Figure 1. Failure cases. Top row: First image with inliers (red) and outliers (blue). Bottom row:
Epipolar lines of a random subset of groundtruth inliers in the second image. We show the epipo-
lar lines of our estimate (green) and of the groundtruth (blue). Left: Misidentification of inliers.
The bottom-most groundtruth inlier does not lie on its corresponding epipolar line. Middle: Fail-
ure in the very high noise regime. Right: Failure to pinpoint the exact epipolar geometry due to
degenerate configuration. Images have been scaled and cropped for visualization.

6 Runtimes

Average runtimes for all evaluated approaches on the Tanks and Temples dataset are
shown in Table 2. Note that MLESAC was evaluated using an unoptimized Python
implementation.

Table 2. Comparison of runtimes.

RANSAC LMEDS MLESAC USAC Ours

Time [ms] 11 12 696 24 26
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