Data-Driven Suggestions for Creativity Support in 3D Modeling

Siddhartha Chaudhuri Vladlen Koltun

Stanford University

Basic Idea

Automatically suggest ways in which the user can extend a basic shape, to stimulate creative exploration

Data-Driven Suggestions

- Support creative discovery in 3D modeling
 - Customized examples and alternatives stimulate creativity [Boden '90, Finke et al. '92, Marsh '96, Weisberg '06, ...]

Data-Driven Suggestions

- Support creative discovery in 3D modeling
 - Customized examples and alternatives stimulate creativity [Boden '90, Finke et al. '92, Marsh '96, Weisberg '06, ...]
- Entirely unsupervised
 - No explicit search required
 - Unexpected yet valuable suggestions

Data-Driven Suggestions

- Support creative discovery in 3D modeling
 - Customized examples and alternatives stimulate creativity [Boden '90, Finke et al. '92, Marsh '96, Weisberg '06, ...]
- Entirely unsupervised
 - No explicit search required
 - Unexpected yet valuable suggestions
- Meaningful and compatible, because they are drawn from complete prior models

InspireMe

InspireMe

InspireMe

InspireMe (video)

Shape Search

- **Goal:** Find database models from which suggestions can be drawn for a query shape
- Retrieved shapes should have
 - Similar gross structure to query
 - Extra parts that can be used for suggestions

Shape Search

• Hard to compare meshes directly

Shape Search

- Hard to compare meshes directly
- Represent shapes with a short signature
 - Signatures can be easily and efficiently compared for similarity
 - Similar signatures \Rightarrow similar shapes

Shape Signature: D³ histogram

D³ histogram

- Bin pairs of sample points on the shape
- Bins indexed by the distance between a pair of points, and the shape diameter (local thickness) of each point
- Comparison by histogram intersection and pyramid matching, for partial and approximate matches

Histogram Intersection

Histogram Intersection

Pyramid Matching

Advantage

- Robust to part addition/removal
 - Small change in model ⇒ Small change in similarity
 - Retrieves models that overlap the query as well as contain additional parts to be used for suggestions

• Goal: Given a database model, find the parts than can augment the query shape

- Goal: Given a database model, find the parts than can augment the query shape
- Compute point-wise correspondences between query and database models

- Goal: Given a database model, find the parts than can augment the query shape
- Compute point-wise correspondences between query and database models
- Suggest segments with low average matching score

Segmentation

- Prior segmentation of database models based on shape diameter and approximate convexity
- No need for compatible segmentation of query

• No explicit alignment

- No explicit alignment
- Descriptor at a point concatenates:
 - Spin image
 - Histogram of neighboring points binned by distance and SDF

- No explicit alignment
- Descriptor at a point concatenates:
 - Spin image
 - Histogram of neighboring points binned by distance and SDF
- Descriptors compared by histogram intersection and pyramid matching, to accommodate approximate and partial matches

 Matching a point on the database model to the query shape: nearest neighbor search in highdimensional descriptor space

- Matching a point on the database model to the query shape: nearest neighbor search in highdimensional descriptor space
- Effective approach: locality sensitive hashing

- Matching a point on the database model to the query shape: nearest neighbor search in highdimensional descriptor space
- Effective approach: locality sensitive hashing
- HIK + pyramid match not an LSH-friendly metric

- Matching a point on the database model to the query shape: nearest neighbor search in highdimensional descriptor space
- Effective approach: locality sensitive hashing
- HIK + pyramid match not an LSH-friendly metric
 - But is Mercer kernel!

- Matching a point on the database model to the query shape: nearest neighbor search in highdimensional descriptor space
- Effective approach: locality sensitive hashing
- HIK + pyramid match not an LSH-friendly metric
 - But is Mercer kernel!
 - Can use *Kernelized* LSH [Kulis and Grauman '09]
 - 6x speedup

Diversification

- **Problem:** Large databases contain many nearidentical shapes
 - If one is a good match, so are its twins
 - Most of the top-ranked options look the same

Diversification

- **Problem:** Large databases contain many nearidentical shapes
 - If one is a good match, so are its twins
 - Most of the top-ranked options look the same
- Maximal Marginal Relevance (MMR) breaks up long runs of similar results in a ranked list *[Carbonell* and Goldstein '98]

Informal Studies

- 12 artist users
 - 3 professional
 - 8 art students
 - 1 CS student + hobbyist modeler
- 2-hour sessions
- 2 prototyping tasks (~1 hour per task):
 - Creatures
 - Aircraft
- InspireMe + Maya/3ds Max (for initial query shape + adjusting placement)

Informal Studies: Creatures

Informal Studies: Aircraft

Future Work

More data-driven techniques for open-ended design

Future Work

- More data-driven techniques for open-ended design
- Utilize semantic information about shapes to resolve ambiguities in purely geometric methods

Future Work

- More data-driven techniques for open-ended design
- Utilize semantic information about shapes to resolve ambiguities in purely geometric methods
- Develop more large databases of 3D content, to drive data-driven content creation

Thank You