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A. RGB-D Image Alignment
Section 3 introduced a joint photometric and geomet-

ric objective for RGB-D image alignment. This appendix
presents an algorithm that optimizes the introduced objec-
tive. This algorithm is used in the reconstruction system
presented in Section 5 of the paper.

A.1. Objective

The joint photometric and geometric objective for
RGB-D image alignment is a nonlinear least-squares objec-
tive

E(T) = (1− σ)
∑
x

(
rxI (T)

)2
+ σ

∑
x

(
rxD(T)

)2
, (A1)

where rxI and rxD are the photometric and geometric residu-
als, respectively:

rxI (T) = Ii(guv(s(h(x, Dj(x)),T)))− Ij(x), (A2)
rxD(T) = Di(guv(s(h(x, Dj(x)),T)))

− gd(s(h(x, Dj(x)),T)). (A3)

The definitions of Ii, Di, s, h, g are given in Section 3.

A.2. Optimization

As in Section 4.3, this objective is minimized using the
Gauss-Newton method. Specifically, we start from an initial
transformation T0 and perform optimization iteratively. In
each iteration, we locally parameterize T with a 6-vector
ξ, evaluate the residual r and Jacobian Jr at Tk, solve the
linear system in (21) to compute ξ, and use ξ to update T.
To compute the Jacobian, we need the partial derivatives of
the residuals. They are

∇rxI (T) =
∂

∂ξi
(Ii ◦ guv ◦ s) (A4)

= ∇Ii(guv)Jguv (s)Js(ξ), (A5)

∇rxD(T) =
∂

∂ξi
(Di ◦ guv ◦ s− gd ◦ s) (A6)

= ∇Di(guv)Jguv
(s)Js(ξ)− Jgd

(s)Js(ξ).
(A7)

Steps A5 and A7 apply the chain rule. ∇Ii and∇Di are the
gradient of Ii and Di respectively. They are computed by
applying a normalized Scharr kernel over Ii and Di. Jguv

and Jgd
are the Jacobian matrices of guv and gd, derived

from (5). Js is the Jacobian of s with respect to ξ, derived
from (4) and (20).

A.3. Correspondence pruning

Equation (2) constructs a correspondence from pixel x
in image (Ij , Dj) to pixel x′ in image (Ii, Di). Since two
images are viewed from different perspectives, x′ can be
occluded in image (Ii, Di). In this case the correspondence
is invalid and can hinder the optimization. We compare
Di(x

′) and gd(s(h(x, Dj(x)),T)). If x′ is occluded, the
two depth values are apart. We use this criterion to create
an image mask M that prunes invalid correspondences:

M =
{
x
∣∣∣x ∈ (Ij , Dj) and

∣∣rxD(Tk)
∣∣ < δ

}
. (A8)

rxD is defined in (A3). δ is an empirical threshold: 7 cen-
timeters. In each iteration, we recompute M and optimize
objective (A1) over correspondences that fall within M .

A.4. Coarse-to-fine processing

As in Section 4.4, we apply the optimization in a coarse-
to-fine manner: an RGB-D image pyramid is built and the
optimization is performed from the coarsest pyramid level
to the finest. This makes the algorithm more robust to bad
initialization. Similar ideas have been exploited in [6, 4].

Algorithm 1 summarizes the RGB-D image alignment.

B. Parameter σ

The joint photometric and geometric optimization objec-
tives (7) and (12) have a parameter σ that balances the pho-
tometric term and the geometric term. We find its optimal
value by grid search.

To find the optimal σ for colored point cloud registration,
we take the experimental setup in Section 7.1 and perturb
the true pose in the rotational components by 10◦. The av-
erage RMSE as a function of σ is shown in Figure 1. This
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Figure 1. Grid search for σ in colored point cloud registration (left)
and RGB-D image alignment (right).

function has a U-shape, indicating that optimizing a joint
objective achieves lower error than optimizing a photomet-
ric objective or geometric objective alone. The optimal σ
for colored point cloud registration is 0.968. Similarly, we
set up an experiment for RGB-D image alignment and find
the optimal σ there. It is 0.5.

C. Evaluation on the Cathedral Scene

The setup of this experiment is described in Section 7.1.
The results are shown in Figure 2.

D. Qualitative Evaluation of Scene Recon-
struction

Section 7.2 summarized the quantitative performance
of different scene reconstruction systems on the presented
dataset. (Table 3 in the paper.) Accuracy was measured by
the F-score (harmonic mean of precision and recall) for a
fixed threshold (τ = 20 millimeters). In this appendix we
report the F-score for each reconstruction system on each
scene for varying thresholds τ . These results are shown in
Figure 3. Our system outperforms the baselines across dis-
tance thresholds.

E. Visualization of the Dataset

Figure 4 shows the ground-truth models of the five
scenes in the dataset presented in Section 6. For this vi-
sualization, the ground-truth point clouds were meshed us-
ing Poisson surface reconstruction [3]. The renderings thus
exhibit meshing artifacts that are not present in the ground-
truth point clouds themselves.

F. SceneNN Scenes

Figure 4 in the paper showed results on two randomly
sampled scenes from the SceneNN dataset [2]. In Figure 5
in this supplement, we show five more randomly sampled
scenes from that dataset.
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Figure 2. Evaluation of LiDAR point cloud alignment on the Cathedral scene [5]. The presented algorithm is compared to prior algorithms
that use color (top) and to algorithms that do not (bottom). The algorithms are initialized with transformations that are perturbed away from
the true pose in the rotational component (left) and the translational component (right). The plot shows the median RMSE at convergence
(bold curve) and the 40%-60% range of RMSE across trials (shaded region). Lower is better.
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Figure 3. Accuracy of different reconstruction systems on the five scenes in the presented dataset, measured by F-score with varying
distance thresholds τ (in millimeters). The last plot shows the mean F-score for each threshold over all five scenes in the dataset.
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Figure 4. Visualization of the dataset presented in Section 6 of the paper. Left: ground-truth model of each scene, acquired using an
industrial laser scanner. For this visualization, the ground-truth point clouds were meshed using Poisson surface reconstruction, and the
renderings exhibit meshing artifacts that are not present in the ground-truth point clouds themselves. Right: 360◦ panoramic images of the
physical scenes that were scanned.
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Figure 5. Reconstructions of five more scenes from the SceneNN dataset [2]. This extends Figure 4 in the paper. Prior systems suffer from
inaccurate surface alignment and produce broken geometry. Our system produces much cleaner results.


