
Learning Complex Neural Network Policies with Trajectory Optimization

Sergey Levine SVLEVINE@CS.STANFORD.EDU

Computer Science Department, Stanford University, Stanford, CA 94305 USA

Vladlen Koltun VLADLEN@ADOBE.COM

Adobe Research, San Francisco, CA 94103 USA

Abstract
Direct policy search methods offer the promise
of automatically learning controllers for com-
plex, high-dimensional tasks. However, prior ap-
plications of policy search often required spe-
cialized, low-dimensional policy classes, limit-
ing their generality. In this work, we introduce
a policy search algorithm that can directly learn
high-dimensional, general-purpose policies, rep-
resented by neural networks. We formulate the
policy search problem as an optimization over
trajectory distributions, alternating between opti-
mizing the policy to match the trajectories, and
optimizing the trajectories to match the policy
and minimize expected cost. Our method can
learn policies for complex tasks such as bipedal
push recovery and walking on uneven terrain,
while outperforming prior methods.

1. Introduction
Direct policy search offers the promise of automatically
learning controllers for complex, high-dimensional tasks.
It has seen applications in fields ranging from robotics (Pe-
ters & Schaal, 2008; Theodorou et al., 2010; Deisenroth
et al., 2013; Kober et al., 2013) and autonomous flight
(Ross et al., 2013) to energy generation (Kolter et al.,
2012). However, existing policy search methods usually re-
quire the policy class to be chosen carefully, so that a good
policy can be found without falling into poor local optima.
Research into new, specialized policy classes is an active
area that has provided substantial improvements on real-
world systems (Ijspeert et al., 2003; Paraschos et al., 2013).
This specialization is necessary because most model-free
policy search methods can only feasibly be applied to poli-
cies with a few hundred parameters (Deisenroth et al.,

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

2013). Such specialized policy classes are limited in the
types of behaviors they can represent, and engineering new
policy classes requires considerable effort.

In recent work, we introduced a new class of policy search
algorithms that can learn much more complex policies by
using model-based trajectory optimization to guide the pol-
icy search (Levine & Koltun, 2013a;b). By optimizing tra-
jectories in tandem with the policy, guided policy search
methods combine the flexibility of trajectory optimization
with the generality of policy search. These methods can
scale to highly complex policy classes and can be used to
train general-purpose neural network controllers that do not
require task-specific engineering. Furthermore, the training
trajectories can be initialized with examples for learning
from demonstration.

A key challenge in guided policy search is ensuring that
the trajectories are useful for learning the policy, since not
all trajectories can be realized by policies from a particular
policy class. For example, a policy provided with partial
observations cannot make decisions based on unobserved
state variables. In this paper, we present a constrained
guided policy search algorithm that gradually brings the
trajectories into agreement with the policy, ensuring that
the trajectories and policy match at convergence. This is
accomplished by gradually enforcing a constraint between
the trajectories and the policy using dual gradient descent,
resulting in an algorithm that iterates between optimizing
the trajectories to minimize cost and agree with the policy,
optimizing the policy to agree with the trajectories, and up-
dating the dual variables to improve constraint satisfaction.

By enforcing agreement between the policy and the tra-
jectories, our algorithm can discover policies for highly
complex behaviors. We evaluate our approach on a set of
challenging locomotion tasks, including a push recovery
task that requires the policy to combine multiple recovery
strategies learned in parallel from multiple trajectories. Our
approach successfully learned a policy that could not only
perform multiple different recoveries, but could also cor-
rectly choose the best strategy under new conditions.

Learning Complex Neural Network Policies with Trajectory Optimization

2. Preliminaries and Overview
Policy search is an optimization over the parameters θ of
a policy πθ(ut|xt), which is a distribution over actions ut
conditioned on states xt, with respect to the expected value
of a cost function `(xt,ut), denoted Eπθ [

∑T
t=1 `(xt,ut)].

The expectation is taken under the policy and the system
dynamics p(xt+1|xt,ut), and together they induce a dis-
tribution over trajectories. We will therefore abbreviate the
expectation asEπθ [`(τ)], where τ = (x1..T ,u1..T) denotes
a trajectory. In continuous spaces, this expectation can-
not be computed exactly, since the number of states is infi-
nite. Many policy search methods approximate this quan-
tity, typically by sampling (Peters & Schaal, 2008).

Sampling-based policy search methods do not need or use
the dynamics distribution p(xt+1|xt,ut). However, in
practice this advantage often also becomes a weakness:
without the use of a system model, the policy search is
forced to rely on “trial and error” exploration strategies.
While this works wells for simple problems, for example
when either the state space or the dimensionality of θ is
small, such model-free methods often do not scale to poli-
cies with more than a few hundred parameters (Deisenroth
et al., 2013). Scaling policy search up to powerful, expres-
sive, general-purpose policy classes, such as large neural
networks, is extremely challenging with such methods.

When a dynamics model is available, trajectories can be
optimized directly with respect to their actions, without a
parametric policy.1 Trajectory optimization is easier than
general policy search, because the policy parameters cou-
ple the actions at different time steps. Our constrained
guided policy search algorithm employs trajectory opti-
mization to guide the policy search process, avoiding the
need for “trial and error” random exploration. The algo-
rithm alternates between optimizing a set of trajectories to
minimize cost and match the current policy, and optimizing
the policy to follow the actions in each trajectory. However,
simply training a policy on individual trajectories usually
fails to produce effective policies, since a small error at
each time step can quickly compound and place the policy
in costly, unexplored parts of the space (Ross et al., 2011).

To avoid compounding errors, the policy must be trained on
data sampled from a distribution over states. The ideal dis-
tribution is the one induced by the optimal policy, but it is
unknown. The initial policy often has a broad state distribu-
tion that visits very costly states, where it is inefficient and
unnecessary to determine the optimal actions. Instead, we
train the policy on distributions over good trajectories, de-
noted q(τ), which are produced using trajectory optimiza-

1Action sequences can be viewed as open-loop policies, and
linear feedback can be added to turn them into nonstationary
closed-loop policies.

tion. Alternating policy and trajectory optimization, q(τ)
and πθ(τ) are gradually brought into agreement, so that the
final policy is trained on its own state distribution.

Since q(τ) may not match πθ(τ) before convergence, we
make q(τ) as broad as possible, so that the policy learns
stable feedbacks from a wide range of states, reducing the
chance that compounding errors will place it into unex-
plored regions. To that end, we use the maximum entropy
objective Eq [`(τ)] −H(q(τ)), which has previously been
proposed for control and reinforcement learning (Todorov,
2006; Ziebart, 2010; Kappen et al., 2012).

This objective minimizes cost and maximizes entropy, pro-
ducing broad distributions over good trajectories. It cor-
responds to the KL-divergence DKL(q(τ)‖ρ(τ)), where
ρ(τ) ∝ exp(`(τ)), making q(τ) an I-projection of ρ(τ). In
the absence of policy constraints, a Gaussian q(τ) can be
approximately optimized by a variant of the iLQG algo-
rithm (Todorov & Li, 2005), as described in previous work
(Levine & Koltun, 2013b). In the next section, we derive a
similar algorithm that also gradually enforces a constraint
on the action conditionals q(ut|xt), to force them to match
the policy πθ(ut|xt) at convergence. As with iLQG, our
trajectory optimization algorithm uses a local linearization
of the dynamics and a quadratic expansion of the cost,
which corresponds to using a Laplace approximation of
ρ(τ). We solve the constrained problem by optimizing its
Lagrangian with respect to q(τ) and θ, and iteratively up-
dating the Lagrange multipliers by means of dual gradient
descent (Boyd & Vandenberghe, 2004).

3. Policy Search via Trajectory Optimization
We begin by reformulating the policy optimization task as
the following constrained problem:

min
θ,q(τ)

DKL(q(τ)‖ρ(τ)) (1)

s.t. q(x1) = p(x1),

q(xt+1|xt,ut) = p(xt+1|xt,ut),
DKL(q(xt)πθ(ut|xt)‖q(xt,ut)) = 0.

The first two constraints ensure that the distribution q(τ)
is consistent with the domain’s initial state distribution and
dynamics, and are enforced implicitly by our trajectory op-
timization algorithm. The last constraint ensures that the
conditional action distributions q(ut|xt) match the policy
distribution πθ(ut|xt). Since the action distributions fully
determine the state distribution, q(τ) and πθ(τ) become
identical when the constraints are satisfied, making the con-
strained optimization equivalent to optimizing the policy
with respect to DKL(πθ(τ)‖ρ(τ)). This objective differs
from the expected cost but, as discussed in the previous sec-
tion, it provides for more reasonable handling of trajectory
distributions prior to convergence. In practice, a solution

Learning Complex Neural Network Policies with Trajectory Optimization

with very good expected cost can be obtained by increasing
the magnitude of the cost over the course of the optimiza-
tion. As this magnitude goes to infinity, the entropy term
becomes irrelevant, though a good deterministic policy can
usually be obtained by taking the mean of the stochastic
policy optimized under even a moderate cost magnitude.

Our method approximately optimizes Equation 1 with dual
gradient descent (Boyd & Vandenberghe, 2004) and local
linearization, leading to an iterative algorithm that alter-
nates between optimizing one or more Gaussian distribu-
tions qi(τ) with dynamic programming, and optimizing the
policy πθ(ut|xt) to match q(ut|xt). A separate Gaussian
qi(τ) is used for each initial condition (for example when
learning to control a bipedal walker that must respond to
different lateral pushes), but because the trajectories are
only coupled by the policy parameters θ we will drop the
subscript i in our derivation and consider just a single q(τ).

We first write the Lagrangian of Equation 1, omitting the
implicitly enforced initial state and dynamics constraints:

L(θ, q, λ) =DKL(q(τ)‖ρ(τ))+

T∑
t=1

λtDKL(q(xt)πθ(ut|xt)‖q(xt,ut)).

Dual gradient descent alternates between optimizing L
with respect to q(τ) and θ, and updating the dual variables
λt with subgradient descent, using a step size η:

λt ← λt + ηDKL(q(xt)πθ(ut|xt)‖q(xt,ut)). (2)

The KL-divergence is estimated from samples, and the in-
ner optimization over q(τ) and θ is performed in alternat-
ing fashion, first over each q(τ) and then over θ. Although
neither the objective nor the constraints are in general con-
vex, we found this approach to yield a good local optimum.
The full method is summarized in Algorithm 1. We initial-
ize each trajectory on line 1, either with unconstrained tra-
jectory optimization or from example demonstrations. We
then optimize the policy for K iterations of dual gradient
descent. In each iteration, we optimize each trajectory dis-
tribution qi(τ) on line 3, using a few iterations of the algo-
rithm described in Section 3.1. This step can be parallelized
over all trajectories. We then optimize the policy to match
all of the distributions qi(τ) on line 4, using a simple super-
vised learning procedure described in Section 3.2. Finally,
we update the dual variables according to Equation 2.

3.1. Trajectory optimization

The trajectory optimization phase optimizes each qi(τ)
with respect to the Lagrangian L(θ, qi(τ), λi). Since the
trajectories can be optimized independently, we again drop
the subscript i in this section. Similarly to iLQG, the
optimization uses locally linearized dynamics, though the

Algorithm 1 Constrained guided policy search
1: Initialize the trajectories {q1(τ), . . . , qM (τ)}
2: for iteration k = 1 to K do
3: Optimize each qi(τ) with respect to L(θ, qi(τ), λi)

4: Optimize θ with respect to
∑M
i=1 L(θ, qi(τ), λi)

5: Update dual variables λ using Equation 2
6: end for
7: return optimized policy parameters θ

policy KL-divergence constraints necessitate a novel algo-
rithm. One iteration of this trajectory optimization algo-
rithm is summarized in Algorithm 2.

Each q(τ) has a mean τ̂ = (x̂1..T , û1..T), a conditional
action distribution q(ut|xt) = N (ut + Kxt,At) at each
time step, and dynamics q(xt+1|xt,ut) = N (fxtxt +
futut,Ft), which corresponds to locally linearized Gaus-
sian dynamics with mean ft(xt,ut) and covariance Ft
(subscripts in fxt and fut denote derivatives). We will as-
sume without loss of generality that all x̂t and ût are ini-
tially zero, and xt and ut denote a perturbation from a nom-
inal trajectory, which is updated at every iteration. Given
this definition of q(τ), we can rewrite the objective as

L(q) =

T∑
t=1

Eq(xt,ut)[`(xt,ut)]−
1

2
log |At|+

λtEq(xt)[DKL(πθ(ut|xt)‖q(ut|xt))].

We can evaluate both expectations with the Laplace ap-
proximation, which models the policy πθ(ut|xt) as a (lo-
cally) linear Gaussian with mean µπt (xt) and covariance
Σπt , and the cost with its first and second derivatives `xut
and `xu,xut (subscripts again denote derivatives, in this
case twice with respect to both the state and action):

L(q) ≈
T∑
t=1

1

2

[
x̂t
ût

]T
`xu,xut

[
x̂t
ût

]
+

[
x̂t
ût

]T
`xut+

1

2
tr (Σt`xu,xut)−

1

2
log |At|+

λt
2

log |At|+

λt
2

(ût − µπt (x̂t))
TA−1t (ût − µπt (x̂t)) +

λt
2

tr
(
A−1t Σπt

)
+

λt
2

tr
(
St (Kt − µπxt(x̂t))

T
A−1t (Kt − µπxt(x̂t))

)
,

where constants are omitted, µπxt(x̂t) is the gradient of the
policy mean at x̂t, and Σt denotes the joint marginal co-
variance over states and actions in q(xt,ut). We use St
to refer to the covariance of q(xt) and At to refer to the
conditional covariance of q(ut|xt).

Each iteration of trajectory optimization first forms this ap-
proximate Lagrangian by computing the derivatives of the
dynamics and cost function on line 1. A dynamic program-
ming algorithm then computes the gradients and Hessians

Learning Complex Neural Network Policies with Trajectory Optimization

Algorithm 2 Trajectory optimization iteration
1: Compute fxut, µπxt, `xut, `xu,xut around τ̂
2: for t = T to 1 do
3: Compute Kt and kt using Equations 3 and 4
4: Compute Lxt and Lx,xt using Equation 5
5: end for
6: Initialize α← 1
7: repeat
8: Obtain new trajectory τ̂ ′ using ut = αkt + Ktxt
9: Decrease step size α

10: until L(τ̂ ′,K,A) > L(τ̂ ,K,A)
11: Compute fxut, µπxt, `xut, `xu,xut around τ̂ ′

12: repeat
13: Compute St using current At and Kt

14: for t = T to 1 do
15: repeat
16: Compute Kt using Equation 7
17: Compute At by solving CARE in Equation 8
18: until At and Kt converge (about 5 iterations)
19: Compute LSt using Equation 6
20: end for
21: until all St and At converge (about 2 iterations)
22: return new mean τ̂ ′ and covariance terms At, Kt

with respect to the mean state and action at each time step
(keeping At fixed), as summarized on lines 2-5, allowing
us to take a Newton-like step by multiplying the gradient
by the inverse Hessian, analogously to iLQG (Todorov &
Li, 2005). The action then becomes a linear function of
the corresponding state, resulting in linear feedback terms
Kt. After taking this Newton-like step, we perform a line
search to ensure improvement on lines 7-10, and then up-
date At at each time step on lines 12-21. To derive the
gradients and Hessians, it will be convenient to define the
following quantities, which incorporate information about
future costs analogously to the Q-function:

Qxut = `xut + fTxuLxt+1

Qxu,xut = `xu,xut + fTxuLx,xt+1fxu,

where the double subscripts xu again denote derivatives
with respect to (xt,ut)

T, and Lxt+1 and Lx,xt+1 are the
gradient and Hessian of the objective with respect to x̂t+1.
As with iLQG, we assume locally linear dynamics and ig-
nore the higher order dynamics derivatives. Proceeding
recursively backwards through time, the first and second
derivatives with respect to ût are then given by

Lut = Qu,utût +Qu,xtx̂t +Qut + λtA
−1
t (ût − µπt (x̂t))

Lu,ut = Qu,ut + λtA
−1
t ,

where the application of the chain rule to include the effect
of ût on subsequent time steps is subsumed inside Qut,

Qu,ut, and Qu,xt. Since we assume that x̂t and ût are both
zero, we can solve for the optimal change to the action kt:

kt=−
(
Qu,ut+λtA

−1
t

)−1(
Qut−λtA−1t µπt (x̂t)

)
. (3)

The feedback Kt is the derivative of kt with respect to x̂t:

Kt=−
(
Qu,ut+λtA

−1
t

)−1(
Qu,xt−λtA−1t µπxt(x̂t)

)
.
(4)

To complete the dynamic programming step, we can now
differentiate the objective with respect to x̂t, treating
ût = kt + Ktx̂t as a function of x̂t:

Lxt = Qx,xtx̂t +Qx,ut(kt + Ktx̂t) + KT
t Qu,xtx̂t+

KT
t Qu,ut(Ktx̂t + kt) +Qxt + KT

t Qut+

λt(Kt − µπxt(x̂t))TA−1t (Ktx̂t + kt − µπt (x̂t))

= Qx,utkt + KT
t Qu,utkt +Qxt + KT

t Qut+

λt(Kt − µπxt(x̂t))TA−1t (kt − µπt (x̂t))

Lx,xt = Qx,xt +Qx,utKt + KT
t Qu,xt + KT

t Qu,utKt+

λt(Kt − µπxt(x̂t))TA−1t (Kt − µπxt(x̂t)), (5)

where the simplification again happens because x̂t is zero.

Once we compute kt and Kt at each time step, we per-
form a simulator rollout using the deterministic policy
ut = kt + Ktxt to obtain a new mean nominal trajectory.
Since the dynamics may deviate from the previous lin-
earization far from the previous trajectory, we perform a
line search on kt to ensure that the objective improves as a
function of the new mean, as summarized on lines 7-10.

Once the new mean is found, both the policy πθ(ut|xt)
and the dynamics are relinearized around the new nominal
trajectory on line 2, and we perform a second dynamic pro-
gramming pass to update the covariance At and feedback
terms Kt. As before, we introduce a variable that incorpo-
rates gradient information from future time steps:

Qxu,xut = `xu,xut + 2fTxutLSt+1fxut.

This equation is obtained by using the chain rule to include
the effect of the covariance Σt on future time steps using
the covariance dynamics St+1 = fxutΣtf

T
xut +Ft, so that

1

2
tr (Σt`xu,xut) +

∂St+1

∂Σt
· LSt+1 =

1

2
tr (ΣtQxu,xut) .

This allows us to simply substitute Qxu,xut for `xu,xut in
the objective to include all the effect of the covariance on
future time steps. To then derive the gradient of the objec-
tive, first with respect to At and Kt for optimization, and
then with respect to St to complete the dynamic program-
ming step, we first note that

Σt =

[
St StK

T
t

KtSt KtStK
T
t + At

]
.

Learning Complex Neural Network Policies with Trajectory Optimization

This allows us to expand the term tr (ΣtQxu,xut) to get

tr (ΣtQxu,xut) = tr (StQx,xt) + tr
(
StK

T
t Qu,xt

)
+

tr (StQx,utKt) + tr (AtQu,ut) + tr
(
KtStK

T
t Qu,ut

)
.

Using this identity, we can obtain the derivatives of the ob-
jective with respect to Kt, At, and St:

LAt =
1

2
Qu,ut +

λt − 1

2
A−1t −

λt
2
A−1t MA−1t

LKt = Qu,utKtSt +Qu,xtSt + λtA
−1
t KtSt−

λtA
−1
t µπxt(x̂t)St

LSt =
1

2

[
Qx,xt + KT

t Qu,xt +Qx,utKt + KT
t Qu,utKt

+λt(Kt−µπxt(x̂t))TA−1t (Kt−µπxt(x̂t))
]
, (6)

where M = Σπt + (ût − µπt (x̂t))(ût − µπt (x̂t))
T + (Kt −

µπxt(x̂t))St(Kt − µπxt(x̂t))T. The equation for LSt is sim-
ply half of Lx,xt, which indicates that Qxu,xut is the same
as during the first backward pass. Solving for Kt, we also
obtain the same equation as before:

Kt=−
(
Qu,ut+λtA

−1
t

)−1(
Qu,xt−λtA−1t µπxt(x̂t)

)
.
(7)

To solve for At, we set the derivative to zero and multiply
both sides on both the left and right by

√
2At to get

AtQu,utAt + (λt − 1)At − λtM = 0. (8)

The above equation is a continuous-time algebraic Riccati
equation (CARE),2 and can be solved in comparable time
to an eigenvalue decomposition (Arnold & Laub, 1984).
Our implementation uses the MATLAB CARE solver.

Since Kt depends on At, which itself depends on both Kt

and St, we use the old values of each quantity, and repeat
the solver for several iterations. On lines 15-18, we repeat-
edly solve for Kt and At at each time step, which usually
converges in a few iterations. On lines 12-21, we also re-
peat the entire backward pass several times to update St
based on the new At, which converges even faster. In prac-
tice, we found that two backward passes were sufficient,
and a simple test on the maximum change in the elements
of Kt and At can be used to determine convergence.

This derivation allows us to optimize q(τ) under a Laplace
approximation. Although the Laplace approximation pro-
vides a reasonable objective, the linearized policy may not
reflect the real structure of πθ(ut|xt) in the entire region
where q(xt) is high. Since the policy is trained by sampling
states from q(xt), it optimizes a different objective. This
can lead to divergence when the policy is highly nonlinear.

2Although such equations often come up in the context of op-
timal control, our use of algebraic Riccati equations is unrelated
to the manner in which they are usually employed.

To solve this problem, we can estimate the policy terms
with M random samples xti drawn from q(xt), rather than
by linearizing around the mean. This corresponds to Monte
Carlo evaluation of the expectation of the KL-divergence
under q(xt), as opposed to the more crude Laplace approx-
imation. The resulting optimization algorithm has a simi-
lar structure, with µπt (x̂t) and µπxt(x̂t) in the derivatives of
the mean replaced by their averages over the samples. The
gradients of the covariance terms become more complex,
though simply substituting the sample averages of µπt and
µπxt into the above algorithm works well in practice, and is
somewhat faster. A full derivation of the true gradients is
provided in the supplementary appendix for completeness.

3.2. Policy Optimization

Once q(τ) is fixed, the policy optimization becomes a
weighted supervised learning problem. Training points xti
are sampled from q(xt) at each time step, and the policy is
trained to be an I-projection onto the corresponding condi-
tional Gaussian. For example, if the policy is conditionally
Gaussian, with the mean µπ(xt) and covariance Σπ(xt)
being any function of xt, the policy objective is given by

L(θ) =

T∑
t=1

λt

N∑
i=1

DKL(πθ(ut|xti)‖q(ut|xti))

=

T∑
t=1

λt

N∑
i=1

1

2

{
tr(Σπt (xti)A

−1
t)− log |Σπ(xti)|+

(Ktxti+kt−µπ(xti))
TA−1t (Ktxti+kt−µπ(xti))

}
.

This is a least-squares optimization on the policy mean,
with targets Ktxti +k and weight matrix A−1t , and can be
performed by standard algorithms such as stochastic gradi-
ent descent (SGD) or, as in our implementation, LBFGS.

As the constraints are satisfied, q(xt) approaches πθ(xt),
and q(ut|xt) approaches the exponential of the Q-function
of πθ(ut|xt) under the maximum entropy objective. Mini-
mizingDKL(πθ(ut|xt)‖q(ut|xt)) therefore resembles pol-
icy iteration with an “optimistic” approximate Q-function.
This is an advantage over the opposite KL-divergence
(where q(τ) is an I-projection of πθ(τ)) suggested in our
prior work (2013b), which causes the policy to be risk-
seeking by optimizing the expected exponential reward
(negative cost). In the next section, we show that this new
formulation outperforms the previous risk-seeking variant,
and we discuss the distinction further in Section 5.

4. Experimental Evaluation
We evaluated our method on planar swimming and walk-
ing tasks, as well as walking on uneven terrain and recov-
ery from strong lateral pushes. Each task was executed on
a simulated robot with torque motors at the joints, using

Learning Complex Neural Network Policies with Trajectory Optimization

initial trajectory

constrained GPS

variational GPS

ISGPS

adapted ISGPS

cost-weighted

DAGGER

walker, 10 hidden units

iteration

av
er

ag
e

co
st

20 40 60 80 100
0

50

100

150

200
walker, 5 hidden units

iteration

av
er

ag
e

co
st

20 40 60 80 100
0

50

100

150

200
swimmer, 10 hidden units

iteration

av
er

ag
e

co
st

20 40 60 80 100
140

160

180

200

220

240
swimmer, 5 hidden units

iteration

av
er

ag
e

co
st

20 40 60 80 100
140

160

180

200

220

240

Figure 1. Comparison to prior work on swimming and walking tasks. Only constrained and variational GPS succeeded on every task.
For the walker, costs significantly above the initial example indicate falling. Policies that fail and become unstable are off the scale, and
are clamped to the maximum cost. Frequent vertical oscillations indicate a policy that oscillates between stable and unstable solutions.

the MuJoCo physics simulator (Todorov et al., 2012). The
policies were general-purpose neural networks that mapped
joint angles directly to torques at each time step. The cost
function for each task consisted of a sum of three terms:

`(xt,ut) = wu‖ut‖2 + wv(vx − v?x)2 + wh(py − p?y)2,

where vx and v?x are the current and desired horizontal ve-
locities, py and p?y are the current and desired heights of
the root link, and wu, wv , and wh determine the weight on
each objective term. The swimmer and walker are shown
in Figure 2, along with a schematic of the policy. The spe-
cific weights and a description of each robot are presented
in the supplemental appendix. The initial trajectory for the
swimmer was generated with unconstrained trajectory op-
timization using DDP, while the initial walking trajectory
used a demonstration from a hand-crafted locomotion sys-
tem (Yin et al., 2007), following our prior work (Levine &
Koltun, 2013a). Initial push responses were generated by
tracking a walking demonstration with DDP.

The policies consisted of neural networks with one hidden
layer, with a soft rectifier a = log(1 + exp(z)) at the first
layer and linear connections to the output layer. Gaussian
noise with a learned diagonal covariance was added to the
output to create a stochastic policy. When evaluating the
cost of a policy, the noise was removed, yielding a deter-
ministic controller. While this class of policies is very ex-
pressive, it poses a considerable challenge for policy search
methods, due to its nonlinearity and high dimensionality.

As discussed in Section 3, the stochasticity of the policy
depends on the cost magnitude. A low cost will produce
broad trajectory distributions, which are good for learning,
but will also produce a more stochastic policy, which might
perform poorly. To speed up learning and still achieve a
good final policy, we found it useful to gradually increase
the cost by a factor of 10 over the first 50 iterations.

4.1. Simple Locomotion

Comparisons to previous methods on the swimming and
walking tasks are presented in Figure 1, using policies with
either 5 or 10 hidden units. Our constrained guided pol-
icy search method (constrained GPS) succeeded on all of
the tasks. The only other method to succeed on all tasks

x1 x2 xn

u1 u2 uk

h1 h2 hp

Figure 2. The swimmer and bipedal walker, next to a diagram of
the neural network controller. Blue curves indicate root link tra-
jectories of the learned locomotion policy.

was variational GPS, which also alternates policy and tra-
jectory optimization (Levine & Koltun, 2013b). However,
as we will show in the next sections, constrained GPS gen-
eralized better to more difficult domains, where the risk-
seeking objective in variational GPS caused difficulties.

Importance-sampled guided policy search (ISGPS), which
adds guiding samples from a trajectory distribution into the
policy search via importance sampling (Levine & Koltun,
2013a), solved both swimming tasks but failed to learn a
walking gait with 5 hidden units. Guiding samples are only
useful if they can be reproduced by the policy. If the policy
class is too restricted, for example by partial observability
or limited expressiveness, or if the trajectory takes incon-
sistent actions in similar states, no policy can reproduce the
guiding samples and ISGPS reverts to random exploration.

Adapted ISGPS optimizes the trajectory to match the pol-
icy, but still uses importance sampling, which can cause
problems due to weight degeneracy and local optima. The
adapted variant also could not find a 5 hidden unit walk-
ing gait. Both variants did converge faster than constrained
GPS on the easier swimming tasks, since constrained GPS
requires a few iterations to find reasonable Lagrange mul-
tipliers and bring the policy and trajectory into agreement.

We also compared to cost-weighted regression, which fits
the policy to previous on-policy samples weighted by
the exponential of their reward (negative cost) (Peters &
Schaal, 2007; Kober & Peters, 2009). This approach is rep-
resentative of a broad class of reinforcement learning meth-
ods, which use model-free random exploration and opti-
mize the policy to increase the probability of low cost sam-
ples (Peters & Schaal, 2008; Theodorou et al., 2010). Since
a dynamics model was available, we provided this method
with 1000 samples at each iteration, but it was still only

Learning Complex Neural Network Policies with Trajectory Optimization

constrained GPS variational GPS ISGPS adapted ISGPS

3 training terrains

iteration

av
er

ag
e

co
st

20 40 60 80 100
0

50

100

150

200
1 training terrain

iteration

av
er

ag
e

co
st

20 40 60 80 100
0

50

100

150

200

Figure 3. Uneven terrain. Solid lines show performance on the
training terrains, dotted lines show generalization to unseen ter-
rains. Constrained GPS was able to generalize from both training
conditions. One test terrain with a trace of our policy is shown.

able to learn one swimming task, since the search space
for the walker is far too large and complex to handle with
model-free methods. While we also tested other RL al-
gorithms, such as REINFORCE-style policy gradient, we
found that they performed poorly in all of our experiments.

Lastly, we compared to DAGGER, an imitation learning
method that mimics an oracle (Ross et al., 2011), which
in our case was the initial trajectory distribution. At each
iteration, DAGGER adds on-policy samples to its dataset
and reoptimizes the policy to take the oracle action at each
sample. Like ISGPS, DAGGER relies on being able to re-
produce the oracle’s behavior with some policy from the
policy class, which may be impossible without adapting the
trajectory. Furthermore, poor policies will deviate from the
trajectory, and the oracle’s linear feedback actions in these
faraway states are highly suboptimal, violating DAGGER’s
assumptions. To mitigate this, we weighted the samples by
their probability under the trajectory distribution, but DAG-
GER was still unable to learn a walking gait.

4.2. Uneven Terrain

In this section, we investigate the ability of each method to
learn policies that generalize to new situations, which is a
key advantage of parametric policies. Our first experiment
is based on the uneven terrain task we proposed in prior
work (Levine & Koltun, 2013a), where the walker traverses
random uneven terrain with slopes of up to 10◦. The walker
was trained on one or three terrains, and tested on four other
random terrains. The policies used 50 hidden units, for
a total of 1206 parameters. We omitted the foot contact
and forward kinematics features that we used in prior work
(Levine, 2013), and instead trained policies that map the
state vector directly to joint torques. This significantly in-
creased the difficulty of the problem, to the point that prior
methods could not discover a reliable policy.

The results are shown in Figure 3, with methods that failed
on both tasks omitted for clarity. The dotted lines indicate

constrained GPS variational GPS ISGPS adapted ISGPS

4 training pushes

iteration

av
er

ag
e

co
st

20 40 60 80 100
0

50

100

150

200
1 training push

iteration

av
er

ag
e

co
st

20 40 60 80 100
0

50

100

150

200

Figure 4. Push response results. Solid lines show training push re-
sults, dotted lines show generalization. Constrained GPS learned
a successful, generalizable policy from four training pushes.

250N

250N

tr
ai

ni
ng

pu
sh

1
C

G
PS

V
G

PS

500N

500N

te
st

pu
sh

1
C

G
PS

V
G

PS
500N

500N

te
st

pu
sh

2
C

G
PS

V
G

PS

Figure 5. A few push responses with policies learned by con-
strained and variational GPS on four training pushes. The hori-
zontal spacing between the figures is expanded for clarity.

the performance of each method on the test terrains. Con-
strained GPS was able to learn successful policies on both
training sets, and in both cases the policies generalized well
to new terrains. Prior methods struggled with this task, and
though they were able to traverse the single terrain by the
last iteration, none could traverse all three training terrains,
and none could generalize successfully.

Like the locomotion tasks in the previous section, the main
challenge in this task was to learn an effective gait. How-
ever, one advantage of general-purpose policies like neural
networks is that a single policy can in principle learn mul-
tiple strategies, and deploy them as needed in response to
the state. This issue is explored in the next section.

4.3. Push Recovery

To explore the ability of each method to learn policies that
choose different strategies based on the state, we trained
walking policies that recover from strong lateral pushes, in
the range of 250 to 500 Newtons, delivered for 100ms. Re-
sponding to pushes of such magnitude requires not just dis-
turbance rejection, but a well-timed recovery strategy, such

Learning Complex Neural Network Policies with Trajectory Optimization

as a protective step or even standing up after a fall. Because
the push can occur at different points in the gait, multi-
ple recovery strategies must be learned simultaneously. A
strategy that succeeds in one pose may fail in another.

We trained policies with 50 hidden units on one or four
pushes, and tested them on four different pushes, with ini-
tial states sampled from an example gait cycle. The re-
sults are shown in Figure 4, with dotted lines indicating
performance on the test pushes. Constrained GPS learned
a policy from four training pushes that generalized well to
the test set, while no prior method could find a policy that
succeeded even on the entire training set. Although sev-
eral methods learned a successful policy from one training
push, none of these policies could generalize, underscoring
the importance of learning multiple recovery strategies.

Figure 5 shows a few of the recoveries learned by con-
strained and variational GPS. Note that even the weaker
250 Newton pushes are quite violent, and sufficient to lift
the 24kg walker off the ground completely. Nonetheless,
constrained GPS was able to recover succesfully. The sup-
plementary video3 shows the policy responding to each of
the training and test pushes, as well as a few additional
pushes delivered in quick succession. The video illustrates
some of the strategies learned by the policy, such as kick-
ing against the ground to recover from a backward fall. The
ability to learn such generalizable strategies is one of the
key benefits of training expressive parametric controllers.

5. Discussion
We presented a constrained guided policy search algorithm
for learning complex, high-dimensional policies, using tra-
jectory optimization with a policy agreement constraint.
We showed how the constrained problem can be solved ef-
ficiently with dual gradient descent and dynamic program-
ming, and presented a comparison of our method to prior
policy search algorithms. Our approach was able to learn a
push recovery behavior for a bipedal walker that captured
generalizable recovery strategies, and outperformed prior
methods in direct comparisons.

Constrained GPS builds on our recent work on using trajec-
tory optimization for policy search with importance sam-
pling (Levine & Koltun, 2013a) and variational inference
(Levine & Koltun, 2013b). Our evaluation shows that the
constrained approach outperforms the prior methods. Im-
portance sampling can be vulnerable to degeneracies in the
importance weights. While variational GPS addresses this
issue, it does so by optimizing a risk-seeking objective: the
expected exponential reward. Such an objective rewards
policies that succeed only occasionally, which can lead to
unreliable results. On the other hand, variational GPS is

3
http://graphics.stanford.edu/projects/cgpspaper/index.htm

somewhat easier to implement, and importance sampled
GPS is simpler and faster when adaptation of the trajectory
is not required, such as on the simpler locomotion tasks.

Variational GPS makes the policy an M-projection onto the
trajectory distribution, forcing it to visit all regions where
this distribution is high, even if it means visiting costly re-
gions where it’s not. We argue that an I-projection objective
is more appropriate, as it forces the policy to avoid costly
regions where the trajectory distribution is low, even at the
cost of missing some high-density areas. As shown in Sec-
tion 2, this corresponds to the expected cost plus an entropy
term. Previous work has also argued for this sort of objec-
tive, on the basis of probabilistic robustness (Ziebart, 2010)
and computational benefits (Todorov, 2006). The related
area of stochastic optimal control has developed model-free
reinforcement learning algorithms under a similar objective
(Theodorou et al., 2010; Rawlik et al., 2012).

Concurrently with our work, Mordatch and Todorov (2014)
proposed another trajectory optimization algorithm for
guiding policy search. Further research into trajectory op-
timization techniques best suited for policy search is a
promising direction for future work.

While we assume a known model of the dynamics, prior
work has proposed learning the dynamics from data
(Deisenroth & Rasmussen, 2011; Ross & Bagnell, 2012;
Deisenroth et al., 2013), and using our method with learned
models could allow for wider applications in the future.

Our method also has several limitations that could be ad-
dressed in future work. Our use of trajectory optimization
requires the policy to be Markovian, so any hidden state
carried across time steps must itself be incorporated into the
policy search as additional state information. Our method
is also local in nature. While we can use multiple trajecto-
ries to optimize a single policy, highly stochastic policies
that visit large swathes of the state space would not be ap-
proximated well by our method.

Another avenue to explore in future work is the applica-
tion of our method to learning rich control policies at scale.
Since we can learn a single policy that unifies a variety
of trajectories in different environments and with different
initial conditions, a sufficiently expressive policy could in
principle learn complex sensorimotor associations from a
large number of trajectories, all optimized in parallel in
their respective environments. This could offer superior
generalization and discovery of higher-level motor skills.

ACKNOWLEDGMENTS

We thank Emanuel Todorov, Tom Erez, and Yuval Tassa for
the MuJoCo simulator, and the anonymous reviewers for
their constructive feedback. Sergey Levine was supported
by an NVIDIA Graduate Fellowship.

http://graphics.stanford.edu/projects/cgpspaper/index.htm

Learning Complex Neural Network Policies with Trajectory Optimization

References
Arnold, W.F., III and Laub, A.J. Generalized eigenproblem

algorithms and software for algebraic Riccati equations.
Proceedings of the IEEE, 72(12), 1984.

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004.

Deisenroth, M. and Rasmussen, C. PILCO: a model-based
and data-efficient approach to policy search. In Interna-
tional Conference on Machine Learning (ICML), 2011.

Deisenroth, M., Neumann, G., and Peters, J. A survey on
policy search for robotics. Foundations and Trends in
Robotics, 2(1-2), 2013.

Ijspeert, A., Nakanishi, J., and Schaal, S. Learning attractor
landscapes for learning motor primitives. In Advances in
Neural Information Processing Systems (NIPS), 2003.

Kappen, H. J., Gómez, V., and Opper, M. Optimal con-
trol as a graphical model inference problem. Machine
Learning, 87(2), 2012.

Kober, J. and Peters, J. Learning motor primitives for
robotics. In International Conference on Robotics and
Automation (ICRA), 2009.

Kober, J., Bagnell, J. A., and Peters, J. Reinforcement
learning in robotics: A survey. International Journal of
Robotic Research, 32(11), 2013.

Kolter, J. Z., Jackowski, Z., and Tedrake, R. Design, anal-
ysis and learning control of a fully actuated micro wind
turbine. In American Control Conference (ACC), 2012.

Levine, S. Exploring deep and recurrent architectures for
optimal control. In NIPS 2013 Workshop on Deep Learn-
ing, 2013.

Levine, S. and Koltun, V. Guided policy search. In Interna-
tional Conference on Machine Learning (ICML), 2013a.

Levine, S. and Koltun, V. Variational policy search via tra-
jectory optimization. In Advances in Neural Information
Processing Systems (NIPS), 2013b.

Mordatch, I. and Todorov, E. Combining the benefits of
function approximation and trajectory optimization. In
Robotics: Science and Systems (RSS), 2014.

Paraschos, A., Daniel, C., Peters, J., and Neumann, G.
Probabilistic movement primitives. In Advances in Neu-
ral Information Processing Systems (NIPS), 2013.

Peters, J. and Schaal, S. Applying the episodic natu-
ral actor-critic architecture to motor primitive learning.
In European Symposium on Artificial Neural Networks
(ESANN), 2007.

Peters, J. and Schaal, S. Reinforcement learning of mo-
tor skills with policy gradients. Neural Networks, 21(4),
2008.

Rawlik, K., Toussaint, M., and Vijayakumar, S. On
stochastic optimal control and reinforcement learning by
approximate inference. In Robotics: Science and Sys-
tems (RSS), 2012.

Ross, S. and Bagnell, A. Agnostic system identification for
model-based reinforcement learning. In International
Conference on Machine Learning (ICML), 2012.

Ross, S., Gordon, G., and Bagnell, A. A reduction of imi-
tation learning and structured prediction to no-regret on-
line learning. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2011.

Ross, S., Melik-Barkhudarov, N., Shankar, K. Shaurya,
Wendel, A., Dey, D., Bagnell, J. A., and Hebert, M.
Learning monocular reactive UAV control in cluttered
natural environments. In International Conference on
Robotics and Automation (ICRA), 2013.

Theodorou, E., Buchli, J., and Schaal, S. Reinforcement
learning of motor skills in high dimensions: a path inte-
gral approach. In International Conference on Robotics
and Automation (ICRA), 2010.

Todorov, E. Linearly-solvable Markov decision problems.
In Advances in Neural Information Processing Systems
(NIPS), 2006.

Todorov, E. and Li, W. A generalized iterative LQG method
for locally-optimal feedback control of constrained non-
linear stochastic systems. In American Control Confer-
ence (ACC), 2005.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics
engine for model-based control. In International Con-
ference on Intelligent Robots and Systems (IROS), 2012.

Yin, K., Loken, K., and van de Panne, M. SIMBICON:
simple biped locomotion control. ACM Transactions
Graphics, 26(3), 2007.

Ziebart, B. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. PhD thesis,
Carnegie Mellon University, 2010.

Learning Complex Neural Network Policies with Trajectory Optimization

A. Simulation and Cost Details
The swimmer consisted of 3 links, with 10 state dimen-
sions corresponding to joint angles, joint angular veloci-
ties, and the position, angle, velocity, and angular velocity
of the head, with two action dimensions corresponding to
the torques between the joints. The simulation applied drag
on each link of the swimmer to roughly simulate a fluid, al-
lowing it to propel itself. The simulation step was set to
0.05s, and the reward weights were wu = 0.0001, wv = 1,
and wh = 0, with the desired velocity was v?x = 1m/s.

The bipedal walker consisted of seven links: a torso and
three links for each leg, for a total of 18 dimensions, includ-
ing joint angles, the global position and orientation of the
torso, and the corresponding velocities. The action space
had six dimensions, corresponding to each of the joints.
MuJoCo was used to simulate soft, differentiable contacts
to allow gradient-based optimization to proceed even in the
presence of contact forces. The simulation step was set
to 0.01s, and the reward weights for all walker tasks were
wu = 0.0001, wv = 1, and wh = 10, with desired velocity
and height v?x = 2.1m/s and p?y = 1.1m.

B. Sample-Based Gradients
As discussed in Section 3.1, the Laplace approximation
may not accurately capture the structure of πθ(ut|xt) in the
entire region where q(xt) is large, and since the policy is
trained by sampling states from q(xt), policy optimization
optimizes a different objective. This can lead to noncon-
vergence when the policy is highly nonlinear. To reconcile
this problem, we can approximate the policy terms in the
objective with M random samples xti, drawn from q(xt),
rather than by using a linearization of the policy:

L(q) ≈
T∑
t=1

`(x̂t, ût) +
1

2
tr (Σt`xu,xut)−

1

2
log |At|+

λt
2M

M∑
i=1

(uti − µπt (xti))
TA−1t (uti − µπt (xti))+

λt
2

tr
(
A−1t Σπt

)
+
λt
2

log |At| ,

where the actions are given by uti = Ktxti + ût.
Note that the samples xti depend on x̂t, according to
xti = x̂t + LT

t sti, where sti is a sample from a zero-mean
spherical Gaussian, and Lt is the upper triangular Cholesky
decomposition of St.4 As before, we differentiate with re-
spect to ût, substituting Qu,ut and Qut as needed:

Lut = Qut + λtA
−1
t µ̂πt

Lu,ut = Qu,ut + λtA
−1
t ,

4Keeping the same samples sti across iterations reduces vari-
ance and can greatly improve convergence.

where µ̂πt = 1
M

∑M
i=1(uti − µπt (xti)) is the average dif-

ference between the linear feedback and the policy. This
yields the following correction and feedback terms:

kt = −
(
Qu,ut + λtA

−1
t

)−1 (
Qut + λtA

−1
t µ̂πt

)
Kt = −

(
Qu,ut + λtA

−1
t

)−1 (
Qu,xt − λtA−1t µ̂πxt

)
,

where µ̂πxt = 1
M

∑M
i=1 µ

π
xt(xti) is the average policy gra-

dient. So far, the change to the mean is identical to sim-
ply averaging the policy values and policy gradients over
all the samples. In fact, a reasonable approximation can
be obtained by doing just that, and substituting the sample
averages directly into the equations in Section 3.1. This
is the approximation we use in our experiments, as it is
slightly faster and does not appear to significantly degrade
the results. However, the true gradients with respect to At

are different. Below, we differentiate the objection with
respect to At and K̂t as before, where we use K̂t to dis-
tinguish the covariance term from the feedback in the first
dynamic programming pass, which is no longer identical.
The derivatives with respect to At and K̂t are

LAt =
1

2
Qu,ut +

λt − 1

2
A−1t −

λt
2
A−1t MA−1t

LK̂t = Qu,utK̂tSt +Qu,xtSt + λtA
−1
t (K̂tŜt −Ct),

where M = Σπt +
∑M
i=1(uti − µπt (xti))(uti − µπt (xti)),

Ŝt = 1
M

∑M
i=1 xtix

T
ti, and Ct = 1

M

∑M
i=1 µ

π
t (xti)x

T
ti,

where we simplified using the assumption that x̂t and ût
are zero. We again solve for At by solving the CARE in
Equation 8. To solve for K̂t, we rearrange the terms to get

K̂tŜtS
−1
t +

1

λt
AtQu,utK̂t = CtS

−1
t −

1

λt
AtQu,xt.

This equation is linear in K̂t, but requires solving a sparse
linear system with dimensionality equal to the number of
entries in K̂t, which increases the computational cost.

Differentiating with respect to St, we get:

LSt =
1

2

[
Qx,xt + KT

t Qu,xt +Qx,utKt + KT
t Qu,utKt

+choldiff(Dt) + choldiff(Dt)
T
]

where Dt=
λt
M

∑M
i=1(K̂t−µπxt(xti))TA−1t (uti−µπt (xti))s

T
ti

and choldiff(. . .) indicates the differentiation of the
Cholesky decomposition, for example using the method
described by Giles in “An extended collection of matrix
derivative results for forward and reverse mode algorithmic
differentiation” (2008). While this will provide us with the
correct gradient, choldiff(Dt) + choldiff(Dt)

T is not guar-
anteed to be positive definite. In this case, we found it use-
ful to regularize by interpolating the gradient with the one
obtained from the Laplace approximation.

