Learning Complex Neural Network Policies with Trajectory Optimization

Sergey Levine - Stanford University

1. Introduction

Goal: Learn complex control strategies for high-dimensional con-
tinuous systems (e.g. robots) using expressive nonlinear function
approximators, avoiding task-specific feature engineering.

Challenge: Policy search methods often require carefully de-
signed, low-dimensional policy classes to avoid disastrous local op-
tima and discover successful task executions. It is very difficult
to simultaneously solve complex continuous control problems and
optimize a high-dimensional, nonlinear function approximator.

Supervised learning is relatively easy, even for a complex, non-
linear function approximator, but we need a good training set.

Trajectory optimization is an easier way to solve a control prob-
lem from one initial state, but it doesn’t produce a policy.

Guided policy Search uses trajectory optimization to guide the
policy search. Trajectory optimization handles the temporal as-
pect of the task and constructs a training set that allows the com-
plex, nonlinear policy to be trained with supervised learning.

2. Constrained Guided Policy Search

mo(us|x¢) — policy 6 — policy parameters f(x¢,us) — cost
q(T) = q(x1) Ht q(Xr11|Xe, ur)q(ue|xy) — trajectory distribution

Supervised learning of my(u|x;) with indi-
vidual trajectories 7 fails, since a small error
at each time step can compound and place the
policy in costly parts of the space.

Trajectory distributions provide many
samples in a local neighborhood that will cor-
rect small mistakes made by my(us|x;¢), allow-
ing it to stabilize around the mean trajectory.

Adapting the distribution to match the policy while still achiev-
ing low cost will ensure that the policy can learn it accurately.

Can do all of this by approximately solving a constrained problem:

Hm%n) Ey (1) — H(q(T)) } makes distribution broad
s q\T

Dxr(q(x¢)mo(ue|x¢)|lg(xt, ur)) = 0 Ve

makes trajectory match the policy

3. Solving the Constrained Problem

Consider the Lagrangian of the constrained problem in Box 2:

T
L£(0,9,\) = Egle(r)] = H(q) + > AeDxr(q(x)mo(us|xe)[|g (%, uy))
t=1
We optimize the constrained problem with dual gradient descent,
which consists of minimizing £(6,q,A) w.r.t 8 and ¢, and then
performing a subgradient update on the dual variables:

At <= At + nDL(g(Xe)mo(ue[xe) | g(x¢, uy))
Optimizing £(6,q, A) w.r.t. ¢ corresponds to trajectory optimiza-
tion, while optimizing it w.r.t. 6 is supervised learning. By al-
ternating between these two steps and incrementing \;, the policy
and trajectory are gradually brought into agreement.

— ¥

optimize L£(6, g, \) optimize [@@°"®]
w.r.t. q(7) L(6,q,) /

J— = “ N w.r.t. 0 (—@ @.“

update Ay with
subgradient descent:

At <— At + Dk, (...)

@ (W)ees(w)

4. Trajectory Optimization

Can efficiently optimize L(q(7)) by using approximately Gaus-
sian trajectory distributions ¢(7) with action conditional given by

g(ug|xy) = N(Ky(xp — X¢) + Gy, Ayg)

Optimization is similar to the Laplace approximation: we make
linear Gaussian approximations to the dynamics and to my(us|x;)
by linearizing around the mean trajectory, and use a quadratic
approximation of £(x;,u;). This is also similar to LQR.

Under linear dynamics and quadratic cost, can show that the value
function is quadratic, so K;, x;, u;, and A; can be computed with
dynamic programming backward in time:

q(u¢|x¢)

D
.

After each dynamic programming pass, new linearizations are com-
puted around the new mean trajectory, and the process repeats.

Cost terms £(x;,u;) encourage narrow covariances A;, but pol-
icy KL-divergence constraints encourage wider A; if policy and
trajectory disagree, since ¢(7) must be wider to correct all of the
“mistakes” of the policy. As policy and trajectory come into agree-
ment, this covariance becomes narrower.

I—projection/ M-projection
e_Q(xt ’ut)
[N iy 7o (ue|xt)
_— ~ A A
N(Ke(xy — %x¢) + 0¢, Ag)

Vladlen Koltun - Adobe Research

5. Policy Optimization

The terms in £(6, q(7)) that only depend on 6 can be rewritten as

[a0 B, log atun)i

We can therefore sample a “training points” from ¢(x;) and mini-
mize A\ Fr,|log q(ut|x:)] at each training point:

new 6

ample xi ~ q(x¢) ‘w &) (g)eee
o /

' (] (h) (hy)eee
%
(W)

gradient step:

6’ < 6 + aV Er,[log q(us|x})] @) (oo

If the mg(us|x;) is a conditional (nonlinear) Gaussian, with mean
u”™ (x¢) and covariance X" (x¢), Er, [log g(uex;)] is

1 A r — A 7 T A — r
5{(KtXt‘|‘ut—,U)TAt 1(KtXt+ut—,U)—|—tr(§] A, 1)—log\§] ‘}

Note that this is a weighted least-squares objective on ™ (xy).

6. Experimental Evaluation

We used constrained guided policy search (constrained GPS) to
learn controllers for a range of challenging locomotion tasks and
compared to a variety of prior methods. Experiments included sim-
ulated swimming, walking on flat ground, walking on uneven ter-
rain, and walking while recovering from very strong lateral pushes:

swimmer, 5 hidden units walker, 5 hidden units

3 training terrains
240 200 200 . -

*
- - }- = ﬁ" R
- r ul s -
- 1 - - e

-
T TH -
" = | - -
E - - H
I - -
] -
- -1
- -
- -
= B
- =€
= i M
- = 5 =
k - T |4
- - 4
-]
- i
-]
-

—

(8]

o
B—TTE

average cost
average cost
8

-
D
o
[8)]
o
|
‘?‘I
-
-

140

o

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Iiteration iteration iteration

= = = initial trajectory

4 training pushes

constrained GPS

variational GPS

— ISGPS

adapted ISGPS

cost-weighted

20 40 60 80 100 20 40 60 80 100 | — DAGGER
iteration iteration

On the push recovery task, our method learned a highly generaliz-
able push response strategy that could recover from a wide range of
pushes, including test pushes that were not observed during train-
ing. Some of these test push responses are shown below, along
with uneven terrain traversal, flat ground walking, and swimming:

