
Learning Complex Neural Network Policies with Trajectory Optimization

Sergey Levine - Stanford University

1. Introduction 3. Solving the Constrained Problem 5. Policy Optimization

2. Constrained Guided Policy Search
4. Trajectory Optimization

6. Experimental Evaluation

Vladlen Koltun - Adobe Research

Goal: Learn complex control strategies for high-dimensional con-
tinuous systems (e.g. robots) using expressive nonlinear function
approximators, avoiding task-specific feature engineering.

Challenge: Policy search methods often require carefully de-
signed, low-dimensional policy classes to avoid disastrous local op-
tima and discover successful task executions. It is very difficult
to simultaneously solve complex continuous control problems and
optimize a high-dimensional, nonlinear function approximator.

Supervised learning is relatively easy, even for a complex, non-
linear function approximator, but we need a good training set.

Trajectory optimization is an easier way to solve a control prob-
lem from one initial state, but it doesn’t produce a policy.

Guided policy Search uses trajectory optimization to guide the
policy search. Trajectory optimization handles the temporal as-
pect of the task and constructs a training set that allows the com-
plex, nonlinear policy to be trained with supervised learning.

Can efficiently optimize L(q(τ)) by using approximately Gaus-
sian trajectory distributions q(τ) with action conditional given by

q(ut|xt) = N (Kt(xt − x̂t) + ût,At)

Optimization is similar to the Laplace approximation: we make
linear Gaussian approximations to the dynamics and to πθ(ut|xt)
by linearizing around the mean trajectory, and use a quadratic
approximation of �(xt,ut). This is also similar to LQR.

Under linear dynamics and quadratic cost, can show that the value
function is quadratic, so Kt, x̂t, ût, and At can be computed with
dynamic programming backward in time:

��� N (Kt(xt − x̂t) + ût,At)

πθ(ut|xt)
e−Q(xt,ut)

q(ut|xt)

I-projection
M-projection��� �
��

After each dynamic programming pass, new linearizations are com-
puted around the new mean trajectory, and the process repeats.

Cost terms �(xt,ut) encourage narrow covariances At, but pol-
icy KL-divergence constraints encourage wider At if policy and
trajectory disagree, since q(τ) must be wider to correct all of the
“mistakes” of the policy. As policy and trajectory come into agree-
ment, this covariance becomes narrower.

The terms in L(θ, q(τ)) that only depend on θ can be rewritten as

L(θ) =
T∑
t=1

λt

∫
q(xt)Eπθ

[log q(ut|xt)]dxt

We can therefore sample a “training points” from q(xt) and mini-
mize λtEπθ

[log q(ut|xt)] at each training point:

sample xi
t ∼ q(xt)

gradient step:

θ′ ← θ + α∇Eπθ
[log q(ut|xi

t)]

new θ

If the πθ(ut|xt) is a conditional (nonlinear) Gaussian, with mean
µπ(xt) and covariance Σπ(xt), Eπθ

[log q(ut|xt)] is

1

2
{(Ktxt+ ût−µπ)TA−1

t (Ktxt+ ût−µπ)+ tr(ΣπA−1
t)− log |Σπ|}

Note that this is a weighted least-squares objective on µπ(xt).

x1 x2 xn

u1 u2 uk

h1 h2 hp

x1 x2 xn

u1 u2 uk

h1 h2 hp

Consider the Lagrangian of the constrained problem in Box 2:

L(θ, q, λ) = Eq[�(τ)]−H(q) +
T∑
t=1

λtDKL(q(xt)πθ(ut|xt)‖q(xt,ut))

We optimize the constrained problem with dual gradient descent,
which consists of minimizing L(θ, q, λ) w.r.t θ and q, and then
performing a subgradient update on the dual variables:

λt ← λt + ηDKL(q(xt)πθ(ut|xt)‖q(xt,ut))

Optimizing L(θ, q, λ) w.r.t. q corresponds to trajectory optimiza-
tion, while optimizing it w.r.t. θ is supervised learning. By al-
ternating between these two steps and incrementing λt, the policy
and trajectory are gradually brought into agreement.

optimize L(θ, q, λ)
w.r.t. q(τ)

optimize
L(θ, q, λ)
w.r.t. θ

update λt with
subgradient descent:

λt ← λt + ηDKL(. . .)

πθ(ut|xt) – policy θ – policy parameters �(xt,ut) – cost

q(τ) = q(x1)
∏

t q(xt+1|xt,ut)q(ut|xt) – trajectory distribution

πθ

τ

Supervised learning of πθ(ut|xt) with indi-
vidual trajectories τ fails, since a small error
at each time step can compound and place the
policy in costly parts of the space.

Trajectory distributions provide many
samples in a local neighborhood that will cor-
rect small mistakes made by πθ(ut|xt), allow-
ing it to stabilize around the mean trajectory.

Adapting the distribution to match the policy while still achiev-
ing low cost will ensure that the policy can learn it accurately.

Can do all of this by approximately solving a constrained problem:

min
θ,q(τ)

Eq(τ)[�(τ)]−H(q(τ))
}

makes distribution broad

DKL(q(xt)πθ(ut|xt)‖q(xt,ut))︸ ︷︷ ︸
makes trajectory match the policy

= 0 ∀t

We used constrained guided policy search (constrained GPS) to
learn controllers for a range of challenging locomotion tasks and
compared to a variety of prior methods. Experiments included sim-
ulated swimming, walking on flat ground, walking on uneven ter-
rain, and walking while recovering from very strong lateral pushes:

On the push recovery task, our method learned a highly generaliz-
able push response strategy that could recover from a wide range of
pushes, including test pushes that were not observed during train-
ing. Some of these test push responses are shown below, along
with uneven terrain traversal, flat ground walking, and swimming:

