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Abstract— Autonomous micro aerial vehicles still struggle
with fast and agile maneuvers, dynamic environments, im-
perfect sensing, and state estimation drift. Autonomous drone
racing brings these challenges to the fore. Human pilots can
fly a previously unseen track after a handful of practice runs.
In contrast, state-of-the-art autonomous navigation algorithms
require either a precise metric map of the environment or a
large amount of training data collected in the track of interest.
To bridge this gap, we propose an approach that can fly a new
track in a previously unseen environment without a precise
map or expensive data collection. Our approach represents the
global track layout with coarse gate locations, which can be
easily estimated from a single demonstration flight. At test time,
a convolutional network predicts the poses of the closest gates
along with their uncertainty. These predictions are incorporated
by an extended Kalman filter to maintain optimal maximum-a-
posteriori estimates of gate locations. This allows the framework
to cope with misleading high-variance estimates that could
stem from poor observability or lack of visible gates. Given
the estimated gate poses, we use model predictive control to
quickly and accurately navigate through the track. We conduct
extensive experiments in the physical world, demonstrating
agile and robust flight through complex and diverse previously-
unseen race tracks. The presented approach was used to win
the IROS 2018 Autonomous Drone Race Competition, outracing
the second-placing team by a factor of two.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/UuQvijZcUSc

I. INTRODUCTION

First-person view (FPV) drone racing is a fast-growing
sport, in which human pilots race micro aerial vehicles
(MAVs) through tracks via remote control. Drone racing pro-
vides a natural proving ground for vision-based autonomous
drone navigation. This has motivated competitions such as
the annual IROS Autonomous Drone Race [17] and the
recently announced AlphaPilot Innovation Challenge, an
autonomous drone racing competition with more than 2
million US dollars in cash prizes.

To successfully navigate a race track, a drone has to
continually sense and interpret its environment. It has to be
robust to cluttered and possibly dynamic track layouts. It
needs precise planning and control to support the aggressive
maneuvers required to traverse a track at high speed. Drone
racing thus crystallizes some of the central outstanding
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Fig. 1: A quadrotor flies through an indoor track. Our
approach uses optimal filtering to incorporate estimates from
a deep perception system. It can race a new track after a
single demonstration.

issues in robotics. Algorithms developed for drone racing can
benefit robotics in general and can contribute to areas such
as autonomous transportation, delivery, and disaster relief.

Traditional localization-based approaches for drone nav-
igation require precomputing a precise 3D map of the en-
vironment against which the MAV is localized. Thus, while
previous works demonstrated impressive results in controlled
settings [18], these methods are difficult to deploy in new
environments where a precise map is not available. Addi-
tionally, they fail in the presence of dynamic objects such
as moving gates, have inconsistent computational overhead,
and are prone to failure under appearance changes such as
varying lighting.

Recent work has shown that deep networks can provide
drones with robust perception capabilities and facilitate safe
navigation even in dynamic environments [9], [8]. However,
current deep learning approaches to autonomous drone racing
require a large amount of training data collected in the same
track. This stands in contrast to human pilots, who can
quickly adapt to new tracks by leveraging skills acquired
in the past.

In this paper, we develop a deep-learning-aided approach
to autonomous drone racing capable of fast adaptation to
new tracks, without the need for building precise maps or
collecting large amounts of data from the track. We represent
a track by coarse locations of a set of gates, which can
be easily acquired in a single demonstration flight through
the track. These recorded gates represent the rough global



layout of the track. At test time, the local track configuration
is estimated by a convolutional network that predicts the
location of the closest gate together with its uncertainty,
given the currently observed image. The network predictions
and uncertainties are continuously incorporated using an
extended Kalman filter (EKF) to derive optimal maximum-
a-posteriori estimates of gate locations. This allows the
framework to cope with misleading high-variance estimates
that could stem from bad observability or complete absence
of visible gates. Given these estimated gate locations, we use
model predictive control to quickly and accurately navigate
through them.

We evaluate the proposed method in simulation and on
a real quadrotor flying fully autonomously. Our algorithm
runs onboard on a computationally constrained platform. We
show that the presented approach can race a new track after
only a single demonstration, without any additional training
or adaptation. Integration of the estimated gate positions is
crucial to the success of the method: a purely image-based
reactive approach only shows non-trivial performance in the
simplest tracks. We further demonstrate that the proposed
method is robust to dynamic changes in the track layout
induced by moving gates.

The presented approach was used to win the IROS Au-
tonomous Drone Race Competition, held in October 2018.
An MAV controlled by the presented approach placed first
in the competition, traversing the eight gates of the race
track in 31.8 seconds. In comparison, the second-place entry
completed the track in 61 seconds, and the third in 90.1
seconds.

II. RELATED WORK

Traditional approaches to autonomous MAV navigation
build on visual inertial odometry (VIO) [5], [1], [13], [24] or
simultaneous localization and mapping (SLAM) [21], [23],
which are used to provide a pose estimate of the drone
relative to an internal metric map [14], [4]. While these
methods can be used to perform visual teach and repeat [4],
they are not concerned with trajectory generation [16], [20].
Furthermore, teach and repeat assumes a static world and
accurate pose estimation: assumptions that are commonly
violated in the real world.

The advent of deep learning has inspired alternative
solutions to autonomous navigation that aim to overcome
these limitations. These approaches typically predict actions
directly from images. Output representations range from
predicting discrete navigation commands (classification in
action space) [11], [7], [15] to direct regression of control
signals [19]. A different line of work combines network
predictions with model predictive control by regressing the
cost function from a single image [2].

In the context of drone racing, Kaufmann et al. [9]
proposed an intermediate representation in the form of a goal
direction and desired speed. The learned policy imitates an
optimal trajectory [16] through the track. An advantage of
this approach is that it can navigate even when no gate is
in view, by exploiting track-specific context and background

information. A downside, however, is the need for a large
amount of labeled data collected directly in the track of inter-
est in order to learn this contextual information. As a result,
the approach is difficult to deploy in new environments.

Jung et al. [8] consider the problem of autonomous drone
navigation in a previously unseen track. They use line-of-
sight guidance combined with a deep-learning-based gate
detector. As a consequence, the next gate to be traversed
has to be in view at all times. Additionally, gates cannot
be approached from an acute angle since the algorithm does
not account for gate rotation. The method is thus applicable
only to relatively simple environments, where the next gate
is always visible.

Our approach addresses the limitations of both works [9],
[8]. It operates reliably even when no gate is in sight, while
eliminating the need to retrain the perception system for
every new track. This enables rapid deployment in complex
novel tracks.

III. METHODOLOGY

We address the problem of robust autonomous flight
through a predefined, ordered set of possibly spatially per-
turbed gates. Our approach comprises three subsystems:
perception, mapping, and combined planning and control.
The perception system takes as input a single image from a
forward-facing camera and estimates both the relative pose of
the next gate and a corresponding uncertainty measure. The
mapping system receives the output of the perception system
together with the current state estimate of the quadrotor and
produces filtered estimates of gate poses. The gate poses are
used by the planning system to maintain a set of waypoints
through the track. These waypoints are followed by a control
pipeline that generates feasible receding-horizon trajectories
and tracks them.
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Fig. 2: Relation of odometry O, body B, and gate frame Gl.

A. Notation and Frame Convention

We denote all scalars by lowercase letters x, vectors by
lowercase bold letters x, and matrices by bold uppercase
letters X. Estimated values are written as x̂, measured values
as x̃.

The relevant coordinate frames are the odometry frame
O, the body frame B, and the gate frames Gl, where
l ∈ {1, . . . , Nl} and Nl is the number of gates. A schematic
overview of the relation between coordinate frames is shown
in Figure 2. The odometry frame O is the global VIO
reference frame. The relation between the body frame B
and the odometry frame O is given by the rotation ROB and



Fig. 3: We collected training data for the perception system in 5 different environments. From left to right: flying room,
outdoor urban environment, atrium, outdoor countryside, garage.

translation tOB . This transform is acquired through a visual
inertial pose estimator. The prediction (t̃BGl

, R̃BGl
) is pro-

vided together with a corresponding uncorrelated covariance
in polar coordinates Σ̃BGl,pol = diag(σ̃2

BGl,pol
) of the gate’s

pose in the body frame. In parallel, we maintain an estimate
of each gate pose (t̂OGl

, R̂OGl
) along with its covariance

Σ̂OGl
= cov

(
t̂OGl

, R̂OGl

)
in the odometry frame. This has

the advantage that gate poses can be updated independently
of each other.

B. Perception System

1) Architecture: The deep network takes as input
a 320× 240 RGB image and regresses both the
mean z̃BGl,pol = [r̃, θ̃, ψ̃, φ̃]> ∈ R4 and the variance
σ̃2
BGl,pol

∈ R4 of a multivariate normal distribution that
describes the current estimate of the next gate’s pose. Our
choice of output distribution is motivated by the fact that
we use an EKF to estimate the joint probability distribution
of a gate’s pose, which is known to be optimal for identical
and independently distributed white noise with known
covariance. The mean represents the prediction of the
relative position and orientation of the gate with respect
to the quadrotor in spherical coordinates. We found this
to be advantageous compared to a Cartesian representation
since it decouples distance estimation from the position
of the gates in image coordinates. We use a single angle
φ̃ to describe the relative horizontal orientation of the
gate, since the gravity direction is known from the IMU.
Furthermore, we assume that gates are always upright and
can be traversed horizontally along the normal direction.
Specifically, φ̃ is measured between the quadrotor’s current
heading and the gate’s heading.
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Fig. 4: Schematic illustration of the network architecture.
Image features are extracted by a CNN [15] and passed
to two separate MLPs to regress z̃BGl,pol and σ̃2

BGl,pol
,

respectively.

The overall structure of the deep network is shown in
Figure 4. First, the input image is processed by a Con-
volutional Neural Network (CNN), based on the shallow
DroNet architecture [15]. The extracted features are then

processed by two separate multilayer perceptrons (MLPs)
that estimate the mean z̃BGl,pol and the variance σ̃2

BGl,pol

of a multivariate normal distribution, respectively. A simi-
lar network architecture for mean-variance estimation was
proposed in [22].

2) Training Procedure: We train the network in two
stages.

In the first stage, the parameters of the CNN and MLPz,
denoted by θCNN and θz, are jointly learned by minimizing
a loss over groundtruth poses for images with visible gates:

{θ∗CNN,θ
∗
z̃i
} = arg min

θCNN,θz̃i

N∑
i=1

||yi − z̃i||22, (1)

where yi denotes the groundtruth pose and N denotes the
dataset size.

In the second stage, the training set is extended to also
include images that do not show visible gates. In this stage
only the parameters θσ2 of the subnetwork MLPσ2 are
trained, while keeping the other weights fixed. We minimize
the loss function proposed by [22], which amounts to the
negative log-likelihood of a multivariate normal distribution
with uncorrelated covariance:

− log p
(
y | z̃i, σ̃2

)
∝

4∑
j=1

log σ̃2
j +

(yj − z̃j)2

σ̃2
j

. (2)

Our use of mean-variance estimation is motivated by
studies that have shown that it is a computationally efficient
way to obtain uncertainty estimates [10].

3) Training Data Generation: We collect a set of images
from the forward-facing camera on the drone and associate
each image with the relative pose of the gate with respect
to the body frame of the quadrotor. In real-world experi-
ments, we use the quadrotor and leverage the onboard state
estimation pipeline to generate training data. The platform
is initialized at a known position relative to a gate and sub-
sequently carried through the environment while collecting
images and corresponding relative gate poses. To collect
training data, it is not necessary to have complete tracks
available. A single gate placed in different environments
suffices, as the perception system only needs to estimate
the relative pose with respect to the next gate at test time.
Moreover, in contrast to Kaufmann et al. [9], the perception
system is never trained on data from tracks and environments
it is later deployed in.



Fig. 5: Our platform, equipped with an Intel UpBoard and a
Qualcomm Snapdragon Flight.

C. Mapping System

The mapping system takes as input a measurement from
the perception system and outputs a filtered estimate of
the current track layout. By correcting the gates with the
measurements from the CNN, gate displacement and accu-
mulated VIO drift can be compensated for. The mapping part
of our pipeline can be divided into two stages: measurement
assignment stage and filter stage.

1) Measurement Assignment: We maintain a map of all
gates l = 1...Nl with states x̂OGl

= [t̂OGl
, φ̂OGl

]> corre-
sponding to gate translation t̂OGl

and yaw φ̂OGl
with respect

to the odometry frame O. The output of the perception
system is used to update the pose x̂OGl

of the next gate to be
passed. To assign a measurement to a gate, the measurement
is transformed into the odometry frame and assigned to the
closest gate. If a measurement is assigned to a gate that is
not the next gate to be passed, it is discarded as an outlier.
We keep track of the next gate by detecting gate traversals.
The detection of a gate traversal is done by expressing the
quadrotor’s current position in a gate-based coordinate frame.
In this frame, the condition for traversal can be expressed as

Gl
t̂GlB,x ≥ 0. (3)

2) Extended Kalman Filter: The prediction of the network
in body frame B is given by z̃BG,pol = [r̃, θ̃, ψ̃, φ̃]>

containing the spherical coordinates [r̃, θ̃, ψ̃]> and yaw φ̃
of the gate, and the corresponding variance σ̃2

BG,pol. The
transformation into the Cartesian representation z̃BG leads
to

z̃BG = f(z̃BG,pol) =


r̃ sin θ̃ cos ψ̃

r̃ sin θ̃ sin ψ̃

r̃ cos θ̃

φ̃

 (4)

Σ̃BG = Jf |z̃pol
Σ̃BG,polJ

>
f |z̃pol

, (5)

where Jf ,i,j = ∂fi
∂xpol,j

is the Jacobian of the conversion
function f and Jf |zpol

is its evaluation at zpol. To integrate
neural network predictions reliably into a map with prior
knowledge of the gates, we represent each gate with its own
EKF. We treat the prediction z̃BG and Σ̃BG at each time
step as a measurement and associated variance, respectively.
Similar to the state, z̃BG = [t̃>BG, φ̃BG]> consists of a
translation t̃BG and rotation φ̃BG around the world z-axis.

Since our measurement and states have different origin
frames, we can formulate the EKF measurement as follows:

z̃k = Hkx̂k + w, w ∼ N (µk,σk) (6)

E[z̃k] =

[
R−1OB,k OtOG,k −R−1OB,k OtOB,k

φOG,k − φOB,k

]
.

Now with x̂k = [OtOG,k, φOG,k]> we can write

Hk =

[
R−1OB,k 0

0 1

]
(7)

µk =

[
−R−1OB,k OtOB,k
−φOB,k

]
Σk = Σ̃BG,k (8)

and, due to identity process dynamics and process covariance
ΣQ, our prediction step becomes

x̂∗k+1 = x̂k P̂∗k+1 = P̂k + ΣQ. (9)

The a-posteriori filter update can be summarized as follows:

Kk = P̂∗kHk

(
Σ̃BG,k + HkP̂

∗
kH
>
k

)−1
x̂k+1 = x̂∗k + Kk(z̃k − µk −Hkx̂

∗
k)

P̂k+1 = (I−KkHk) P̂∗k (I−KkHk)
>

+ KkΣ̃BG,kK
>
k

(10)

with P̂k as the estimated covariance and the superscript ∗

indicating the a-priori predictions.

D. Planning and Control System

The planning and control stage is split into two asyn-
chronous modules. First, low-level waypoints are generated
from the estimated gate position and a desired path is
generated by linearly interpolating between the low-level
waypoints. Second, locally feasible control trajectories are
planned and tracked using a model predictive control scheme.

1) Waypoint Generation: For each gate in our map we
generate two waypoints: one lying in front of the gate relative
to the current quadrotor position and one lying after the gate.
Both waypoints are set with a positive and negative offset
pwp,l± in the x direction with respect to the gate l:

pwp,l± =O tOGl
+ ROGl

[±xG, 0, 0]>, (11)

where xG is a user-defined constant accounting for the spatial
dimension of gate l. We then linearly interpolate a path
from waypoint to waypoint and use it as a reference for
our controller.

2) Model Predictive Control: We formulate the control
problem as a quadratic optimization problem which we solve
using sequential quadratic programming as described in [3]:

min
u

∫ tf

t0

(
x̄>t (t)Qx̄t(t) + ū>t (t)Rūt(t)

)
dt

x̄(t) = x(t)− xr(t) ū(t) = u(t)− ur(t)

subject to r(x,u) = 0 h(x,u) ≤ 0.

The states x and inputs u are weighted with positive diagonal
matrices Q and R with respect to a reference xr and ur.
The equality and inequality constraints, r and h respectively,



-10 -5 0 5 10 15 20
x [m]

-20

-15

-10

-5

0
y 

[m
]

run 1
run 2
run 3
run 4
run 5

(a) Track 1, vmax = 2ms−1, ρ = 2m

-5 0 5 10 15 20
x [m]

0

5

10

15

20

y 
[m

]

run 1
run 2
run 3
run 4
run 5

(b) Track 2, vmax = 2ms−1, ρ = 2m
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Fig. 6: Results of the simulation experiments. We compare the presented approach to the baseline [8] on three tracks,
at different speeds and track perturbations. (a)-(c): Perturbed tracks and example trajectories flown by our approach. (d)-
(f): Success rate of our method. For each data point, 5 experiments were performed with random initial gate perturbation.
(g)-(i): Success rate of the baseline method.

are used to incorporate the vehicle dynamics and input
saturations. The reference is our linearly sampled path along
which the MPC finds a feasible trajectory. Note that we
can run the control loop independent of the detection and
mapping pipeline and reactively stabilize the vehicle along
the changing waypoints.

IV. EXPERIMENTAL SETUP

We evaluate the presented approach in simulation and on
a physical system.

A. Simulation

We use RotorS [6] and Gazebo [12] for all simulation
experiments. To train the perception system, we generated
45,000 training images by randomly sampling camera and
gate positions and computing their relative poses. For quan-
titative evaluation, a 100% successful trial is defined as
completing 3 consecutive laps without crashing or missing a
gate. If the MAV crashes or misses a gate before completing
3 laps, the success rate is measured as a fraction of completed

gates out of 3 laps: for instance, completing 1 lap counts as
33.3% success.

B. Physical System

In all real-world experiments and data collection we use an
in-house MAV platform with an Intel UpBoard as the main
computer running the CNN, EKF, and MPC. Additionally
we use a Qualcomm Snapdragon Flight as a visual-inertial
odometry unit. The platform is shown in Fig. 5. The CNN
reaches an inference rate of ∼ 10 Hz while the MPC runs at
100 Hz. With a take-off weight of 950 g the platform reaches
thrust-to-weight ratio of ∼ 3.

We collect training data for the perception system in five
different environments, both indoors and outdoors. Example
images from the environments are shown in Fig. 3. In total,
we collected 32,000 images.

V. RESULTS

Results are shown in the supplementary video at
https://youtu.be/UuQvijZcUSc.
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A. Simulation

We first present experiments in a controlled, simulated
environment. The aim of these experiments is to thoroughly
evaluate the presented approach both quantitatively and qual-
itatively and compare it to a baseline – the method of Jung
et al. [8]. The baseline was trained on the same data as our
approach.

We evaluate the two methods on three tracks of increasing
difficulty. Figs. 6a-c show an illustration of the three race
tracks and plot the executed trajectories together with the
nominal gate positions in red and the actual displaced gate
positions in the corresponding track color. Our approach
achieved successful runs in all environments, with speeds
up to 4 m s−1 in the first two tracks. Additionally, gate
displacement was handled robustly up to a magnitude of 2 m
before a significant drop in performance occurred. Figs. 6d-i
show the success rate of our method and the baseline on the
three tracks, under varying speed and track perturbations.
Our approach outperforms the baseline by a large margin in
all scenarios. This is mainly because the baseline relies on
the permanent visibility of the next gate. Therefore, it only
manages to complete a lap in the simplest first track where
the next gate can always be seen. In the more complex second
and third tracks, the baseline passes at most one or two gates.
In contrast, due to the integration of prior information from
demonstration and approximate mapping, our approach is
successful on all tracks, including the very challenging third
one.

B. Physical System

To show the capabilities of our approach on a physical
platform, we evaluated it on a real-world track with 8
gates and a total length of 80 meters, shown in Fig. 7.
No training data for the perception system was collected in
this environment. Fig. 8 summarizes the results. As in the
simulation experiments, we measure the performance with

1.0 1.5 2.0 2.5 3.0 3.5

Fig. 8: Success rates of our approach in the real-world exper-
iment. The reader is encouraged to watch the supplementary
video to see the presented approach in action.

respect to the average MAV speed. As before, a success
rate of 100% requires 3 completed laps without crashing or
missing a gate. Our approach confidently completed 3 laps
with speeds up to 2 m s−1 and managed to complete the track
with speeds up to 3.5 m s−1. In contrast, the reactive baseline
was not able to complete the full track even at 1.0 m s−1 (not
shown in the figure).

An example recorded trajectory of our approach is shown
in Fig. 7. Note that one of the gates was moved during the
experiment, but our approach was robust to this change in the
environment. Our approach could handle gate displacements
of up to 3.0 m and complete the full track without crashing.
The reader is encouraged to watch the supplementary video
for more qualitative results on real tracks.

VI. CONCLUSION

We presented an approach to autonomous vision-based
drone navigation. The approach combines learning methods
and optimal filtering. In addition to predicting relative gate
poses, our network also estimates the uncertainty of its
predictions. This allows us to integrate the network outputs
with prior information via an extended Kalman filter.

We showed successful navigation through both simulated
and real-world race tracks with increased robustness and
speed compared to a state-of-the-art baseline. The presented
approach reliably handles gate displacements of up to 2 m.
In the physical track, we reached speeds of up to 3.5 m s−1,
outpacing the baseline by a large margin.

Our approach is capable of flying a new track with an ap-
proximate map obtained from a single demonstration flight.
This approach was used to win the IROS 2018 Autonomous
Drone Race Competition, where it outraced the second-
placing entry by a factor of two.
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