# Computer-Generated Residential Building Layouts

Paul Merrell Eric Schkufza Vladlen Koltun

Stanford University

# Modeling Buildings with Interiors

- Goal: Model the internal structure of buildings
- Crucial in many interactive applications
  - Buildings that can be entered and explored
- Commonly created by hand



# **Residential Buildings**

- Focus on residential buildings
  - Common in games, virtual worlds
  - Have complex structure



Office buildings and schools
Highly regular layouts



#### Related Work

Automated Spatial Allocation

- March and Steadman, 1971
- Shaviv, 1987
- Physically Based Modeling
  - Arvin and House, 2002
  - Mass-spring system
  - Sensitive to initial conditions
- VLSI Layout

Sarrafzadeh and Lee, 1993







#### **Computer Graphics Research**



Müller et al., 2006



Whiting et al., 2009



Pottmann et al., 2007

Legakis et al., 2006



#### Architectural Design in the Real World



#### Overview



First end-to-end approach to automated generation of building layouts from high-level requirements

# Possible Approaches to Building Layout Design

#### Use a grammar

□ Shape grammar [Stiny, 2006]

- Hard to capture the functional relationships
- Use guidelines from architects
  - Too many rules of thumb, ill-specified
- Use a data-driven approach
  - Infer design principles using machine learning techniques

#### Data-Driven Architectural Programming

- Sample from a distribution of architectural programs
- Conditioned on the high-level contraints

#### **Bayesian Network**

- Represent the distribution in a Bayesian network
  - Compact representation
- Nodes probabilities
- Edges conditional dependencies
- Sample from conditional distributions
  - Use high level specifications



**Bayesian network** 

#### Structure Learning Results



Architectural programs

Output one sample

#### Overview



### Floor Plan Optimization

#### Metropolis algorithm

- Propose a new floor plan
- Evaluate it, then accept or reject it
- Not a greedy algorithm

#### Metropolis Algorithm

Objective function

$$f(\mathbf{x}) = \exp(-\beta C(\mathbf{x}))$$
  $\beta$  Constant  
 $C(\mathbf{x})$  Cost function

 $\mathbf{X}$ 

**Building layout** 

- In each iteration, propose a new building layout  $\mathbf{x}^*$
- Accept with probability

$$\alpha(\mathbf{x}^*|\mathbf{x}) = \min\left(1, \frac{f(\mathbf{x}^*)}{f(\mathbf{x})}\right)$$

#### **Proposal Moves**



#### **Proposal Moves**

#### Swap two rooms



Helps to explore the space more rapidly

#### The Cost Function

Evaluates the quality of the layout

 $C(\mathbf{x}) = k_a C_a(\mathbf{x}) + k_d C_d(\mathbf{x}) + k_f C_f(\mathbf{x}) + k_s C_s(\mathbf{x})$ 

Accessibility term

Dimension term Floor compatibility term

Shape term

# Accessibility Term

- Architectural program specifies adjacencies
- Outdoor access for entrances, patios, and garage.



Accessibility term excluded

#### **Dimension Term**

Likelihood of a room's area and aspect ratio
Uses Bayesian network



 $C_d(\mathbf{x}) = -\sum_{i=1}^n \left( \ell_a^i(\mathbf{x}) + \ell_{as}^i(\mathbf{x}) \right)$ 



Area term excluded

Aspect ratio term excluded

#### Shape Term

Measure concavity of a shape, S



#### Shape Term



#### Shape term excluded

#### **Cost Function**



### Floor Compatibility Term

#### Each floor should be supported by the floor below it



#### Floor Plan Optimization



#### Overview



#### **Different Exterior Styles**



Tudor

Craftsman





(b)















(f)









#### **Future Directions**

- Non-rectilinear / curved wall segments
- Site-specific and client-specific factors
- Integrate structural stability
- Interactive exploration of layout designs
- Other building types

#### Conclusion

- First end-to-end approach to automated generation of building layouts from high-level requirements
- Data-driven approach to procedural modeling

#### Questions?