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Abstract

How do we build a general and broad object detec-
tion system? We use all labels of all concepts ever an-
notated. These labels span diverse datasets with poten-
tially inconsistent taxonomies. In this paper, we present
a simple method for training a unified detector on multi-
ple large-scale datasets. We use dataset-specific training
protocols and losses, but share a common detection archi-
tecture with dataset-specific outputs. We show how to au-
tomatically integrate these dataset-specific outputs into a
common semantic taxonomy. In contrast to prior work,
our approach does not require manual taxonomy reconcilia-
tion. Experiments show our learned taxonomy outperforms
a expert-designed taxonomy in all datasets. Our multi-
dataset detector performs as well as dataset-specific models
on each training domain, and can generalize to new unseen
dataset without fine-tuning on them. Code is available at
https://github.com/xingyizhou/UniDet.

1. Introduction

Computer vision aims to produce broad, general-purpose
perception systems that work in the wild. Yet object de-
tection is fragmented into datasets [18, 22, 24, 33] and
our models are locked into the corresponding domains.
This fragmentation brought rapid progress in object detec-
tion [5, 10, 20, 31, 39, 45] and instance segmentation [14],
but comes with a drawback. Single datasets are limited
in both image domains and label vocabularies and do not
yield general-purpose recognition systems. Can we allevi-
ate these limitations by unifying diverse detection datasets?

In this paper, we first make training an object detector on
a collection of disparate datasets as straightforward as train-
ing on a single one. Different datasets are usually trained
under different training losses, data sampling strategies, and
schedules. We show that we can train a single detector with
separate outputs for each dataset, and apply dataset-specific
supervision to each. Our training mimics training parallel
dataset-specific models with a common network. As a re-
sult, our single detector takes full advantages of all training
data, performs well on training domains, and generalizes
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Figure 1. Different datasets span diverse semantic and visual do-
mains. We learn to unify the label spaces of multiple datasets and
train a single object detector that generalizes across datasets.

better to new unseen domains. However, this detector pro-
duces duplicate outputs for classes that occur in multiple
datasets.

A core challenge is integrating different datasets into
a common taxonomy, and training a detector that reasons
about general objects instead of dataset-specific classes.
Traditional approaches create this taxonomy by hand [19,
47], which is both time-consuming and error-prone. We
present a fully automatic way to unify the output space of
a multi-dataset detection system using visual data only. We
use the fact that object detectors for similar concepts from
different datasets fire on similar novel objects. This allows
us to define the cost of merging concepts across datasets,
and optimize for a common taxonomy fully automatically.
Our optimization jointly finds a unified taxonomy, a map-
ping from this taxonomy to each dataset, and a detector
over the unified taxonomy using a novel 0-1 integer pro-
gramming formulation. An object detector trained on this
unified taxonomy has a large, automatically constructed vo-
cabulary of concepts from all training datasets.

We evaluate our unified object detector at an unprece-
dented scale. We train a unified detector on 3 large and di-
verse datasets: COCO [22], Objects365 [33], and Openlm-
ages [18]. For the first time, we show that a single detector
performs as well as dataset-specific models on each indi-
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vidual dataset. A unified taxonomy further improves this
detector. Crucially, we show that models trained on diverse
training sets generalize to new domains without retraining,
and outperform single-dataset models.

2. Related Work

Training on multiple datasets. In recent years, training
on multiple diverse datasets has emerged as an effective
tool to improve model robustness for depth estimation [29],
stereo matching [43], and person detection [13]. In these
domains, unifying the output space involves modeling dif-
ferent camera transformations or depth ambiguities. In con-
trast, for recognition, dataset unification involves merging
different semantic concepts. MSeg [19] manually unified
the taxonomies of 7 semantic segmentation datasets and
used Amazon Mechanical Turk to resolve inconsistent an-
notations between datasets. In contrast, we propose to learn
a label space from visual data automatically, without requir-
ing any manual effort.

Wang et al. [40] train a universal object detector on
multiple datasets, and gain robustness by joining diverse
sources of supervision. This is similar to our partitioned
detector, while they work on small datasets and didn’t
model the training differences between different datasets.
Universal-RCNN [42] trains an partitioned detector on three
large datasets [17,22,48] and models the class relations with
a inter-dataset attention module. However again they use
the same training recipe for all datasets, and produce du-
plicated outputs for the same object if it occurs in more
one dataset. Both Wang et al. [40] and MSeg [19] observe
a performance drop in a single unified model. With our
dedicated training framework, this is not the case: our uni-
fied model performs as well as single-dataset models on the
training datasets. Also, these multi-headed models produce
a dataset-specific prediction for each input image. When
evaluated in-domain, they require knowledge of the test do-
main. When evaluated out-of-domain, they produce multi-
ple outputs for a single concept. This limits their general-
ity and usability. Our approach, on the other hand, unifies
visual concepts in a single label space and yields a single
consistent model that does not require knowledge of the test
domain and can be deployed cleanly in new domains.

Zhao et al. [47] trains a universal detector on multi-
ple datasets: COCO [22], Pascal VOC [6], and SUN-
RGBD [37], with under 100 classes in total. They manu-
ally merge the taxonomies and then train with cross-dataset
pseudo-labels generated by dataset-specific models. The
pseudo-label idea is complementary to our work. Our uni-
fied label space learning removes the manual labor, and
works on a much larger scale: we unify COCO, Objects365,
and Openlmages, with more complex label spaces and
9004+ classes. YOLO9000 [30] combines detection and
classification datasets to expand the detection vocabulary.

LVIS [12] extents COCO annotations to > 1000 classes in
a federated way. Our approach of fusing multiple annotated
datasets is complementary and can be operationalized with
no manual effort to unify disparate object detection datasets.
Zero-shot classification and detection reasons about novel
object categories outside the training set [1,8]. This is often
realized by representing a novel class by a semantic embed-
ding [25] or auxiliary attribute annotations [7]. In zero-shot
detection, Bansal et al. [1] proposed a statically assigned
background model to avoid novel classes being detected
as background. Rahman et al. [28] used test-time training
to progressively generate new class labels based on word
embeddings. Li et al. [21] leveraged external text descrip-
tions for novel objects. Our program is complementary: we
aim to build a sufficiently large label space by merging di-
verse datasets during training, such that the trained detector
transfers well across domains even without machinery such
as word embeddings or attributes. Such machinery can be
added, if desired, to further expand our model’s vocabulary.

3. Preliminaries

Object detection aims to predict a location b; € R* and
a class-wise detection score d; € RI*I for each object i in
image I. The detection score describes the confidence that a
bounding box belongs to an object with label ¢ € L, where
L is the set of all classes (label space) of the dataset D.

Many existing works on object detection focus on the
COCO dataset [22], which contains balanced annotations
for 80 common object classes. This class balance simplifies
training and yields good generalization. Training an object
detector on COCO follows a simple recipe: Minimize a loss
¢, usually box-level log-likelihood, over an sampled image
I and its corresponding annotated bounding boxes annota-
tions B from the dataset D:

minE; 5 p [6(/\4(&@)3)] . 1)

Here, B contains class-specific box annotations. The loss
£ operates on sets of outputs and annotations, and matches
them using an overlap criterion.

Let’s now consider training a detector on multiple
datasets Di,Ds,..., each with their own label space
Ly, Lo, . ... Anatural way to train on multiple datasets is to
simply combine all annotations of all datasets into a much
larger dataset D = D; U Dy U ..., and merge their label
spaces L = Ly ULy U. ... Labels that repeat across datasets
are merged. We then optimize the same loss with more data:

MinE; g ooy [(MTO).B)] . @

This has shown promise on smaller, evenly distributed
datasets [6, 40, 41]. It has the advantage that shared



classes between the datasets train on a larger set of annota-
tions. However, modern large-scale detection datasets fea-
ture more natural class distributions that are imbalanced.
Objects365 [33] contains 5x more images than COCO and
Openlmages [18] is 18 x larger than COCO. While the top
20% of classes in Objects365 and Openlmages contain 19 x
and 20x more images than COCO, respectively, the bot-
tom 20% classes actually have fewer images than COCO.
This imbalance in class distributions and dataset sizes all
but guarantees that a simple concatenation of datasets will
not work. In fact, not even the same loss (1) works for all
datasets. Most successful Objects365 models [9] employ
class-aware sampling [35]. Openlmages models treat rare
classes differently [38] and model the hierarchy of classes
in the loss [26].

This suggests that training a detector M}, on a dataset Dy
requires a dataset-specific loss ¢j:

No single loss generalizes to all datasets. In the next sec-
tion, we present a different view of multi-dataset training
and show how to train a model that performs well on all
datasets.

4. Training a multi-dataset detector

Our goal is to train a single detector M on K datasets
D, ..., Dk with label spaces Lq,..., Ly, and dataset-
specific training objectives {1, ..., {x. Our core insight is
that we can train a unified detector in the same way as we
train multiple dataset-specific detectors separately, as long
as we do not attempt to merge label spaces between dif-
ferent datasets. This can be considered training K dataset-
specific detectors My, ..., M in parallel, while sharing
their backbone architecture M. Each dataset-specific archi-
tecture shares all but the last layer with the common back-
bone. Each dataset uses its own classification layer at the
end. We call this a partitioned detector (Figure 2b). We
train a partitioned detector over all datasets by minimizing
the K dataset-specific losses:

minEo, [E; 5 p, [6(Mi(5:0),B)]]. @

Here, evenly sampling datasets, i.e. showing the partitioned
detector the same number of images from each dataset,
works best empirically, as we will show in Section 5.

While the partitioned detector learns to detect all classes,
it still produces different dataset-specific outputs. For
example, it predicts a COCO-person separately from an
Objects365-Person, etc. Next we show how to convert this
partitioned model into a joint detector that reasons about a
unified set of output labels L = L1 U Lo U . . ..

4.1. Learning a unified label space

Consider multiple datasets, each with its own label space
Lqi,Ly,.... Our goal is to jointly learn a common la-
bel space L for all datasets, and define a mapping be-
tween this common label space and dataset-specific labels
Tr : L — Li. Mathematically, T € {0,1}|Lk|X‘L‘ is a
Boolean linear transformation. In this work, we only con-
sider direct mappings. Each joint label ¢ € L maps to at
most one dataset-specific label ¢ € L: 7,71 < 1. Le,,
no dataset contains duplicated classes itself. Also, each
dataset-specific label matches to exactly one joint label:
Tr1 = 1. In particular, we do not hierarchically relate con-
cepts across datasets. When there are different label granu-
larities, we keep them all in our label-space, and expect to
predict all of them'.

Given a set of partitioned detector outputs
d} e RIL1l @2 e RIF2 .. for a bounding box b;, we
build a joint detection score d; by simply averaging the
outputs of common classes:
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where the division is elementwise. Figure 2c provides an
overview. Fr0m~this joint detector, we recover dataset-
specific outputs d¥ = Tid;. Our goal is to find a set of
mappings 7' = [7;" ..., Ty | and implicitly define a joint
label-space L such that the joint classifier does not degrade
in performance.

Simple baselines include hand-designed mappings 7T
and label spaces L [19,47], or language-based merging.
One issue with these techniques is that word labels are am-
biguous. Instead, we let the data speak and optimize a label
space automatically based on correlations in the firings of a
pre-trained partitioned detector on different images, which
is a proxy for perceptual similarity.

For a specific output class ¢, let L. be a loss function
that measures the quality of the merged label space d; and
its re-projections aZf compared to the original disjoint label-
space d¥ on a single box i. Let D* = [d¥,d5,...] be the
outputs of the partitioned detection head for dataset Dy,. Let
D — 2k 7, D"

T 1
T D be the reprojection. Our goal is to optimize this loss
over all detector outputs given the Boolean constraints on
our mapping

d; ®)

be the merged detection scores, and DF =

> L.(Df,DF)
ceLy
Tel=1 and T, 1<1 V.

minimize;, - Ep, + ALl (6)

subject to

The cardinality penalty A|L| encourages a small and com-
pact label space. A factorization of the loss L. over the

!'This follows the official evaluation protocol of OpenImages [18].
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Figure 2. Standard detectors (a) are trained on one dataset with a dataset-specific loss. We train a single partitioned detector (b) on multiple
datasets with shared backbone, dataset-specific outputs and loss. Finally, we unify the outputs of the partitioned detector in a common

taxonomy completely automatically (c).

output space ¢ € Lj may seem restrictive. However, it
does include the most common loss functions in detection:
score distortion and Average Precision (AP). Section 4.2
discusses the exact loss functions used in our optimization.

Objective 6 mixes combinatorial optimization over L
with a 0-1 integer program over 7. However, there is a
simple reparametrization that lends itself to efficient opti-
mization.

First, observe that the label set L simply corresponds to
the number of columns in 7. Furthermore, we merge at
most one label per dataset 77;'—1 < 1. Hence, for each
dataset Dy a column Ty (c) € Ty takes one of |Ly| + 1
values: T = {0,11,1,...}, where 1, € {0, 1}/F«l
is an indicator vector of the i-th element. Each column
T(c) € T then only chooses from a small set of poten-
tial values T = T; x Ty X ..., where X represents the
Cartesian product. Instead of optimizing over the label set
L and transformation 7 directly, we instead use combinato-
rial optimization over the potential column values of ¢ € T.
Let 2 € {0,1} be the indicator of combination ¢t € T.
r¢ = 1 means we apply the class combination specified
by ¢, and otherwise not. In this formulation, the constraint
Ti1 = 1V, translates to ZteT\t(c)=1 x4 = 1 for all dataset-
specific labels c. Furthermore, the objective of the optimiza-
tion simplifies to

> a4 Ep,

teT

>

c€Ly|t(c)=1
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Crucially, the merge cost ¢; can be precomputed for any
subset of labels ¢. This leads to a compact integer linear
programming formulation of objective 6:

minimize, th (et + )
teT
subject to Z Ty =1 Ve ®)
teT|t. =

For two datasets, the above objective is equivalent to a
weighted bipartite matching. For a higher number of

datasets, it reduces to weighted graph matching and is NP-
hard, but is practically solvable with integer linear program-
ming [23].

One drawback of the combinatorial reformulation is that
the set of potential combinations T grows exponentially in
the datasets used: |T| = O(|L1||La||Ls3|...). However,
most merges ¢ € T are bad and incur a large merge cost c;.
The supplementary material presents a linear-time greedy
enumeration algorithm for low-cost merges, with a prun-
ing hyper-parameter 7. Considering only low-cost matches,
standard integer linear programming solvers find an opti-
mal solution within seconds for all label spaces we tried,
even for |L| > 600 and up to 6 datasets.

4.2. Loss functions

The loss function in our constrained objective 6 is quite
general and captures a wide range of commonly used losses.
We highlight two: an unsupervised objective based on the
distortion between partitioned and unified outputs, and Av-
erage Precision (AP) on a validation set.

Distortion measures the difference in detection scores be-
tween partitioned and unified detectors:

. . N2

L& (Dk, D¥) = (Dk - DF) ©)
A drawback of this distortion measure is that it does not
take task performance into consideration when optimizing
the joint label space.
Average Precision. Given a reprojected dataset-specific
output D’C“ we can measure the average precision APC(E’CC)
of each output class c on the validation set of Dy. Our loss
measures the improvement in AP:

£27(DE. DY) = 2 (APU(DE) — APL(DY) . (10)
The AP computation is computationally quite expensive.
We will provide an optimized joint evaluation in our code.
These two loss functions allow us to train a partitioned
detector and merge its output space after training, either
maximizing the original evaluation metric (AP) or minimiz-

ing the change incurred by the unification.



5. Experiments

Our goal is to facilitate the training of a single model

that performs well across datasets. In this section, we first
introduce our dataset setup and implementation details. In
Section 5.1, we analyze our key design choices for a par-
titioned detector baseline. In Section 5.2, we evaluate our
unified detector and our unified label space learning algo-
rithm. We further evaluate the unified detector in new test
datasets in a cross-dataset evaluation (Section 5.3) without
any training on the test domain.
Datasets. Our main training datasets are adopted from
the Robust Vision Challenge (RVC)’. These are four
large datasets for object detection: COCO [22], Openlm-
ages [18], Objects365 [33], and optionally Mapillary [24].
To evaluate the generalization ability of the models, we
follow MSeg [19] to set up a ross-dataset evaluation pro-
tocol: we evaluate models on new test dataset without
training on them. Specifically, we test on VIPER [32],
Cityscapes [3], ScanNet [4], WildDash [44], KITTT [11],
Pascal VOC [6], and CrowdHuman [34]. A detailed de-
scription of all datasets is contained in the supplement. In
our main evaluation, we use large and general datasets:
COCO, Objects365, and Openlmages. Mapillary is rela-
tively small and is specific to traffic scenes; we only add it
for the RVC and cross-dataset experiments.

For each dataset, we use its official evaluation metric:

for COCO, Objects365, and Mapillary, we use mAP at loU
thresholds 0.5 to 0.95. For Openlmages, we use the offi-
cial modified mAP@0.5 that excludes unlabeled classes and
enforces hierarchical labels [18]. For the small datasets in
cross-dataset evaluation, we use mAP at IoU threshold 0.5
for consistency with Pascal VOC [6].
Implementation details. We use the CascadeRCNN detec-
tor [2] with a shared region proposal network (RPN) across
datasets. We evaluate two models in our experiments: a
partitioned detector (i.e., detector with dataset-specific out-
put heads) and a unified detector. For the partitioned de-
tector, the last classification layers of all cascade stages are
split between datasets. The unified detector uses CascadeR-
CNN [2] as is.

Our implementation is based on Detectron2 [41]. We
adopt most of the default hyper-parameters for training. We
use the standard data augmentation, including random flip
and scaling of the short edge in the range [640, 800]. We use
SGD with base learning rate 0.01 and batch size 16 over
8 GPUs. We use ResNet50 [15] as the backbone in our
controlled experiments unless specified otherwise. We use
a 2x training schedule (180k iterations with learning rate
dropped at the 120k and 160k iterations) [41] in most exper-
iments unless specified otherwise, regardless of the training
data size.

Zhttp://www.robustvision.net

COCO 0365 Olmg mean

Simple merge [40] 342 14.6 50.8 33.2
w/ uniform dataset sampling 41.1 16.5 46.0 34.5
w/ class-aware sampling 353 18.5 61.8 38.5
w/ dataset+class-aware sampling 41.8 20.3 60.0 40.6
Partitioned detector (ours) 41.8 20.6 62.7 41.7

Table 1. Effectiveness of our multi-dataset training strategies.
We start with a simple merging of datsets [40], then add a uniform
sampling of images between different training datasets (second
row), class-aware sampling within Objects365 and Openlmages
(third row), and both sampling strategies (fourth row). Our parti-
tioned detector combines these sampling strategies with a dataset-
specific loss (last row).

5.1. Multi-dataset detection

We first evaluate the partitioned detector. We use dataset-
specific outputs and do not merge classes between different
datasets. During evaluation, we assume the target dataset
is known and only look at the corresponding output head.
As discussed in Section 4, our baseline highlights two basic
components: uniform sampling of images between datasets
and dataset-specific training objective. For these experi-
ments we distinguish between modifications of the objec-
tive that merely sample data differently within each dataset
(e.g. class-aware sampling), and changes to the loss func-
tions (e.g. hierarchical losses).

We start from the baseline of [40, 41]. They simply
collect all data from all datasets and train with a common
loss. As is shown in Table 1, this biases the model to large
datasets (Openlmages) and yields low performance for rela-
tively small datasets (COCQ). Sampling datasets uniformly
(second row) trades the performance on smaller datasets
with large datasets, and overall improves performance. On
the other hand, both Openlmages and Objects365 are long-
tailed and best train with advanced inter-dataset sampling
strategy [26, 35], namely class-aware sampling. Class-
aware sampling significantly improves accuracy on Open-
Images and Objects365. Combining the uniform dataset
sampling and the intra-dataset class-aware sampling gives
a further boost. Finally, Openlmages [18] requires predict-
ing a label hierarchy. For example, it requires predicting
“vehicle” and “car” for all cars. This breaks the default
cross-entropy loss that assumes exclusive class labels per
object. We instead use a dedicated hierarchy-aware sigmoid
cross-entropy loss for Openlmages [18]. Specifically, for an
annotated class label in Openlmages, we set all its parent
classes as positives and ignore the losses over its descen-
dant classes. Our partitioned detector combines both sam-
pling strategies and the dataset-specific loss. The hierarchy-
aware loss yields a significant +2.7mAP improvement on
Openlmages alone, and does not degrades other datasets.
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Figure 3. Sampled results of the learned unified label space. We show example differences between an expert-designed label space
provided as part of the Robust Vision Challenge (top of each row, blue) and our learned label space (bottom of each row, pink). Our learned
label space captures detailed visual differences. Zoom in for details.

Dateset-specific vs. partitioned detectors. In our par-
titioned detector, training on multiple datasets resembles
training separate individual models but with a shared de-
tector. Table 2 compares training a partitioned detector on
all datasets with dataset-specific models. We compare de-
tectors under different training schedules (nx the COCO
default schedule). Each of the three dataset-specific mod-
els sees the same number of gradient updates as our parti-
tioned detector. In a 2 training schedule (180k iterations),
single-dataset models generally perform better than a par-
titioned model, as each dataset is only trained for a %x
schedule in the partitioned model. At a 6x schedule, the
partitioned detector starts to match dataset-specific models,
and outperforms 2 x dataset-specific models under the same
total iterations. In a 8x schedule, all models converge. The
partitioned detector surpasses the single-dataset model on
COCO, and matches Openlmages and Objects365 models.

5.2. Unified multi-dataset detection

Next, we evaluate different ways to unify the label space.
Unified label space We run our label space learning algo-
rithm from Section 4.1 based on the output of a partitioned
detector with a ResNeSt backbone [46] trained on COCO,
Objects365, and Openlmages, with a total of 945 disjoint

classes. The hyperparameters are A = 0.5 and 7 = 0.25.
The optimization ends up with a unified label space with
cardinality |L| = 701. we compare our automated data-
driven unification to human and language-based baselines.
We use the official manually-crafted RVC taxonomy as the
human expert baseline”.

Over two-thirds of our learned label space agrees with
the human expert. Figure 3 highlights some of the dif-
ferences. Our unification successfully groups similar con-
cepts with different descriptions (“Cow” and “Cattle”), and
is not distracted by spurious linguistic matches (“American
football” and “football”). Interestingly, the learned label
space splits the “oven” classes from COCO, Objects365,
and Openlmages, even though they share the same word.
A visual examination reveals that they are visually dissim-
ilar due to different underlying definitions of the “oven”
concept in the different datasets: COCO ovens include the
cooktop, Openlmages ovens include the control panel, and
Objects365 ovens are just the front door. Our data-driven
taxonomy reconciliation is able to detect such distinctions,
which are missed by word-level approaches.

3https ://github.com/ozendelait/rvc_devkit/blob/master/
objdet/obj_det_mapping.csv

2x 6% 8%
COCO Objects365 OImg. COCO Objects365 OImg. COCO Objects365 Olmg.
Partitioned detector 41.8 20.6 62.7 44.6 23.6 64.8 455 24.6 66.0
COCO 41.5 - - 425 - - 42.5 - -
Objects365 - 23.8 - - 25.0 - - 24.9 -
Openlmages - - 64.6 - - 65.4 - - 65.7

Table 2. Dateset-specific vs partitioned detectors. We show validation mAP of our partitioned model and the three dataset-specific
models under different training schedules. The performance of a partitioned model matches dataset-specific models on long schedules.
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|L| COCO 0365 Olmg. mean

GloVe embedding 696 41.6+000 20.3+0.12 62.44006 41.4 4005
Learned, distortion 682 41.6-015 20.7+00s 62.6-£00s 41.7+0.09
Learned, AP (OUI'S) 701 41.9-+010 20.8-+0.10 63.0+021 41.9+002

659 41.5i0.06 20.7i0.06 62.6i0.06 41.6i0.04

Table 3. Evaluation of unified label spaces. We show label space
size (| L|) and mAP on the validation sets of the training domains.
We compare to a language-based baseline (GloVe) and a manual
unification by a human expert. Each model is a ResNet50 Cas-
cadeRCNN trained in a 2 X schedule. We show the mean and stan-
dard deviation based on 3 repeated runs. Our learned label space
works better than the language and the human counterparts.

Expert human

AT |L|] COCO 0365 Oimg. mean

0.1 025 700 419 206 629 4138
0.5* 0.25* 701 419 208 63.0 419
1.0 025 703 419 209 63.0 419
05 02 668 41.6  20.7 629 417
05 03 728 41.8 209 629 419

Table 4. Hyper-parameter choices. We change A and 7 of the
label space learning algorithm. We show the size of the resulting
label space and the mAP on 3 datasets. *: the default option. The
pruning threshold 7 impacts the label space size, but not mAP.

We next quantitatively compare our learned label space

with alternatives. For each label space, we retrain a multi-
dataset detector with that label space. During training, as
with our partitioned model, we only apply training losses
to the classes that are annotated in the source dataset. We
compare our learned label space to a “best effort” human
baseline and a language-based baseline. For the language-
based baseline, we replace the cost measurement defined
in Section 4.2 with the cosine distance between the GloVe
word embeddings [27], and run the same integer linear pro-
gram. Table 3 shows the results. We repeat the training for
three runs with different random seeds and report the mean
and standard deviation. The four label spaces agree on most
classes and the overall mAP is thus close. Our automatically
constructed label space consistently outperforms the human
expert baseline, with a healthy 0.3 mAP margin on average.
The improvement appears statistically stable under multi-
ple training runs. Notably, the relative improvement of our
model over the expert is larger than the expert’s improve-
ment over the language-based baseline.
Hyper-parameter choices. Table 4 ablates the hyper-
parameters A and 7 of the label space learning algorithm
(Section 4.1). Our algorithm is robust to the cardinality
penalty factor A\. Varying the cardinality penalty A from
0.1 to 1.0 only affects the size of the label space by 3. The
pruning threshold 7 has a larger impact on the label space
size, but not the final performance. We use A = 0.5 and
7 = 0.25 for a good balance between the label space size
and overage performance.

COCO 0365 OImg. mean

Unified (naive merge) 444  23.6 653 444
Unified (retrained) 454 244  66.0 453

Partitioned (oracle)  45.5 246 660 454
Ensemble (oracle) 42.5 249 657 444

Table 5. Unified vs. partitioned detectors. We show vali-
dation mAP on training domains for a unified detector directly
from merging partitioned detector weights (top), the same detec-
tor retrained on the joint taxonomy (second), a partitioned detec-
tor knowing the target domain (thrid), and an ensemble of three
dataset-specific detectors (bottom). The bottom two rows require
a known test dataset source and the top two rows do not. All mod-
els use a ResNet-50 CascadeRCNN trained in an 8 x schedule.

Unified vs. partitioned detectors. We next compare
unified detectors with and without retraining using the
joint taxonomy, a partitioned detector, and an ensemble of
dataset-specific detectors. The partitioned detector and the
ensemble need to know the target domain at test time, while
the unified models do not. This means that the unified mod-
els can be deployed without any modification in new do-
mains, while the alternatives must know which domain they
are in. Table 5 shows the results. A partitioned detector out-
performs a dataset-specific ensemble under the same con-
ditions (Table 5 bottom), especially on the “small” COCO
dataset. An offline unification loses some accuracy, but this
is regained when retraining the model under the unified tax-
onomy (Table 5 top). Crucially, the unified models do not
need to know what domain they are in at test time.

5.3. Cross-dataset evaluation

We evaluate the generalization ability of object detec-
tors by evaluating them in new test domains not seen during
training. In this setting, we do not assume to know the test
classes ahead of time. To allow for a fair and unbiased eval-
uation, we use a simple language-based matching to find
the test-to-train label correspondence. Specifically, we cal-
culate the GloVe [27] word embedding distances between
each test label and the training label, and match the test la-
bel to its closest training label. If multiple training labels
match, we break ties in a fixed order: COCO, Objects365,
Openlmages, and Mapillary*.

We compare both our multi-dataset models (partitioned
or unified) to single-dataset models. We use all four RVC
training sets to train the multi-dataset models. Specifically,
we start from a 6 x schedule model trained on the three large
datasets, and add Mapillary [24] in a 2% fine-tuning sched-
ule with 10x smaller learning rate. We compare all models
under the same schedule °, hyperparameters, and detection

4We also tried evaluating under different orders, and find the listed or-
der to perform best for all methods.

Sexcept for the Mapillary model, for which a 2x schedule performs
better than longer schedules.



# VOC VIPER Cityscapes ScanNet WildDash CrowdH. KITTI mean
I COCO 80.0 139 39.6 17.4 259 73.9 305 402
2 Objects365 719  20.7 434 249 27.6 71.8 322 418
3 Openlmages 644 104 29.8 242 20.3 66.7 21.8 339
4 Mapillary 114 152 44.7 0.0 234 49.3 37.8  26.0
5 Ensemble 79.7 16.8 46.0 30.1 32.1 73.9 343 447
6 Partitioned 831 209 48.4 32.2 344 70.0 389 468
7 Unified (retrained) 82.9  21.3 52.6 29.8 34.7 70.7 399 473
8 Dataset-specific 80.3 31.8 54.6 44.7 - 80.0 - -

Table 6. Cross-dataset evaluation. We show mAP50 on the validation sets of datasets that were not seen during training. We compare
models trained on each single training dataset (Rows 1-4), the ensemble of the 4 single dataset models (row 5), a partitioned detector (row
6), and the unified detector with our learned unified label space (row 7). For reference, we show the “oracle” models that are trained on
the training set of each test dataset on row 8. The columns refer to test datasets. Each model is a ResNet-50 CascadeRCNN trained until

converge or at most an 8 X schedule.

models. In addition, we also compare to the ensemble of the
four single-dataset models trained analogously to the parti-
tioned model. For reference, we also show the performance
of detectors trained on the training set of each test dataset.
This serves as an oracle “upper bound” that has seen the test
domain and label space. Note that KITTI and WildDash are
small and do not have a validation set. We thus evaluate on
the training set and do not provide the oracle model.

Table 6 shows the results. The COCO model exhibits
reasonable performances of some test datasets, such as Pas-
cal VOC and CrowdHuman. However, its performance is
less than satisfactory on datasets such as ScanNet, whose
label space differs significantly from COCO. Training on
the more diverse Objects365 dataset yields higher accuracy
in the indoor domain, but loses ground on VOC and Crowd-
Human, which are more similar to COCO. Training on all
datasets, either with a partitioned detector (row 6) or a uni-
fied one (row 7) yields generally good performance on all
test datasets. Notably, both our detectors perform better
than the ensemble of the 4 single dataset models (row 5),
showing that the multi-dataset models learned more general
features. On Pascal VOC, both multi-dataset models out-
perform the VOC-trained upper-bound without seeing VOC
training images. Our unified model outperforms the parti-
tioned detector overall and operates on a unified taxonomy.

5.4. Scale up to large models

Next, we scale up our unified detector with a large back-
bone to develop a ready-to-deploy object detector. We
used a ResNeSt200 backbone [46] and followed the same
training procedure as in Section 5.2 with an 8x schedule.
The training took ~16 days on a server with 8 Quadro
RTX 6000 GPUs. Table 7 shows our single model achives
52.9 mAP on COCO, 60.6 mAP on Openlmages, and
33.7 mAP on Objects 365. We compare to state-of-the-
art results with comparable baselines on each individual
dataset. On COCO, our result improves the COCO-only
ResNeSt200 [46] model, by 2 mAP with the same detector,

COCO OImg. Mapillary 0365

Ours 529 60.6/56.8 25.3 33.7
ResNeSt200 [46] 50.9 - - -
TSD [36] - 60.5/- - -
CACascade RCNN [9] - - - 31.6

Table 7. Scale up to large models. We show results on COCO
test-challenge set, Openlmages challenge 2019 test sets (public
test set/ private test set), Mapillary test set, and Objects365 vali-
dation set. Top row: our detector with a ResNeSt200 backbone.
2-4 rows: state-of-the-art single-dataset models with comparable
backbones (without model ensembles or test-time augmentation).

thanks to our ability to train with more data. On Openlm-
ages, our result matches the best single model in the Open-
Images 2019 Challenge, TSD [36], with a comparable back-
bone (SENet154-DCN [16] of TSD). On Objects365, we
outperform the 2019 Object365 detection challenge win-
ner [9] by 2 mAP points.

6. Conclusion

We presented a simple recipe for training a single ob-

ject detector across multiple datasets and a formulation to
automatically construct a unified taxonomy. Our resulting
detector can be deployed in new domains without additional
knowledge. We hope our model makes object detection
more accessible to general users.
Limitations. Our label space learning algorithm currently
uses only visual cues, integrating language cues as auxiliary
information may further improve the performance. Our for-
mulation currently does not consider label hierarchies, and
the resulting label space treats COCO person and Openlm-
ages boy as two independent classes. We leave incorporat-
ing label hierarchies as exciting future work.
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