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Abstract
We introduce Habitat 2.0 (H2.0), a simulation platform for training virtual robots in interactive 3D
environments and complex physics-enabled scenarios. We make comprehensive contributions to all
levels of the embodied AI stack – data, simulation, and benchmark tasks. Specifically, we present:
(i) ReplicaCAD: an artist-authored, annotated, reconfigurable 3D dataset of apartments (matching
real spaces) with articulated objects (e.g. cabinets and drawers that can open/close); (ii) H2.0: a
high-performance physics-enabled 3D simulator with speeds exceeding 25,000 simulation steps
per second (850⇥ real-time) on an 8-GPU node, representing 100⇥ speed-ups over prior work;
and, (iii) Home Assistant Benchmark (HAB): a suite of common tasks for assistive robots (tidy
the house, stock groceries, set the table) that test a range of mobile manipulation capabilities.
These large-scale engineering contributions allow us to systematically compare deep reinforcement
learning (RL) at scale and classical sense-plan-act (SPA) pipelines in long-horizon structured tasks,
with an emphasis on generalization to new objects, receptacles, and layouts. We find that (1) flat
RL policies struggle on HAB compared to hierarchical ones; (2) a hierarchy with independent
skills suffers from ‘hand-off problems’, and (3) SPA pipelines are more brittle than RL policies.

Figure 1: A mobile manipulator (Fetch robot) simulated in Habitat 2.0 performing rearrangement tasks in a
ReplicaCAD apartment – (left) opening a drawer before picking up an item from it, and (right) placing an object
into the bowl after navigating to the table. Best viewed in motion at https://sites.google.com/view/habitat2.

1 Introduction
Consider a home assistant robot illustrated in Fig. 1 – a mobile manipulator (Fetch [1]) performing
tasks like stocking groceries into the fridge, clearing the table and putting dishes into the dishwasher,
fetching objects on command and putting them back, etc. Developing such embodied intelligent
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systems is a goal of deep scientific and societal value. Training and testing such robots in hardware
directly is slow, expensive, and difficult to reproduce. We aim to advance the entire ‘research stack’ for
developing such embodied agents in simulation – (1) data: curating house-scale interactive 3D assets
(e.g. kitchens with cabinets, drawers, fridges that can open/close) that support studying generalization
to unseen objects, receptacles, and home layouts, (2) simulation: developing the next generation of
high-performance photo-realistic 3D simulators that support rich interactive environments, (3) tasks:
setting up challenging representative benchmarks to enable reproducible comparisons and systematic
tracking of progress over the years. To support this long-term research agenda, we present:

• ReplicaCAD: an artist-authored fully-interactive recreation of ‘FRL-apartment’ spaces from the
Replica dataset [2] consisting of 111 unique layouts of a single apartment background with 92
authored objects including dynamic parameters, semantic class and surface annotations, and collision
proxies, representing 900+ person-hours of professional 3D artist effort. ReplicaCAD (illustrated
in figures and videos) was created with consent, compensation to artists, and will be shared for free
under a Creative Commons license for non-commercial use with attribution (CC-BY-NC)

• Habitat 2.0 (H2.0): a high-performance physics-enabled 3D simulator built upon the open-source
Habitat-Sim [3] and Bullet physics [4] projects H2.0 supports piecewise-rigid objects (e.g. door,
cabinets, and drawers that can rotate about an axis or slide), articulated robots (e.g. mobile manipula-
tors like Fetch [1], fixed-base arms like Franka [5], quadrupeds like AlienGo [6]), and rigid-body
mechanics (kinematics and dynamics); and represents approximately 2 years of development effort.
The design philosophy of H2.0 is to prioritize performance (or speed) over the breadth of simulation
capabilities. H2.0 by design and choice does not support non-rigid dynamics (deformables, fluids,
films, cloths, ropes), physical state transformations (cutting, drilling, welding, melting), audio or
tactile sensing – many of which are capabilities provided by other simulators [7–9]. The benefit of
this focus is that we were able to design and optimize H2.0 to be exceedingly fast – simulating a
Fetch robot interacting in ReplicaCAD scenes at 1400 steps per second (SPS), where each ‘step’
involves rendering 1 RGBD observation (128⇥128 pixels) and simulating rigid-body dynamics for
1/30 sec. Thus, 30 SPS would be considered ‘real time’ and 1200 SPS is 40⇥ real-time. H2.0 also
scales well – achieving 8,200 SPS (273⇥ real-time) multi-process on a single GPU and 26,000 SPS
(850⇥ real-time) on a single node with 8 GPUs. For reference, existing simulators typically achieve
10-400 SPS (see Tab. 1). These 100⇥ simulation-speedups correspond to cutting experimentation
time from 6 months to under 2 days, unlocking experiments that were hitherto infeasible, allowing us
to answer questions that were hitherto unanswerable. As we will show, they also directly translate to
training-time speed-up and accuracy improvements from training models (for object rearrangement
tasks) with more experience.

• Home Assistant Benchmark (HAB): a suite of common tasks for assistive robots (TidyHouse,
PrepareGroceries, SetTable) that are specific instantiations of the generalized rearrangement
problem [10]. Specifically, a mobile manipulator (Fetch) is asked to rearrange a list of objects from
initial to desired positions – picking/placing objects from receptacles (counter, sink, sofa, table),
opening/closing containers (drawers, fridges) as necessary. We use the GeometricGoal specification
prescribed by Batra et al. [10] – i.e., initial and desired 3D (center-of-mass) position of each target
object i to be rearranged
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. The choice of GeometricGoal is deliberate – we aim to create

the PointNav [11] equivalent for mobile manipulators. As witnessed in the navigation literature,
such a task becomes the testbed for exploring ideas [12–20] and a starting point for more semantic
tasks [21–23]. The robot operates entirely from onboard sensing – head- and arm-mounted RGB-D
cameras, proprioceptive joint-position sensors (for the arm), and egomotion sensors (for the mobile
base) – and may not access any privileged state information (no prebuilt maps, no 3D models of rooms
or objects, no physically-implausible sensors providing knowledge of mass, friction, articulation of
containers, etc.). Notice that an object’s center-of-mass provides no information about its size or
orientation. The target object may be located inside a container (drawer, fridge), on top of supporting
surfaces (shelf, table, sofa) of varying heights and sizes, and surrounded by clutter; all of which must
be sensed and maneuvered. Receptacles like drawers and fridge start closed, meaning that the agent
must open and close articulated objects to succeed. An episode is considered successful if all target
objects are placed within 15cm of their desired positions (without considering orientation). The robot
uses continuous end-effector control for the arm and velocity control for the base. We deliberately
focus on gross motor control (the base and arm) and not fine motor control (the gripper), following the
‘abstracted grasping’ recommendations from [10]. Specifically, once the end-effector reaches 15cm
(or closer) to an object, a discrete grasp action becomes available that, if executed, snaps the object
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Rendering Physics Scene Speed

Library Supports Library Supports Complexity (steps/sec)

Habitat [3] Magnum 3D scans none continuous navigation (navmesh) building-scale 3,000
AI2-THOR [7] Unity Unity Unity rigid dynamics, animated interactions room-scale 30 - 60
ManipulaTHOR [34] Unity Unity Unity AI2-THOR + manipulation room-scale 30 - 40
ThreeDWorld [8] Unity Unity Unity (PhysX) + FLEX rigid + particle dynamics room/house-scale 5 - 168
SAPIEN [35] OpenGL/OptiX configurable PhysX rigid/articulated dynamics object-level 200 - 400†

RLBench [36] CoppeliaSim (OpenGL) Gouraud shading CoppeliaSim (Bullet/ODE) rigid/articulated dynamics table-top 1 - 60†

iGibson [37] PyRender PBR shading PyBullet rigid/articulated dynamics house-scale 100

Habitat 2.0 (H2.0) Magnum 3D scans + PBR shading Bullet rigid/articulated dynamics + navmesh house-scale 1,400

Table 1: High-level comparison of different simulators. Note: Speeds were taken directly from respective
publications or obtained via direct personal correspondence with the authors when not publicly available
(indicated by †). Benchmarking was conducted by different teams on different hardware with different underlying
3D assets simulating different capabilities. Thus, these should be considered qualitative comparisons representing
what a user expects to experience on a single instance of the simulator (no parallelization).

into its parallel-jaw gripper2. We conduct a systematic study of two distinct techniques – monolithic
‘sensors-to-actions’ policies trained with reinforcement learning (RL) at scale, and classical sense-
plan-act pipelines (SPA) [27] – with a particular emphasis on systematic generalization to new objects,
receptacles, apartment layouts (not just robot starting pose). Our findings include:

1. Flat vs hierarchical: Monolithic RL policies successfully learn diverse individual skills
(pick/place, navigate, open/close drawer). However, crafting a combined reward function and
learning scheme that elicits chaining of such skills for the long-horizon HAB tasks remained out
of our reach. We saw significantly stronger results with a hierarchical approach that assumes
knowledge of a perfect task planner (via STRIPS [28]) to break it down into a sequence of skills.

2. Hierarchy cuts both ways: However, a hierarchy with independent skills suffers from ‘hand-off
problems’ where a succeeding skill isn’t set up for success by the preceding one – e.g., navigating
to a bad location for a subsequent manipulation, only partially opening a drawer to grab an object
inside, or knocking an object out of reach that is later needed.

3. Brittleness of SensePlanAct: For simple skills, SPA performs just as well as monolithic RL.
However, it is significantly more brittle since it needs to map all obstacles in the workspace for
planning. More complex settings involving clutter, challenging receptacles, and imperfect navigation
can poorly frame the target object and obstacles in the robot’s camera, leading to incorrect plans.

We hope our work will serve as a benchmark for many years to come. H2.0 is free, open-sourced
under the MIT license, and under active development. We believe it will reduce the community’s
reliance on commercial lock-ins [29, 30] and non-photorealistic simulation engines [31–33]. Setup
and usage instructions for Habitat 2.0 are at https://github.com/facebookresearch/habitat-lab.

2 Related Work
What is a simulator? Abstractly speaking, a simulator has two components: (1) a physics engine that
evolves the world state s over time st ! st+1

3, and (2) a renderer that generates sensor observations
o from states: st ! ot. The boundary between the two is often blurred as a matter of convenience.
Many physics engines implement minimal renderers to visualize results, and some rendering engines
include integrations with a physics engine. PyBullet [38], MuJoCo [29], DART [39], ODE [40],
PhysX/FleX [41, 42], and Chrono [43] are primarily physics engines with some level of rendering,
while Magnum [44], ORRB [45], and PyRender [46] are primarily renderers. Game engines like
Unity [47] and Unreal [48] provide tightly coupled integration of physics and rendering. Some
simulators [3, 49, 50] involve largely static environments – the agent can move but not change the
state of the environment (e.g. open cabinets). Thus, they are heavily invested in rendering with fairly
lightweight physics (e.g. collision checking with the agent approximated as a cylinder).

How are interactive simulators built today? Either by relying on game engines [7, 51, 52] or via
a ‘homebrew’ integration of existing rendering and physics libraries [8, 35, 37, 53]. Both options
have problems. Game engines tend to be optimized for human needs (high image-resolution, ⇠60
FPS, persistent display) not for AI’s needs [54] (10k+ FPS, low-res, ‘headless’ deployment on a
cluster). Reliance on them leads to limited control over the performance characteristics. On the other

2To be clear, H2.0 fully supports the rigid-body mechanics of grasping; the abstract grasping is a task-level
simplification that can be trivially undone. Grasping, in-hand manipulation, and goal-directed releasing of a
grasp are all challenging open research problems [24–26] that we believe must further mature in the fixed-based
close-range setting before being integrated into a long-horizon home-scale rearrangement problem.

3Alternatively, (st, at) ! st+1 in the presence of an agent taking action at

3

https://github.com/facebookresearch/habitat-lab


hand, they represent decades of knowledge and engineering effort whose value cannot be discounted.
This is perhaps why ‘homebrew’ efforts involve a high-level (typically Python-based) integration of
existing libraries. Unfortunately but understandably, this results in simulation speeds of 10-100s of
SPS, which is orders of magnitude sub-optimal. H2.0 involved a deep low-level (C++) integration of
rendering (via Magnum [44]) and physics (via Bullet [4]), enabling precise control of scheduling and
task-aware optimizations, resulting in substantial performance improvements.

Object rearrangement. Task and motion planning [55] and mobile manipulation have a long history
in AI and robotics, whose full survey is beyond the scope of this document. Batra et al. [10]
provide a good summary of historical background of rearrangement, a review of recent efforts, a
general framework, and a set of recommendations that we adopt here. Broadly speaking, our work
is distinguished from prior literature by a combination of the emphasis on visual perception, lack
of access to state, systematic generalization, and the experimental setup of visually-complex and
ecologically-realistic home-scale environments. We now situate w.r.t. a few recent efforts. [56] study
replanning in the presence of partial observability but do not consider mobile manipulation. [53]
tackle ‘interactive navigation’, where the robot can bump into and push objects during navigation,
but does not have an arm. Some works [57–60] abstract away gross motor control entirely by
using symbolic interaction capabilities (e.g. a ‘pick up X’ action) or a ‘magic pointer’ [10]. We use
abstracted grasping but not abstract manipulation; in our tasks agents use a continuous action space for
the arm and base. [20] develop hierarchical methods for mobile manipulation, combining RL policies
for goal-generation and motion-planning for executing them. We use the opposite combination of
planning and learning – using task-planning to generate goals and RL for skills. ManipulaTHOR [34]
is perhaps the most similar to our work. Their task involves moving a single object from one location
to another, excluding interactions with container objects (opening a drawer or fridge to place an object
inside). We will see that rearrangement of multiple objects while handling containment is a much
more challenging task. Interestingly, our experiments show evidence for the opposite conclusion
reached therein – monolithic end-to-end trained RL methods are outperformed by a modular approach
that is trained stage-wise to handle long-horizon rearrangement tasks.

3 Replica to ReplicaCAD: Creating Interactive Digital Twins of Real Spaces
We begin by describing our dataset that provides a rich set of indoor layouts for studying rearrange-
ment tasks. Our starting point was Replica [2], a dataset of highly photo-realistic 3D reconstructions
at room and building scale. Unfortunately, static 3D scans are unsuitable for studying rearrangement
tasks because objects in a static scan cannot be moved or manipulated.

Figure 2: Left: The original Replica scene. Right: the artist recreated scene ReplicaCAD. All objects (furniture,
mugs) including articulated ones (drawers, fridge) in ReplicaCAD are fully physically simulated and interactive.

Asset Creation. ReplicaCAD is an artist-created, fully-interactive recreation of ‘FRL-apartment’
spaces from the Replica dataset [2]. First, a team of 3D artists authored individual 3D models
(geometry, textures, and material specifications) to faithfully recreate nearly all objects (furniture,
kitchen utensils, books, etc.; 92 in total) in all 6 rooms from the FRL-apartment spaces as well
as an accompanying static backdrop (floor and walls). ReplicaCAD like other efforts such as
OpenRooms [61] and Scan2cad [62] creates a version of the scene with decoupled 3D models
suited for physical simulation and interaction. Fig. 2 compares a layout of ReplicaCAD with the
original Replica scan. Next, each object was prepared for rigid-body simulation by authoring physical
parameters (mass, friction, restitution), collision proxy shapes, and semantic annotations. Several
objects (e.g. refrigerator, kitchen counter) were made ‘articulated’ through sub-part segmentation
(annotating fridge door, counter cabinet) and authoring of URDF files describing joint configurations
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(e.g. fridge door swings around a hinge) and dynamic properties (e.g. joint type and limits). For each
large furniture object (e.g. table), we annotated surface regions (e.g. table tops) and containment
volumes (e.g. drawer space) to enable programmatic placement of small objects on top of or within.

Human Layout Generation. Next, a 3D artist authored an additional 5 semantically plausible
‘macro variations’ of the scenes – producing new scene layouts consisting only of larger furniture
from the same 3D object assets. Each of these macro variations was further perturbed through 20
‘micro variations’ that re-positioned objects – e.g. swapping the locations of similarly sized tables
or a sofa and two chairs. This resulted in a total of 105 scene layouts that exhibit major and minor
semantically-meaningful variations in furniture placement and scene layout, enabling controlled
testing of generalization. Illustrations of these variations can be found in Appendix A.

Procedural Clutter Generation. To maximize the value of the human-authored assets we also
develop a pipeline that allows us to generate new clutter procedurally. Specifically, we dynamically
populate the annotated supporting surfaces (e.g. table-top, shelves in a cabinet) and containment
volumes (e.g. fridge interior, drawer spaces) with object instances from appropriate categories (e.g.,
plates, food items). These inserted objects can come from ReplicaCAD or the YCB dataset [63]. We
compute physically-stable insertions of clutter offline (i.e. letting an inserted bowl ‘settle’ on a shelf)
and then load these stable arrangements into the scene dynamically at run-time.

ReplicaCAD is fully integrated with the H2.0 and a supporting configuration file structure enables
simple import, instancing, and programmatic alternation of any of these interactive scenes. Overall,
ReplicaCAD represents 900+ person-hours of professional 3D artist effort so far (with augmentations
in progress). It was created with consent, compensation to artists, and will be shared for free
under a Creative Commons license for non-commercial use with attribution (CC-BY-NC) Further
ReplicaCAD details, statistics, and comparison to prior work are in Appendix A.

4 Habitat 2.0 (H2.0): a Lazy Simulator
H2.0’s design philosophy is that performance (or speed) is more important than the breadth of
simulation capabilities. H2.0 achieves fast physical simulations in large realistic 3D indoor scenes by
being lazy – following the principle of only simulating what is absolutely needed. We instantiate this
principle via three key ideas – localized physics and rendering (Sec. 4.1), interleaved physics and
rendering (Sec. 4.2), and simplify-and-reuse (Appendix B.1). H2.0 is built using a tight integration
of rendering from Habitat-Sim [3] and physics from the C++ Bullet library [4]. Further details, e.g.
integration with motion planning libraries, are described in Appendix B.

4.1 Localized Physics and Rendering
Realistic indoor 3D scenes can span houses with multiple rooms (kitchen, living room), hundreds of
objects (sofa, table, mug) and ‘containers’ (fridge, drawer, cabinet), and thousands of parts (fridge
shelf, cabinet door). Simulating physics for every part at all times is slow and unnecessary. We
leverage Bullet’s built-in island sleep system to minimize simulation overhead for idle objects. In
addition, we make several optimizations: (1) We employ a navigation mesh to move the robot base
kinematically (which has been show to transfer well to real the world [64]) rather than simulating
wheel-ground contact. (2) For multi-body articulated furniture, we remove static parts (e.g. the walls
and floor of a cabinet) from the Bullet multi-body and instead load these as separate static rigid
objects. This improves the sleeping behavior of the entire simulation, for example, an idle object
resting on the floor of the cabinet can sleep even while the cabinet door is moving. (3) We use the
sleeping state of objects to optimize rendering by caching and re-using scene graph transformation
matrices and frustum-culling results.

4.2 Interleaved rendering and physics

at

Agent is interacting Agent is navigating
Physics 
(CPU)

Rendering 
(GPU)

Physics (CPU)

Rendering 
(GPU)

ot st+k+1at+k ot+kst+1

Wall Clock Time

at

Physics 
(CPU)

Agent is interacting Agent is navigating
Rendering 

(GPU)Physics (CPU) Rendering 
(GPU)

ot+1 st+k+1at+k ot+k+1st+1

Sequential

Interleaved 

Figure 3: Interleaved physics and ren-
dering in H2.0.

Most physics engines (e.g. Bullet) run on the CPU, while ren-
dering (e.g. via Magnum) typically occurs on the GPU. After
our initial optimizations, we found each to take nearly equal
compute-time. This represents a glaring inefficiency – as il-
lustrated in Fig. 3, at any given time either the CPU is sitting
idle waiting for the GPU or vice-versa. Thus, interleaving them
leads to significant gains. However, this is complicated by a
sequential dependency – state transitions depend on robot ac-
tions T : (st, at) ! st+1, robot actions depend on the sensor
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observations: ⇡ : ot ! at, and observations depend on the state O : st ! ot. Thus, it ostensibly
appears that physics and rendering outputs (st+1, ot) cannot be computed in parallel from st because
computation of at cannot begin till ot is available.

We break this sequential dependency by changing the agent policy to be ⇡(at | ot�1) instead of
⇡(at | ot). Thus, our agent predicts the current action at not from the current observations ot but from
an observation from 1 timestep ago ot�1, essentially ‘living in the past and acting in the future’. This
simple change means that we can generate st+1 on the CPU at the same time as ot is being generated
on the GPU.

This strategy not only increases simulation throughput, but also offers two other fortuitous benefits –
increased biological plausibility and improved sim2real transfer potential. The former is due to closer
analogy to all sensors (biological or artificial) having a sensing latency (e.g., the human visual system
has approximately 150ms latency [65]). The latter is due to a line of prior work [66–68] showing that
introducing this latency in simulators improves the transfer of learned agents to reality.

4.3 Benchmarking

We benchmark using a Fetch robot, equipped with two RGB-D cameras (128⇥128 pixels) in Repli-
caCAD scenes under two scenarios: (1) Idle: with the robot initialized in the center of the living
room somewhat far from furniture or any other object and taking random actions, and (2) Interact:
with the robot initialized fairly close to the fridge and taking actions from a pre-computed trajectory
that results in representative interaction with objects. Each simulation step consists of 1 rendering
pass and 4 physics-steps, each simulating 1/120 sec for a total of 1/30 sec. New joint position goals are
set every 1/30 sec and a joint controller computes the joint torques to achieve the joint goals for the
current joint state every 1/120 sec. This is a fairly standard experimental configuration in robotics (with
30 FPS cameras and 120 Hz control). In this setting, a simulator operating at 30 steps per (wallclock)
second (SPS) corresponds to ‘real time’.

Benchmarking was done on machines with dual Intel Xeon Gold 6226R CPUs – 32 cores/64 threads
(32C/64T) total – and 8 NVIDIA GeForce 2080 Ti GPUs. For single-GPU benchmarking processes
are confined to 8C/16T of one CPU, simulating an 8C/16T single GPU workstation. For single-GPU
multi-process benchmarking, 16 processes were used. For multi-GPU benchmarking, 64 processes
were used with 8 processes assigned to each GPU. We used python-3.8 and gcc-9.3 for compiling
H2.0. We report average SPS over 10 runs and a 95% confidence-interval computed via standard error
of the mean. Note that 8 processes do not fully utilize a 2080 Ti and thus multi-process multi-GPU
performance may be better on machines with more CPU cores.

1 Process 1 GPU 8 GPUs

Idle Interact Idle Interact Idle Interact

H2.0 (Full) 1191 ±36 510 ±6 8186 ±47 1660 ±6 25734 ±301 7699 ±177
- render opts. 781 ±9 282 ±2 6709 ±89 1035 ±3 18844 ±285 5517 ±31
- physics opts. 271 ±3 358 ±6 2290 ±5 1606 ±6 7942 ±50 6119 ±51
- all opts. 242 ±2 224 ±3 2223 ±3 941 ±2 7192 ±55 4829 ±50

Table 2: Benchmarking H2.0 performance: simulation steps per second (SPS, higher better) over 10 runs and a
95% confidence-interval computed via standard error of the mean. We consider two scenarios: in Idle, the agent
is executing random actions but not interacting with the scene, while Interact uses a precomputed trajectory and
thus results in representative interaction with objects. To put these numbers into context, see Tab. 1.

Table 2 reports benchmarking numbers for H2.0. We make a few observations. The ablations for
H2.0 (denoted by ‘- render opts’, ‘-physics opts’, and ‘-all opts.’) show that principles followed in
our system design lead to significant performance improvements.

Our ‘Idle’ setting is similar to the benchmarking setup of iGibson [37], which reports 100 SPS. In
contrast, H2.0 single-process with all optimizations turned off is 240% faster (242 vs 100 SPS). H2.0
single-process with optimizations on is ⇠1200% faster than iGibson (1191 vs 100 SPS). The compar-
ison to iGibson is particularly illustrative since it uses the ‘same’ physics engine (PyBullet) as H2.0
(Bullet). We can clearly see the benefit of working with the low-level C++ Bullet rather than PyBullet
and the deep integration between rendering and physics. This required deep technical expertise and
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large-scale engineering over a period of 2 years. Fortunately, H2.0 will be publicly available so others
do not have to repeat this work. A direct comparison against other simulators is not feasible due to dif-
ferent capabilities, assets, hardware, and experimental settings. But a qualitative order-of-magnitude
survey is illustrative – AI2-THOR [7] achieves 60/30 SPS in idle/interact, SAPIEN [35] achieves
200/400 SPS (personal communication), TDW [8] achieves 5 SPS in interact, and RLBench [36]
achieves between 1 and 60 SPS depending on the sensor suite (personal communication). Finally,
H2.0 scales well – achieving 8,186 SPS (272⇥ real-time) multi-process on a single GPU and 25,734
SPS (850⇥ real-time) on a single node with 8 GPUs. These 100⇥ simulation-speedups correspond
to cutting experimentation time from 6-month cycle to under 2 days.

5 The Pick Task: a Base Case of Rearrangement

We first carry out systematic analyses on a relatively simple robotic manipulation task: picking up
one object from a cluttered ‘receptacle’. This forms a ‘base case’ and an instructive starting point
that we eventually expand to the more challenging Home Assistant Benchmark (HAB) (Sec. 6).
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s0

Figure 4: Fetch with head and arm cameras
picking up a bowl from the counter.

Task Definition: Pick (s0). Fig. 4 illustrates an episode
in the pick task. Our agent (a Fetch robot [1]) is spawned
close to a receptacle (a table) that holds multiple objects
(e.g. cracker box, bowl). The task for the robot is to pick
up a target object with center-of-mass coordinates s0

2 R3

(provided in robot’s coordinate system) as efficiently as
possible without excessive collisions. We study systematic
generalization to new clutter layouts on the receptacle, to
new objects, and to new receptacles.

Agent embodiment and sensing. Fetch [1] is a wheeled
base with a 7-DoF arm manipulator and a parallel-jaw
gripper, equipped with two RGBD cameras (128 ⇥ 128-
resolution 90 degree field of view) mounted on its ‘head’
and arm. The agent can sense its proprioceptive-state –
arm joint angles (7-dim), end-effector position (3-dim), and base-egomotion (6-dim, also known as
GPS+Compass in the navigation literature [3]). Note: the episodes in Pick are constructed such that
the robot does not need to move its base. Thus, the egomotion sensor does not play a role in Pick
but will be important in HAB tasks (Sec. 6).

Action space: gross motor control. The agent policy performs end-effector control at 30Hz.
Specifically, it outputs the desired change in end-effector position (�x, �y, �z), which is fed into an
inverse kinematics solver to derive desired states for all joints, which are used to set the desired
joint-motor positions, which are achieved using PD control (details in Appendix C.3). In Pick, the
base is fixed but in HAB, the agent controls the base by emitting linear and angular velocities (v, w).

Abstracted grasping. Once the robot’s end-effector reaches 15cm (or closer) to an object, a discrete
grasp action becomes available that, if executed, snaps the object closest to the end-effector into the
parallel-jaw gripper. The grasping is perfect and objects do not slide out. If an object is currently held
in the gripper, calling the grasp action releases it and the object is physically simulated as falling. This
follows the ‘abstracted grasping’ recommendations in Batra et al. [10] and is consistent with recent
work [34]. For more details on the agent setup and results for other action spaces see Appendix E.7.

Evaluation. An object is considered successfully picked if the arm returns to a known ‘resting
position’ with the target object grasped. An episode fails if the accumulated contact force experienced
by the arm/body exceeds a threshold of 5k Newtons. Further details are provided in Appendix C.2.

Methods. We compare two methods representing two distinctive approaches to this problem:
1. MonolithicRL: a ‘sensors-to-actions’ policy trained end-to-end with reinforcement learning (RL).
The visual input is encoded using a CNN, concatenated with embeddings of proprioceptive-sensing
and goal coordinates, and fed to a recurrent actor-critic network, trained with DD-PPO [12] for
100 Million steps of experience (see Appendix C.4 for details). The actor outputs three continuous
variables (change in end-effector position �x, �y, �z) and one discrete variable (grasp/release). This
baseline translates our community’s most-successful paradigm yet from navigation to manipulation.
2. SensePlanAct (SPA) pipeline: Sensing consists of constructing an accumulative 3D point-cloud
of the scene from depth sensors, which is then used for collision queries. Motion planning is
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done using Bidirectional RRT [69] in the arm joint configuration space (see Appendix D). The
controller was described in ‘Action Space’ above and is consistent with MonolithicRL. We also
create SensePlanAct-Priviledged (SPA-Priv), that uses privileged information – perfect knowledge
of scene geometry (from the simulator) and a perfect controller (arm is kinematically set to desired
joint poses). The purpose of this baseline is to provide an upper-bound on the performance of SPA.

Method Seen
Unseen

Layouts Objects Receptacles

MonolithicRL 91.7 ±1.1 86.3 ±1.4 74.7 ±1.8 52.7 ±2.0

SPA 70.2 ±1.9 72.7 ±1.8 72.7 ±1.8 60.3 ±2.0

SPA-Priv 77.0 ±1.7 80.0 ±1.6 79.2 ±1.7 60.7 ±2.0

Table 3: Pick generalization analysis: success
rates with mean and standard error on 600 episodes
(and across 3 seeds for MonolithicRL).

Systematic Generalization. With H2.0 we can
compare how learning based systems generalize com-
pared to SPA architectures. Tab. 3 shows the results
of a systematic generalization study of 4 unseen ob-
jects, 3 unseen receptacles, and 20 unseen apartment
layouts (from 1 unseen ‘macro variation’ in Replica-
CAD). Full experiment details in Appendix C.1.

MonolithicRL generalizes fairly well from seen to
unseen layouts (91.7 ! 86.3%), significantly outperforming SPA (72.7%) and even SPA-Priv
(80.0%). However, generalization to new objects is challenging (91.7 ! 74.7%) as a result of the
new visual feature distribution and new object obstacles. Generalization to new receptacles is poor
(91.7 ! 52.7%), however, as highlighted by the performance drop of SPA (and corroborated by
qualitative results), the unseen receptacles (shelf, armchair, dark table) appear to be objectively more
difficult to pick up objects from since the shelf and armchair are tight constrained areas whereas
the majority of the training receptacles, such as counters and tables, have no such constraints. (see
Figure 9). We believe the performance of MonolithicRL will naturally improve as more 3D assets
for receptacles become available; we cannot make any such claims for SPA.

We also use H2.0 to analyze sensor trade-offs at scale (100M steps of training). In Appendix E.2
we find that the Depth sensor is the most important for policy performance. Furthermore, blind
agents operating from proprioceptive-state only perform surprisingly well by learning to ‘feel its way’
towards the goal by slowly moving the arm to not incur large collision forces. However, we find that
sighted policies are more efficient, better avoid collisions, and achieve higher success as shown in
Appendix E.3. We also analyze different camera placements on the Fetch robot in Appendix E.4 and
find placing cameras on the arm to be most effective. We speculate this is due to self-occlusion from
the head camera and strong ‘perception-action coupling’ with the arm-camera. For further analysis
experiments, see Appendix E.7 for a comparison of different action spaces, Appendix E.6 for the
effect of the time delay on performance, and Appendix E.5 for qualitative evidence of self-tracking.

6 Home Assistant Benchmark (HAB)
We now describe our benchmark of common household assistive robotic tasks. We stress that these
tasks illustrate the capabilities of H2.0 but do not delineate them – a lot more is possible but not
feasible to pack into a single coherent document with clear scientific takeaways.

Task Definition. We study three (families of) long-range tasks that correspond to common activities:

1. TidyHouse: Move 5 objects from random (unimpeded) locations back to where they belong (see
Fig. 19). This task requires no opening or closing and no objects are contained.

• Start: 5 target objects objects spawned in 6 possible receptacles (excluding fridge and drawer).
• Goal: Each target object is assigned a goal in a different receptacle than the starting receptacle.
• Task length: 5000 steps.

2. PrepareGroceries: Remove 2 objects from the fridge to the counters and place one object back
in the fridge (see Fig. 20). This task requires no opening or closing and no objects are contained.

• Start: 2 target objects in the fridge and one on the left counter. The fridge is fully opened.
• Goal: The goal for the target objects in the fridge are on the right counter and light table. The goal

for the other target object is in the fridge.
• Task length: 4000 steps

3. SetTable: Get a bowl from a drawer, a fruit from fridge, place the fruit in the bowl on the table
(see Fig. 21).
• Start: A target bowl object is in one of the drawers and a target fruit object in the middle fridge

shelf. Both the fridge and drawer start closed.
• Goal: The goal for the bowl is on the light table, the goal for the fruit is on top of the bowl. Both

the fridge and drawer must be closed.
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• Task length: 4500 steps.

The list is in increasing order of complexity – from no interaction with containers (TidyHouse),
to picking and placing from the fridge container (PrepareGroceries), to opening and closing
containers (SetTable). Note that these descriptions are provided purely for human understanding;
the robot operates entirely from a GeometricGoal specification [10] – given by the initial and desired
3D (center-of-mass) position of each target object i to be moved

�
s0

i , s
⇤
i

�N

i=1
. Thus, Pick (s0

i ) is a
special case where N = 1 and s⇤

i is a constant (arm resting) location. For each task episode, we
sample a ReplicaCAD layout with YCB [63] objects randomly placed on feasible placement regions
(see procedural clutter generation in Section 3). Each task has 5 clutter objects per receptacle. Unless
specified, objects are sampled from the ‘food’ and ‘kitchen’ YCB item categories in the YCB dataset.

The agent is evaluated on unseen layouts and configurations of objects, and so cannot simply
memorize. We characterize task difficulty by the required number of rigid-body transitions (e.g.,
picking up a bowl, opening a drawer). The task evaluation, agent embodiment, sensing, and action
space remain unchanged from Section 5, with the addition of base control via velocity commands.
Further details on the statistics of the rearrangement episodes, as well as the evaluation protocols are
in Appendix F.

Methods. We extend the methods from Sec. 5 to better handle the above long-horizon tasks with a
high-level STRIPS planner using a parameterized set of skills: Pick, Place, Open fridge door,
Close fridge door, Open drawer, Close drawer, and Navigate. The full details of the planner
implementation and how methods are extended are in Appendix G. Here, we provide a brief overview.

1. MonolithicRL: Essentially unchanged from Sec. 5, with the exception of accepting a list of start
and goal coordinates

�
s0

i , s
⇤
i

�N

i=1
, as opposed to just s0

1.
2. TaskPlanning+SkillsRL (TP+SRL): a hierarchical approach that assumes knowledge of a perfect

task planner (implemented with STRIPS [28]) and the initial object containment needed by the
task planner to break down a task into a sequence of parameterized skills: Navigate, Pick,
Place, Open fridge door, Close fridge door, Open drawer, Close drawer. Each skill is
functionally identical to MonolithicRL in Sec. 5 – taking as input a single 3D position, either s0

i or
s⇤

i . For instance, in the SetTable task, let (a0, a⇤) and (b0, b⇤) denote the start and goal positions
of the apple and bowl, respectively. The task planner converts this task into:

Open Drawerz }| {
Navigate(b0), Open drawer(b0),

Transport Bowlz }| {
Pick(b0), Navigate(b⇤), Place(b⇤),

Close Drawerz }| {
Navigate(b0), Close drawer(b0),

Navigate(a0), Open fridge door(a0)| {z }
Open Fridge

, Navigate(a⇤), Place(a⇤)| {z }
Transport Apple

, Navigate(a0), Close fridge door(a0)| {z }
Close Fridge

.

Simply listing out this sequence highlights the challenging nature of these tasks.
3. TaskPlanning+SensePlanAct (TP+SPA): Same task planner as above, with each skill imple-

mented via SPA from Sec. 5 except for Navigate where the same learned navigation policy
from TP+SPA is used. TP+SPA-Priv is analogously defined. Crafting an SPA pipeline for open-
ing/closing unknown articulated containers is an open unsolved problem in robotics – involving
detecting and tracking articulation [70, 71] without models, constrained full-body planning [72–
74] without hand engineering constraints, and designing controllers to handle continuous contact
[75, 76] – making it out of scope for this work. Thus, we do not report TP+SPA on SetTable.

6.1 Results and Findings

Figure 5 shows progressive success rates for different methods on all tasks. Due to the difficulty of
the full task, for analysis, the X-axis lists the sequence of agent-environment interactions (pick, place,
open, close) required to accomplish the task, same as that used by the task-planner.4 The number of
interactions is a proxy for task difficulty and the plot is analogous to precision-recall curves (with the
ideal curve being a straight line at 100%). Furthermore, since navigation is often executed between
successive skills, we include versions of the task planning methods with an oracle navigation skill.
We make the following observations:

1. MonolithicRL performs abysmally. We were able to train individual skills with RL to reasonable
degrees of success (see Appendix H.2). However, crafting a combined reward function and learning

4This sequence from the task plan is useful for experimental analysis and debugging, but does not represent
the only way to solve the task and should be disposed in future once methods improve on the full task.
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(a) TidyHouse (b) PrepareGroceries (c) SetTable

Figure 5: Success rates for Home Assistant Benchmark tasks. Due to the difficulty of full HAB tasks, we analyze
performance as completing a part of the overall task. For the TP methods that use an explicit navigation skill, we
indicate with an arrow in the interaction names where navigation occurs and include versions for learned and
oracle navigation. Results are on unseen layouts with mean and standard error computed for 100 episodes.
scheme that elicits chaining of such skills for a long-horizon task, without any architectural inductive
bias about the task structure, remained out of our reach despite prolonged effort.

2. Learning a navigation policy to chain together skills is challenging as illustrated by the performance
drop between learned and oracle navigation. In navigation for the sake of navigation (PointNav [11]),
the agent is provided coordinates of the reachable goal location. In navigation for manipulation
(Navigate), the agent is provided coordinates of a target object’s center-of-mass but needs to
navigate to an unspecified non-unique suitable location from where the object is manipulable.

3. Compounding errors hurt performance of task planning methods. Even with the relatively eas-
ier skills in TidyHouse in Figure 5a all methods with oracle navigation gradually decrease in
performance as the number of required interactions increases.

4. Sense-plan-act variants scale poorly to increasing task complexity. In the easiest setting, Tidy
House with oracle navigation (Figure 5a), TP+SPA performs better than TP+SRL. However, this
trend is reversed with learned navigation since TP+SPA methods, which rely on egocentric perception
for planning, are not necessarily correctly positioned to sense the workspace. In the more complex
task of PrepareGroceries (Figure 5b), TP+SRL outperforms TP+SPA both with and without
oracle navigation due to the perception challenge of the tight and cluttered fridge. TP+SPA fails to
find a goal configuration 3x more often and fails to find a plan in the allowed time 3x more often in
PrepareGroceries than TidyHouse.

See Appendix H for individual skill success rates, learning curves, and SPA failure statistics.

7 Societal Impacts, Limitations, and Conclusion
ReplicaCAD was modeled upon apartments in one country (USA). Different cultures and regions may
have different layouts of furniture, types of furniture, and types of objects not represented in Replica-
CAD; and this lack of representation can have negative social implications for the assistants developed.
While H2.0 is a fast simulator, we find that the performance of the overall simulation+training loop
is bottlenecked by factors like synchronization of parallel environments and reloading of assets
upon episode reset. An exciting and complementary future direction is holistically reorganizing
the rendering+physics+RL interplay as studied by [77–82]. Concretely, as illustrated in Figure 3,
there is idle GPU time when rendering is faster than physics, because inference waits for both ot and
st+1 to be ready despite not needing st+1. This is done to maintain compatibility with existing RL
training systems, which expect the reward rt to be returned when the agent takes an action at, but
rt is typically a function of st, at, and st+1. Holistically reorganizing the rendering+physics+RL
interplay is an exciting open problem for future work.

We presented the ReplicaCAD dataset, the Habitat 2.0 platform and a home assistant benchmark.
H2.0 is a fully interactive, high-performance 3D simulator that enables efficient experimentation
involving embodied AI agents rearranging richly interactive 3D environments. Coupled with the
ReplicaCAD data these improvements allow us to investigate the performance of RL policies against
classical MP approaches for the suite of challenging rearrangement tasks we defined. We hope that
the Habitat 2.0 platform will catalyze work on embodied AI for interactive environments.
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