
Deep Continuous Clustering

Sohil Atul Shah 1 Vladlen Koltun 2

Abstract
Clustering high-dimensional datasets is hard be-
cause interpoint distances become less informa-
tive in high-dimensional spaces. We present a
clustering algorithm that performs nonlinear di-
mensionality reduction and clustering jointly. The
data is embedded into a lower-dimensional space
by a deep autoencoder. The autoencoder is op-
timized as part of the clustering process. The
resulting network produces clustered data. The
presented approach does not rely on prior knowl-
edge of the number of ground-truth clusters. Joint
nonlinear dimensionality reduction and cluster-
ing are formulated as optimization of a global
continuous objective. We thus avoid discrete
reconfigurations of the objective that character-
ize prior clustering algorithms. Experiments on
datasets from multiple domains demonstrate that
the presented algorithm outperforms state-of-the-
art clustering schemes, including recent methods
that use deep networks. The code is available at
http://github.com/shahsohil/DCC.

1. Introduction
Clustering is a fundamental procedure in machine learning
and data analysis. Well-known approaches include center-
based methods and their generalizations (Banerjee et al.,
2005; Teboulle, 2007), and spectral methods (Ng et al.,
2001; von Luxburg, 2007). Despite decades of progress, re-
liable clustering of noisy high-dimensional datasets remains
an open problem. High dimensionality poses a particular
challenge because assumptions made by many algorithms
break down in high-dimensional spaces (Ball, 1997; Beyer
et al., 1999; Steinbach et al., 2004).

There are techniques that reduce the dimensionality of data
by embedding it in a lower-dimensional space (van der
Maaten et al., 2009). Such general techniques, based on
preserving variance or dissimilarity, may not be optimal

1University of Maryland, College Park, MD, USA 2Intel Labs,
Santa Clara, CA, USA. Correspondence to: Sohil Atul Shah <so-
hilas@umd.edu>.

when the goal is to discover cluster structure. Dedicated
algorithms have been developed that combine dimension-
ality reduction and clustering by fitting low-dimensional
subspaces (Kriegel et al., 2009; Vidal, 2011). Such algo-
rithms can achieve better results than pipelines that first
apply generic dimensionality reduction and then cluster in
the reduced space. However, frameworks such as subspace
clustering and projected clustering operate on linear sub-
spaces and are therefore limited in their ability to handle
datasets that lie on nonlinear manifolds.

Recent approaches have sought to overcome this limitation
by constructing a nonlinear embedding of the data into a
low-dimensional space in which it is clustered (Dizaji et al.,
2017; Xie et al., 2016; Yang et al., 2016; 2017). Ultimately,
the goal is to perform nonlinear embedding and clustering
jointly, such that the embedding is optimized to bring out
the latent cluster structure. These works have achieved
impressive results. Nevertheless, they are based on classic
center-based, divergence-based, or hierarchical clustering
formulations and thus inherit some limitations from these
classic methods. In particular, these algorithms require
setting the number of clusters a priori. And the optimization
procedures they employ involve discrete reconfigurations of
the objective, such as discrete reassignments of datapoints to
centroids or merging of putative clusters in an agglomerative
procedure. Thus it is challenging to integrate them with an
optimization procedure that modifies the embedding of the
data itself.

We seek a procedure for joint nonlinear embedding and
clustering that overcomes some of the limitations of prior
formulations. There are a number of characteristics we con-
sider desirable. First, we wish to express the joint problem
as optimization of a single continuous objective. Second,
this optimization should be amenable to scalable gradient-
based solvers such as modern variants of SGD. Third, the
formulation should not require setting the number of clusters
a priori, since this number is often not known in advance.

While any one of these desiderata can be fulfilled by some
existing approaches, the combination is challenging. For
example, it has long been known that the k-means objective
can be optimized by SGD (Bottou & Bengio, 1994). But
this family of formulations requires positing the number
of clusters k in advance. Furthermore, the optimization

http://github.com/shahsohil/DCC

Deep Continuous Clustering

is punctuated by discrete reassignments of datapoints to
centroids, and is thus hard to integrate with continuous
embedding of the data.

In this paper, we present a formulation for joint nonlinear
embedding and clustering that possesses all of the aforemen-
tioned desirable characteristics. Our approach is rooted in
Robust Continuous Clustering (RCC), a recent formulation
of clustering as continuous optimization of a robust objec-
tive (Shah & Koltun, 2017). The basic RCC formulation
has the characteristics we seek, such as a clear continuous
objective and no prior knowledge of the number of clus-
ters. However, integrating it with deep nonlinear embedding
is still a challenge. For example, Shah & Koltun (2017)
presented a formulation for joint linear embedding and clus-
tering (RCC-DR), but this formulation relies on a complex
alternating optimization scheme with linear least-squares
subproblems, and does not apply to nonlinear embeddings.

We present an integration of the RCC objective with di-
mensionality reduction that is simpler and more direct than
RCC-DR, while naturally handling deep nonlinear embed-
dings. Our formulation avoids alternating optimization and
the introduction of auxiliary dual variables. A deep nonlin-
ear embedding of the data into a low-dimensional space is
optimized while the data is clustered in the reduced space.
The optimization is expressed by a global continuous objec-
tive and conducted by standard gradient-based solvers.

The presented algorithm is evaluated on high-dimensional
datasets of images and documents. Experiments demon-
strate that our formulation performs on par or better than
state-of-the-art clustering algorithms across all datasets.
This includes recent approaches that utilize deep networks
and rely on prior knowledge of the number of ground-truth
clusters. Controlled experiments confirm that joint dimen-
sionality reduction and clustering is more effective than a
stagewise approach, and that the high accuracy achieved by
the presented algorithm is stable across different dimension-
alities of the latent space.

2. Preliminaries
Let X = [x1, . . . ,xN] be a set of points in RD that must
be clustered. Generic clustering algorithms that operate
directly on X rely strongly on interpoint distances. When
D is high, these distances become less informative (Ball,
1997; Beyer et al., 1999). Hence most clustering algorithms
do not operate effectively in high-dimensional spaces. To
overcome this problem, we embed the data into a lower-
dimensional space Rd. The embedding of the dataset into
Rd is denoted by Y = [y1, . . . ,yN]. The function that per-
forms the embedding is denoted by fθ : RD → Rd. Thus
yi = fθ(xi) for all i.

Our goal is to cluster the embedded dataset Y and to op-

timize the parameters θ of the embedding as part of the
clustering process. This formulation presents an obvious
difficulty: if the embedding fθ can be manipulated to assist
the clustering of the embedded dataset Y, there is nothing
that prevents fθ from distorting the dataset such that Y no
longer respects the structure of the original data. We must
therefore introduce a regularizer on θ that constrains the
low-dimensional image Y with respect to the original high-
dimensional dataset X. To this end, we also consider a re-
verse mapping gω : Rd → RD. To constrain fθ to construct
a faithful embedding of the original data, we require that
the original data be reproducible from its low-dimensional
image (Hinton & Salakhutdinov, 2006):

minimize
Ω

‖X−Gω(Y)‖2F , (1)

where Y = Fθ(X), Ω = {θ,ω}. Here Fθ(X) =
[fθ(x1), . . . , fθ(xN)], Gω(Y) = [gω(y1), . . . , gω(yN)],
and ‖·‖F denotes the Frobenius norm.

Next, we must decide how the low-dimensional embedding
Y will be clustered. A natural solution is to choose a clas-
sic clustering framework: a center-based method such as
k-means, a divergence-based formulation, or an agglomera-
tive approach. These are the paths taken in recent work on
combining nonlinear dimensionality reduction and cluster-
ing (Dizaji et al., 2017; Xie et al., 2016; Yang et al., 2016;
2017). However, the classic clustering algorithms have a
discrete structure: associations between centroids and data-
points need to be recomputed or putative clusters need to be
merged. In either case, the optimization process is punctu-
ated by discrete reconfigurations. This makes it difficult to
coordinate the clustering of Y with the optimization of the
embedding parameters Ω that modify the dataset Y itself.

Since we must conduct clustering in tandem with contin-
uous optimization of the embedding, we seek a clustering
algorithm that is inherently continuous and performs clus-
tering by optimizing a continuous objective that does not
need to be updated during the optimization. The recent
RCC formulation provides a suitable starting point (Shah &
Koltun, 2017). The key idea of RCC is to introduce a set
of representatives Z ∈ Rd×N and optimize the following
nonconvex objective:

minimize
Z

1

2
‖Z−Y‖2F +

λ

2

∑
(i,j)∈E

wi,jρ(‖zi−zj‖2), (2)

where ρ is a redescending M-estimator, E is a graph connect-
ing the datapoints, {wi,j} are appropriately defined weights,
and λ is a coefficient that balances the two objective terms.
The first term in objective (2) constrains the representatives
to remain near the corresponding datapoints. The second
term pulls the representatives to each other, encouraging
them to merge. This formulation has a number of advan-
tages. First, it reduces clustering to optimization of a fixed

Deep Continuous Clustering

continuous objective. Second, each datapoint has its own
representative in Z and no prior knowledge of the number
of clusters is needed. Third, the nonconvex robust estimator
ρ limits the influence of outliers.

To perform nonlinear embedding and clustering jointly, we
wish to integrate the reconstruction objective (1) and the
RCC objective (2). This idea is developed in the next sec-
tion.

3. Deep Continuous Clustering
3.1. Objective

The Deep Continuous Clustering (DCC) algorithm opti-
mizes the following objective:

L(Ω,Z) = 1

D
‖X−Gω(Y)‖2F︸ ︷︷ ︸

reconstruction loss

+
1

d

(∑
i

ρ1
(
‖zi − yi‖2;µ1

)
︸ ︷︷ ︸

data loss

+ λ
∑

(i,j)∈E

wi,jρ2
(
‖zi − zj‖2;µ2

)
︸ ︷︷ ︸

pairwise loss

)

where Y = Fθ(X). (3)

This formulation bears some similarity to RCC-DR (Shah
& Koltun, 2017), but differs in three major respects. First,
RCC-DR only operates on a linear embedding defined by a
sparse dictionary, while DCC optimizes a more expressive
nonlinear embedding parameterized by Ω. Second, RCC-
DR alternates between optimizing dictionary atoms, sparse
codes, representatives Z, and dual line process variables;
in contrast, DCC avoids duality altogether and optimizes
the global objective directly. Third, DCC does not rely on
closed-form or linear least-squares solutions to subprob-
lems; rather, the joint objective is optimized by modern
gradient-based solvers, which are commonly used for deep
representation learning and are highly scalable.

We now discuss objective (3) and its optimization in more
detail. The mappings Fθ and Gω are performed by an au-
toencoder with fully-connected or convolutional layers and
rectified linear units after each affine projection (Hinton &
Salakhutdinov, 2006; Nair & Hinton, 2010). The graph E
is constructed on X using the mutual kNN criterion (Brito
et al., 1997), augmented by the minimum spanning tree of
the kNN graph to ensure connectivity to all datapoints. The
role of M-estimators ρ1 and ρ2 is to pull the representatives
of a true underlying cluster into a single point, while dis-
regarding spurious connections across clusters. For both
estimators, we use scaled Geman-McClure functions (Ge-
man & McClure, 1987):

ρ1(x;µ1) =
µ1x

2

µ1 + x2
and ρ2(x;µ2) =

µ2x
2

µ2 + x2
. (4)

The parameters µ1 and µ2 control the radii of the convex
basins of the estimators. The weights wi,j are set to balance
the contribution of each datapoint to the pairwise loss:

wi,j =
1
N

∑n
k=1 nk√
ninj

. (5)

Here ni is the degree of zi in the graph E . The numerator
is simply the average degree. The parameter λ balances
the relative strength of the data loss and the pairwise loss.
To balance the different terms, we set λ = ‖Y‖2

‖A‖2 , where
A =

∑
(i,j)∈E wi,j(ei − ej)(ei − ej)

> and ‖ · ‖2 denotes
the spectral norm. This ratio approximately ensures similar
maximum curvature for different terms. Since the setting
for λ is independent of the reconstruction loss term, the
ratio is similar to that considered for RCC-DR. However, in
contrast to RCC-DR, the parameter λ need not be updated
during the optimization.

3.2. Optimization

Objective (3) can be optimized using scalable modern forms
of stochastic gradient descent (SGD). Note that each zi
is updated only via its corresponding loss and pairwise
terms. On the other hand, the autoencoder parameters Ω are
updated via all data samples. Thus in a single epoch, there
is bound to be a difference between the update rates for Z
and Ω. To deal with this imbalance, an adaptive solver such
as Adam should be used (Kingma & Ba, 2015).

Another difficulty is that the graph E connects all datapoints
such that a randomly sampled minibatch is likely to be con-
nected by pairwise terms to datapoints outside the minibatch.
In other words, the objective (3), and more specifically the
pairwise loss, does not trivially decompose over datapoints.
This requires some care in the construction of minibatches.
Instead of sampling datapoints, we sample subsets of edges
from E . The corresponding minibatch B is defined by all
nodes incident to the sampled edges. However, if we simply
restrict the objective (3) to the minibatch and take a gra-
dient step, the reconstruction and data terms will be given
additional weight since the same datapoint can participate
in different minibatches, once for each incident edge. To
maintain balance between the terms, we must weigh the con-
tribution of each datapoint in the minibatch. The rebalanced
minibatch loss is given by

LB(Ω,Z) =
1

|B|
∑
i∈B

wi

(
‖xi − gω(yi)‖22

D
+
ρ1
(
‖zi − yi‖2

)
d

)

+
λ

|B|
∑

(i,j)∈EB

wi,jρ2
(
‖zi − zj‖2

)
where yi = fθ(xi) ∀i ∈ B. (6)

Here wi =
nB
i

ni
, where nBi is the number of edges connected

to the ith node in the subgraph EB.

Deep Continuous Clustering

The gradients of LB with respect to the low-dimensional
embedding Y and the representatives Z are given by

∂LB
∂yi

=
1

|B|

(
wiµ

2
1(yi − zi)

d(µ1 + ‖zi − yi‖22)2

+
2wi(gω(yi)− xi)

D

∂gω(yi)

∂yi

)
(7)

∂LB
∂zi

=
1

|B|

(
wiµ

2
1(zi − yi)

d(µ1 + ‖zi − yi‖22)2

+ λµ2
2

∑
(i,j)∈EB

wi,j(zi − zj)

(µ2 + ‖zi − zj‖22)2

)
(8)

These gradients are propagated to the parameters Ω.

3.3. Initialization, Continuation, and Termination

Initialization. The embedding parameters Ω are initial-
ized using the stacked denoising autoencoder (SDAE) frame-
work (Vincent et al., 2010). Each pair of corresponding
encoding and decoding layers is pretrained in turn. Noise is
introduced during pretraining by adding dropout to the input
of each affine projection (Srivastava et al., 2014). Encoder-
decoder layer pairs are pretrained sequentially, from the
outer to the inner. After all layer pairs are pretrained, the
entire SDAE is fine-tuned end-to-end using the reconstruc-
tion loss. This completes the initialization of the embedding
parameters Ω. These parameters are used to initialize the
representatives Z, which are set to Z = Y = Fθ(X).

Continuation. The price of robustness is the nonconvexity
of the estimators ρ1 and ρ2. One way to alleviate the dan-
gers of nonconvexity is to use a continuation scheme that
gradually sharpens the estimator (Blake & Zisserman, 1987;
Mobahi & Fisher III, 2015). Following Shah & Koltun
(2017), we initially set µi to a high value that makes the esti-
mator ρi effectively convex in the relevant range. The value
of µi is decreased on a regular schedule until a threshold δi

2
is reached. We set δ1 to the mean of the distance of each yi
to the mean of Y, and δ2 to the mean of the bottom 1% of
the pairwise distances in E at initialization.

Stopping criterion. Once the continuation scheme is com-
pleted, DCC monitors the computed clustering. At the end
of every epoch, a graph G = (V,F) is constructed such
that fi,j = 1 if ‖zi − zj‖ < δ2. The cluster assignment is
given by the connected components of G. DCC compares
this cluster assignment to the one produced at the end of
the preceding epoch. If less than 0.1% of the edges in E
changed from intercluster to intracluster or vice versa, DCC
outputs the computed clustering and terminates.

Complete algorithm. The complete algorithm is summa-
rized in Algorithm 1.

Algorithm 1 Deep Continuous Clustering
1: input: Data samples {xi}i.
2: output: Cluster assignment {ci}i.
3: Construct a graph E on X.
4: Initialize Ω and Z.
5: Precompute λ,wi,j , δ1, δ2. Initialize µ1, µ2.
6: while stopping criterion not met do
7: Every iteration, construct a minibatch B defined by a

sample of edges EB.
8: Update {zi}i∈B and Ω.
9: Every M epochs, update µi = max

(
µi

2 ,
δi
2

)
.

10: end while
11: Construct graph G = (V,F) with fi,j = 1 if ‖z∗i −

z∗j‖2 < δ2.
12: Output clusters given by the connected components of
G.

4. Experiments
4.1. Datasets

We conduct experiments on six high-dimensional datasets,
which cover domains such as handwritten digits, objects,
faces, and text. We used datasets from Shah & Koltun (2017)
that had dimensionality above 100. The datasets are further
described in the appendix. All features are normalized to
the range [0, 1].

Note that DCC is an unsupervised learning algorithm. Unla-
belled data is embedded and clustered with no supervision.
There is thus no train/test split.

4.2. Baselines

The presented DCC algorithm is compared to 13 baselines,
which include both classic and deep clustering algorithms.
The baselines include k-means++ (Arthur & Vassilvitskii,
2007), DBSCAN (Ester et al., 1996), two variants of ag-
glomerative clustering: Ward (AC-W) and graph degree
linkage (GDL) (Zhang et al., 2012), two variants of spec-
tral clustering: spectral embedded clustering (SEC) (Nie
et al., 2011) and local discriminant models and global in-
tegration (LDMGI) (Yang et al., 2010), and two variants
of robust continuous clustering: RCC and RCC-DR (Shah
& Koltun, 2017). We also include an SGD-based imple-
mentation of RCC-DR, referred to as RCC-DR (SGD): this
baseline uses the same optimization method as DCC, and
thus more crisply isolates the improvement in DCC that is
due to the nonlinear dimensionality reduction (rather than a
different solver).

The deep clustering baselines include four recent approaches
that share our basic motivation and use deep networks for
clustering: deep embedded clustering (DEC) (Xie et al.,
2016), joint unsupervised learning (JULE) (Yang et al.,

Deep Continuous Clustering

2016), the deep clustering network (DCN) (Yang et al.,
2017), and deep embedded regularized clustering (DE-
PICT) (Dizaji et al., 2017). These are strong baselines that
use deep autoencoders, the same network structure as our ap-
proach (DCC). The key difference is in the loss function and
the consequent optimization procedure. The prior formula-
tions are built on KL-divergence clustering, agglomerative
clustering, and k-means, which involve discrete reconfigu-
ration of the objective during the optimization and rely on
knowledge of the number of ground-truth clusters either in
the design of network architecture, during the embedding
optimization, or in post-processing. In contrast, DCC opti-
mizes a robust continuous loss and does not rely on prior
knowledge of the number of clusters.

4.3. Implementation

We report experimental results for two different autoencoder
architectures: one with only fully-connected layers and one
with convolutional layers. This is motivated by prior deep
clustering algorithms, some of which used fully-connected
architectures and some convolutional.

For fully-connected autoencoders, we use the same
autoencoder architecture as DEC (Xie et al., 2016).
Specifically, for all experiments on all datasets, we
use an autoencoder with the following dimensions:
D–500–500–2000–d–2000–500–500–D. This autoencoder
architecture follows parametric t-SNE (van der Maaten,
2009).

For convolutional autoencoders, the network architecture
is modeled on JULE (Yang et al., 2016). The architecture
is specified in the appendix. As in Yang et al. (2016), the
number of layers depends on image resolution in the dataset
and it is set such that the output resolution of the encoder is
about 4×4.

DCC uses three hyperparameters: the embedding dimen-
sionality d, the nearest neighbor parameter k for m-kNN
graph construction, and the update period M for graduated
nonconvexity. In both architectures and for all datasets,
the dimensionality of the reduced space is set to d = 10
based on the grid search on MNIST. (It is only varied for
controlled experiments that analyze stability with respect
to d.) No dataset-specific hyperparameter tuning is done.
For fair comparison to RCC and RCC-DR, we fix k = 10
(the setting used in Shah & Koltun (2017)) and the cosine
distance metric is used. The hyperparameter M is architec-
ture specific. We set M to 10 and 20 for convolutional and
fully-connected autoencoders respectively and it is varied
for varying dimensionality d during the controlled experi-
ment.

For autoencoder initialization, a minibatch size of 256 and
dropout probability of 0.2 are used. SDAE pretraining and

finetuning start with a learning rate of 0.1, which is de-
creased by a factor of 10 every 80 epochs. Each layer is
pretrained for 200 epochs. Finetuning of the whole SDAE is
performed for 400 epochs. For the fully-connected SDAE,
the learning rates are scaled in accordance with the dimen-
sionality of the dataset. During the optimization using the
DCC objective, the Adam solver is used with its default
learning rate of 0.001 and momentum 0.99. Minibatches are
constructed by sampling 128 edges. DCC was implemented
using the PyTorch library.

For the baselines, we use publicly available implementa-
tions. For k-means++, DBSCAN and AC-W, we use the
implementations in the SciPy library and report the best
results across ten random restarts. For a number of base-
lines, we performed hyperparameter search to maximize
their reported performance. For DBSCAN, we searched
over values of Eps, for LDMGI we searched over values
of the regularization constant λ, for SEC we searched over
values of the parameter µ, and for GDL we tuned the graph
construction parameter a. For SGD implementation of RCC-
DR the learning rate of 0.01 and momentum of 0.95 were
used.

The DCN approach uses a different network architecture
for each dataset. Wherever possible, we report results using
their dataset-specific architecture. For YTF, Coil100, and
YaleB, we use their reference architecture for MNIST.

4.4. Measures

Common measures of clustering accuracy include normal-
ized mutual information (NMI) (Strehl & Ghosh, 2002)
and clustering accuracy (ACC). However, NMI is known
to be biased in favor of fine-grained partitions and ACC is
also biased on imbalanced datasets (Vinh et al., 2010). To
overcome these biases, we use adjusted mutual information
(AMI) (Vinh et al., 2010), defined as

AMI(c, ĉ) =
MI(c, ĉ)− E[MI(c, ĉ)]√
H(c)H(ĉ)− E[MI(c, ĉ)]

. (9)

Here H(·) is the entropy, MI(·, ·) is the mutual information,
and c and ĉ are the two partitions being compared. AMI lies
in a range [0, 1]. Higher is better. For completeness, results
according to ACC and NMI are also reported. (NMI in the
supplement.)

4.5. Results

The results are summarized in Table 1. Among deep cluster-
ing methods that use fully-connected networks, DCN and
DEC are not as accurate as fully-connected DCC and are
also less consistent: the performance of DEC drops on the
high-dimensional image datasets, while DCN is far behind
on MNIST and YaleB. Among deep clustering methods that
use convolutional networks, the performance of DEPICT

Deep Continuous Clustering

drops on COIL100 and YTF, while JULE is far behind on
YTF. The GDL algorithm failed to scale to the full MNIST
dataset and the corresponding measurement is marked as
‘n/a’. The performance of RCC-DR (SGD) is also inconsis-
tent. Although it performs on par with RCC-DR on image
datasets, its performance degrades on text datasets.

5. Analysis
Importance of joint optimization. We now analyze the
importance of performing dimensionality reduction and clus-
tering jointly, versus performing dimensionality reduction
and then clustering the embedded data. To this end, we
use the same SDAE architecture and training procedure as
fully-connected DCC. We optimize the autoencoder but do
not optimize the full DCC objective. This yields a standard
nonlinear embedding, using the same autoencoder that is
used by DCC, into a space with the same reduced dimen-
sionality d. In this space, we apply a number of clustering
algorithms: k-means++, AC-W, DBSCAN, SEC, LDMGI,
GDL, and RCC. The results are shown in Table 2 (top).

These results should be compared to results reported in
Table 1. The comparison shows that the accuracy of the
baseline algorithms benefits from dimensionality reduc-
tion. However, in all cases their accuracy is still lower
than that attained by DCC using joint optimization. Fur-
thermore, although RCC and DCC share the same under-
lying nearest-neighbor graph construction and a similar
clustering loss, the performance of DCC far surpasses that
achieved by stagewise SDAE embedding followed by RCC.
Note also that the relative performance of most baselines
drops on Coil100 and YaleB. We hypothesize that the fully-
connected SDAE is limited in its ability to discover a good
low-dimensional embedding for very high-dimensional im-
age datasets (tens of thousands of dimensions for Coil100
and YaleB).

Next, we show the performance of the same clustering algo-
rithms when they are applied in the reduced space produced
by DCC. These results are reported in Table 2 (bottom). In
comparison to Table 2 (top), the performance of all algo-
rithms improves significantly and some results are now on
par or better than the results of DCC as reported in Table 1.
The improvement for k-means++, Ward, and DBSCAN is
particularly striking. This indicates that the performance of
many clustering algorithms can be improved by first opti-
mizing a low-dimensional embedding using DCC and then
clustering in the learned embedding space.

Visualization. A visualization is provided in Figure 1. Here
we used Barnes-Hut t-SNE (van der Maaten & Hinton, 2008;
van der Maaten, 2014) to visualize a randomly sampled
subset of 10K datapoints from the MNIST dataset. We show
the original dataset, the dataset embedded by the SDAE

into Rd (optimized for dimensionality reduction), and the
embedding into Rd produced by DCC. As shown in the
figure, the embedding produced by DCC is characterized
by well-defined, clearly separated clusters. The clusters
strongly correspond to the ground-truth classes (coded by
color in the figure), but were discovered with no supervision.

Robustness to dimensionality of the latent space. Next
we study the robustness of DCC to the dimensionality d
of the latent space. For this experiment, we consider fully-
connected DCC. We vary d between 5 and 60 and measure
AMI and ACC on the MNIST and Reuters datasets. For
comparison, we report the performance of RCC-DR, DEC,
which uses the same autoencoder architecture, as well as
the accuracy attained by running k-means++ on the output
of the SDAE, optimized for dimensionality reduction. The
results are shown in Figure 2.

The results yield two conclusions. First, the accuracy of
DCC, RCC-DR, DEC, and SDAE+k-means gradually de-
creases as the dimensionality d increases. This supports the
common view that clustering becomes progressively harder
as the dimensionality of the data increases. Second, the
results demonstrate that DCC and RCC-DR are more robust
to increased dimensionality than DEC and SDAE. For ex-
ample, on MNIST, as the dimensionality d changes from
5 to 60, the accuracy (AMI) of DEC and SDAE drops by
28% and 35%, respectively, while the accuracy of DCC and
RCC-DR decreases only by 9% and 7% respectively. When
d = 60, the accuracy attained by DCC is higher than the
accuracy attained by DEC and SDAE by 27% and 40%, re-
spectively. Given that both DCC and RCC-DR utilize robust
estimators and also share similarity in their formulations, it
is not surprising that they exhibit similar robustness across
datasets and measures.

Runtime. The runtime of DCC is mildly better than DE-
PICT and more than an order of magnitude better than JULE.
For instance, on MNIST (the largest dataset considered), the
total runtime of conv-DCC is 9,030 sec. For DEPICT, this
runtime is 12,072 sec and for JULE it is 172,058 sec.

6. Conclusion
We have presented a clustering algorithm that combines
nonlinear dimensionality reduction and clustering. Dimen-
sionality reduction is performed by a deep network that
embeds the data into a lower-dimensional space. The em-
bedding is optimized as part of the clustering process and the
resulting network produces clustered data. The presented
algorithm does not rely on a priori knowledge of the number
of ground-truth clusters. Nonlinear dimensionality reduc-
tion and clustering are performed by optimizing a global
continuous objective using scalable gradient-based solvers.

Deep Continuous Clustering

Algorithm MNIST Coil100 YTF YaleB Reuters RCV1 MNIST Coil100 YTF YaleB Reuters RCV1

k-means++ 0.500 0.803 0.783 0.615 0.516 0.355 0.532 0.621 0.624 0.514 0.236 0.529
AC-W 0.679 0.853 0.801 0.767 0.471 0.364 0.571 0.697 0.647 0.614 0.261 0.554
DBSCAN 0.000 0.399 0.739 0.456 0.011 0.014 0.000 0.921 0.675 0.632 0.700 0.571
SEC 0.469 0.849 0.745 0.849 0.498 0.069 0.545 0.648 0.562 0.721 0.434 0.425
LDMGI 0.761 0.888 0.518 0.945 0.523 0.382 0.723 0.763 0.332 0.901 0.465 0.667
GDL n/a 0.958 0.655 0.924 0.401 0.020 n/a 0.825 0.497 0.783 0.463 0.444
RCC 0.893 0.957 0.836 0.975 0.556 0.138 0.876 0.831 0.484 0.939 0.381 0.356
RCC-DR 0.828 0.957 0.874 0.974 0.553 0.442 0.698 0.825 0.579 0.945 0.437 0.676
RCC-DR (SGD) 0.827 0.961 0.830 0.985 0.454 0.106 0.696 0.855 0.473 0.970 0.372 0.354

Fully-connected

DCN 0.570 0.810 0.790 0.590 0.430 0.470 0.560 0.620 0.620 0.430 0.220 0.730
DEC 0.840 0.611 0.807 0.000 0.397 0.500 0.867 0.815 0.643 0.027 0.168 0.683
DCC 0.912 0.952 0.877 0.955 0.572 0.495 0.962 0.842 0.605 0.861 0.596 0.563

Convolutional

JULE 0.900 0.979 0.574 0.990∗ – – 0.800 0.911 0.342 0.970∗ – –
DEPICT 0.919 0.667 0.785 0.989∗ – – 0.968 0.420 0.586 0.965∗ – –
DCC 0.913 0.962 0.903 0.985∗ – – 0.963 0.858 0.699 0.964∗ – –

Table 1. Clustering accuracy of DCC and 12 baselines, measured by AMI (left) and ACC (right). Higher is better. Methods that do not use
deep networks are listed first, followed by deep clustering algorithms that use fully-connected autoencoders (including the fully-connected
configuration of DCC) and deep clustering algorithms that use convolutional autoencoders (including the convolutional configuration of
DCC). Results that are within 1% of the highest accuracy achieved by any method are highlighted in bold. ∗ indicates that these results
were directly obtained on pixel features as against the default DoG features used for YaleB. DCC performs on par or better than prior deep
clustering formulations, without relying on a priori knowledge of the number of ground-truth clusters.

Dataset k-means++ AC-W DBSCAN SEC LDMGI GDL RCC DCC

Clustering in a reduced space learned by SDAE

MNIST 0.669 0.784 0.115 n/a 0.828 n/a 0.881 0.912
Coil100 0.333 0.336 0.170 0.384 0.318 0.335 0.589 0.952
YTF 0.764 0.831 0.595 0.527 0.612 0.699 0.827 0.877
YaleB 0.673 0.688 0.503 0.493 0.676 0.742 0.812 0.955
Reuters 0.501 0.494 0.042 0.435 0.517 0.488 0.542 0.572
RCV1 0.454 0.430 0.075 0.442 0.060 0.055 0.410 0.495

Clustering in a reduced space learned by DCC

MNIST 0.880 0.883 0.890 n/a 0.868 n/a 0.912 0.912
Coil100 0.947 0.947 0.569 0.604 0.919 0.915 0.891 0.952
YTF 0.845 0.841 0.896 0.586 0.762 0.658 0.879 0.877
YaleB 0.811 0.809 0.809 0.584 0.815 0.660 0.814 0.955
Reuters 0.553 0.554 0.560 0.479 0.586 0.401 0.581 0.572
RCV1 0.536 0.472 0.496 0.452 0.178 0.326 0.474 0.495

Table 2. Importance of joint optimization. This table shows the accuracy (AMI) achieved by running prior clustering algorithms on a
low-dimensional embedding of the data. For reference, DCC results from Table 1 are also listed. Top: The embedding is performed using
the same autoencoder architecture as used by fully-connected DCC, into the same target space. However, dimensionality reduction and
clustering are performed separately. Clustering accuracy is much lower than the accuracy achieved by DCC. Bottom: Here clustering is
performed in the reduced space discovered by DCC. The performance of all clustering algorithms improves significantly.

Deep Continuous Clustering

(a) Raw (b) SDAE (c) DCC

Figure 1. Effect of joint dimensionality reduction and clustering on the embedding. (a) A randomly sampled subset of 10K points from
the MNIST dataset, visualized using t-SNE. (b) An embedding of these points into Rd, performed by an SDAE that is optimized for
dimensionality reduction. (c) An embedding of the same points by the same network, optimized with the DCC objective. When optimized
for joint dimensionality reduction and clustering, the network produces an embedding with clearly separated clusters. Best viewed in
color.

5 10 20 30 40 50 60
0.4

0.6

0.8

1

DCC

SDAE

DEC

RCC-DR

5 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

(a) MNIST

5 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

5 10 20 30 40 50 60
0

0.2

0.4

0.6

(b) Reuters

Figure 2. Robustness to dimensionality of the latent space. Clustering accuracy as a function of the dimensionality d of the latent space.
AMI on the left, ACC on the right. Best viewed in color.

References
Arthur, David and Vassilvitskii, Sergei. k-means++: The

advantages of careful seeding. In Symposium on Discrete
Algorithms (SODA), 2007.

Ball, Keith. An elementary introduction to modern convex
geometry. In Flavors of Geometry. 1997.

Banerjee, Arindam, Merugu, Srujana, Dhillon, Inderjit S.,
and Ghosh, Joydeep. Clustering with Bregman diver-
gences. Journal of Machine Learning Research (JMLR),
6, 2005.

Beyer, Kevin S., Goldstein, Jonathan, Ramakrishnan, Raghu,
and Shaft, Uri. When is “nearest neighbor” meaningful?
In International Conference on Database Theory (ICDT),
1999.

Blake, Andrew and Zisserman, Andrew. Visual Reconstruc-
tion. MIT Press, 1987.

Bottou, Léon and Bengio, Yoshua. Convergence proper-
ties of the k-means algorithms. In Neural Information
Processing Systems (NIPS), 1994.

Brito, M.R., Chávez, E.L., Quiroz, A.J., and Yukich, J.E.

Deep Continuous Clustering

Connectivity of the mutual k-nearest-neighbor graph in
clustering and outlier detection. Statistics & Probability
Letters, 35, 1997.

Dizaji, Kamran Ghasedi, Herandi, Amirhossein, Deng,
Cheng, Cai, Weidong, and Huang, Heng. Deep clustering
via joint convolutional autoencoder embedding and rela-
tive entropy minimization. In International Conference
on Computer Vision (ICCV), 2017.

Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, and Xu,
Xiaowei. A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In Knowledge
Discovery and Data Mining (KDD), 1996.

Geman, Stuart and McClure, Donald E. Statistical methods
for tomographic image reconstruction. Bulletin of the
International Statistical Institute, 52, 1987.

Georghiades, Athinodoros S., Belhumeur, Peter N., and
Kriegman, David J. From few to many: Illumination
cone models for face recognition under variable lighting
and pose. Pattern Analysis and Machine Intelligence
(PAMI), 23(6), 2001.

Hinton, Geoffrey E. and Salakhutdinov, Ruslan. Reducing
the dimensionality of data with neural networks. Science,
313(5786), 2006.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning (ICML), 2015.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

Kriegel, Hans-Peter, Kröger, Peer, and Zimek, Arthur. Clus-
tering high-dimensional data: A survey on subspace clus-
tering, pattern-based clustering, and correlation cluster-
ing. ACM Transactions on Knowledge Discovery from
Data, 3(1), 2009.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998.

Lewis, David D., Yang, Yiming, Rose, Tony G., and Li, Fan.
RCV1: A new benchmark collection for text categoriza-
tion research. Journal of Machine Learning Research
(JMLR), 5, 2004.

Mobahi, Hossein and Fisher III, John W. A theoretical
analysis of optimization by Gaussian continuation. In
AAAI, 2015.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units
improve restricted Boltzmann machines. In International
Conference on Machine Learning (ICML), 2010.

Nene, Sameer A., Nayar, Shree K., and Murase, Hiroshi.
Columbia object image library (COIL-100). Technical
Report CUCS-006-96, Columbia University, 1996.

Ng, Andrew Y., Jordan, Michael I., and Weiss, Yair. On
spectral clustering: Analysis and an algorithm. In Neural
Information Processing Systems (NIPS), 2001.

Nie, Feiping, Zeng, Zinan, Tsang, Ivor W., Xu, Dong, and
Zhang, Changshui. Spectral embedded clustering: A
framework for in-sample and out-of-sample spectral clus-
tering. IEEE Transactions on Neural Networks, 22(11),
2011.

Shah, Sohil Atul and Koltun, Vladlen. Robust continuous
clustering. Proceedings of the National Academy of Sci-
ences (PNAS), 114(37), 2017.

Srivastava, Nitish, Hinton, Geoffrey E., Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research (JMLR), 15(1),
2014.

Steinbach, Michael, Ertöz, Levent, and Kumar, Vipin. The
challenges of clustering high dimensional data. In New
Directions in Statistical Physics. 2004.

Strehl, Alexander and Ghosh, Joydeep. Cluster ensembles
– A knowledge reuse framework for combining multi-
ple partitions. Journal of Machine Learning Research
(JMLR), 3, 2002.

Teboulle, Marc. A unified continuous optimization frame-
work for center-based clustering methods. Journal of
Machine Learning Research (JMLR), 8, 2007.

van der Maaten, Laurens. Learning a parametric embedding
by preserving local structure. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2009.

van der Maaten, Laurens. Accelerating t-SNE using tree-
based algorithms. Journal of Machine Learning Research
(JMLR), 15, 2014.

van der Maaten, Laurens and Hinton, Geoffrey E. Visu-
alizing high-dimensional data using t-SNE. Journal of
Machine Learning Research (JMLR), 9, 2008.

van der Maaten, Laurens, Postma, Eric, and van den Herik,
Jaap. Dimensionality reduction: A comparative review.
Technical Report TiCC-TR 2009-005, Tilburg University,
2009.

Deep Continuous Clustering

Vidal, René. Subspace clustering. IEEE Signal Processing
Magazine, 28(2), 2011.

Vincent, Pascal, Larochelle, Hugo, Lajoie, Isabelle, Bengio,
Yoshua, and Manzagol, Pierre-Antoine. Stacked denois-
ing autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of
Machine Learning Research (JMLR), 11, 2010.

Vinh, Nguyen Xuan, Epps, Julien, and Bailey, James. Infor-
mation theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for
chance. Journal of Machine Learning Research (JMLR),
11, 2010.

von Luxburg, Ulrike. A tutorial on spectral clustering. Statis-
tics and Computing, 17(4), 2007.

Wolf, Lior, Hassner, Tal, and Maoz, Itay. Face recognition in
unconstrained videos with matched background similarity.
In Computer Vision and Pattern Recognition (CVPR),
2011.

Xie, Junyuan, Girshick, Ross B., and Farhadi, Ali. Un-
supervised deep embedding for clustering analysis. In
International Conference on Machine Learning (ICML),
2016.

Yang, Bo, Fu, Xiao, Sidiropoulos, Nicholas D., and Hong,
Mingyi. Towards k-means-friendly spaces: Simultaneous
deep learning and clustering. In International Conference
on Machine Learning (ICML), 2017.

Yang, Jianwei, Parikh, Devi, and Batra, Dhruv. Joint un-
supervised learning of deep representations and image
clusters. In Computer Vision and Pattern Recognition
(CVPR), 2016.

Yang, Yi, Xu, Dong, Nie, Feiping, Yan, Shuicheng, and
Zhuang, Yueting. Image clustering using local discrimi-
nant models and global integration. IEEE Transactions
on Image Processing, 19(10), 2010.

Zhang, Wei, Wang, Xiaogang, Zhao, Deli, and Tang, Xiaoou.
Graph degree linkage: Agglomerative clustering on a
directed graph. In European Conference on Computer
Vision (ECCV), 2012.

Appendix

A. Datasets
MNIST (LeCun et al., 1998): This is a popular dataset
containing 70,000 images of handwritten digits. Each image
is of size 28×28 (784 dimensions). The data is categorized
into 10 classes.

Coil100 (Nene et al., 1996): This dataset consists of 7,200
images of 100 object categories, each captured from 72
poses. Each RGB image is of size 128×128 (49,152 dimen-
sions).

YouTube Faces (Wolf et al., 2011): The YTF dataset con-
tains videos of faces. We use all the video frames of the first
40 subjects sorted in chronological order. Each frame is an
RGB image of size 55×55. The number of datapoints is
10,056 and the dimensionality is 9,075.

YaleB (Georghiades et al., 2001): This dataset contains
2,414 images of faces of 28 human subjects taken under
different lightning condition. Each image is of size 192×168
(32,256 dimensions). We use pixel features as input for
convolutional architectures and the difference of gaussian
features were used for the rest.

Reuters: This is a popular dataset comprising 21,578
Reuters news articles. We consider the Modified Apte split,
which yields a total of 9,082 articles. TF-IDF features on
the 2,000 most frequently occurring word stems are com-
puted and normalized. The dimensionality of the data is
thus 2,000.

RCV1 (Lewis et al., 2004): This is a document dataset
comprising 800,000 Reuters newswire articles. Only the
four root categories are considered and all articles labeled
with more than one root category are pruned. We report
results on a randomly sampled subset of 10,000 articles.
2,000 TF-IDF features were extracted as in the case of the
Reuters dataset.

B. Convolutional Network Architecture
Table S1 summarizes the architecture of the convolutional
encoder used for the convolutional configuration of DCC.
Convolutional kernels are applied with a stride of two. The
encoder is followed by a fully-connected layer with output
dimension d and a convolutional decoder with kernel size
that matches the output dimension of conv5. The decoder
architecture mirrors the encoder and the output from each
layer is appropriately zero-padded to match the input size
of the corresponding encoding layer. All convolutional
and transposed convolutional layers are followed by batch
normalization and rectified linear units (Ioffe & Szegedy,
2015; Nair & Hinton, 2010).

C. NMI Measure
We also report results according to the NMI measure. Ta-
ble S2 provides the NMI counterpart to Table 1.

Deep Continuous Clustering

MNIST Coil100 YTF YaleB

conv1 4× 4 4× 4 4× 4 4× 4

conv2 5× 5 5× 5 5× 5 5× 5

conv3 5× 5 5× 5 5× 5 5× 5

conv4 – 5× 5 5× 5 5× 5

conv5 – 5× 5 – 5× 5

output 4× 4 4× 4 4× 4 6× 6

Table S1. Convolutional encoder architecture.

Algorithm MNIST Coil100 YTF YaleB Reuters RCV1

k-means++ 0.500 0.835 0.788 0.650 0.536 0.355
AC-W 0.679 0.876 0.806 0.788 0.492 0.364
DBSCAN 0.000 0.458 0.756 0.535 0.022 0.017
SEC 0.469 0.872 0.760 0.863 0.498 0.069
LDMGI 0.761 0.906 0.532 0.950 0.523 0.382
GDL n/a 0.965 0.664 0.931 0.401 0.020
RCC 0.893 0.963 0.850 0.978 0.556 0.138
RCC-DR 0.827 0.963 0.882 0.976 0.553 0.442
RCC-DR(SGD) 0.827 0.967 0.845 0.987 0.454 0.106

Fully-connected

DCN 0.570 0.830 0.810 0.630 0.460 0.470
DEC 0.853 0.645 0.811 0.000 0.409 0.504
DCC 0.912 0.961 0.886 0.959 0.588 0.498

Convolutional

JULE 0.900 0.983 0.587 0.991 – –
DEPICT 0.919 0.678 0.790 0.990 – –
DCC 0.915 0.967 0.908 0.987 – –

Table S2. Clustering accuracy of DCC and 12 baselines, measured by NMI. Higher is better. This is the NMI counterpart to Table 1.

