Acoustic Non-Line-of-Sight Imaging

David B. Lindell* Gordon Wetzstein Vladlen Koltun
Stanford University Stanford University Intel Labs
Abstract

Non-line-of-sight (NLOS) imaging enables unprece-
dented capabilities in a wide range of applications, in-
cluding robotic and machine vision, remote sensing, au-
tonomous vehicle navigation, and medical imaging. Re-
cent approaches to solving this challenging problem employ
optical time-of-flight imaging systems with highly sensitive
time-resolved photodetectors and ultra-fast pulsed lasers.
However, despite recent successes in NLOS imaging using
these systems, widespread implementation and adoption of
the technology remains a challenge because of the require-
ment for specialized, expensive hardware. We introduce
acoustic NLOS imaging, which is orders of magnitude less
expensive than most optical systems and captures hidden
3D geometry at longer ranges with shorter acquisition times
compared to state-of-the-art optical methods. Inspired by
hardware setups used in radar and algorithmic approaches
to model and invert wave-based image formation models
developed in the seismic imaging community, we demon-
strate a new approach to seeing around corners.

1. Introduction

Non-line-of-sight (NLOS) imaging techniques aim to re-
cover 3D shape and reflectance information of objects hid-
den from sight by analyzing multiply scattered light, i.e.
light that bounces off of visible parts of a scene, interacts
with hidden scene parts, and then reflects back into the line
of sight of the detector. With important applications in re-
mote sensing, robotic vision, autonomous vehicle naviga-
tion, and medical imaging, NLOS imaging has the potential
to unlock unprecedented imaging modalities in a wide range
of application scenarios.

Some of the most promising approaches to NLOS imag-
ing use ultra-fast light sources and single-photon-sensitive
detectors [9, 10, 15, 17, 21, 23, 27, 33, 34, 36, 38, 39]. Un-
fortunately, the specialized hardware required for these se-
tups is extremely expensive. Moreover, acquisition times
for hidden diffuse objects are very long due to the rapid
signal falloff at increasing distances. Alternatively, in-
expensive continuous wave (CW) time-of-flight systems
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Figure 1. Overview of acoustic NLOS imaging. Modulated sound
waves are emitted from a speaker, travel around the corner to a hid-
den object, and are then recorded by a microphone as they reflect
back. The processed measurements (bottom left) contain peaks
indicating the path lengths of sound which travels directly from
the speaker to the microphone (A, peak is clipped), to the wall
and back (B), and also to the hidden object and back (C). Such
measurements are captured for a range of speaker and microphone
positions to reconstruct the 3D geometry of the hidden object (bot-
tom right).

have been used for NLOS imaging, but require strong pri-
ors and significant compute time to reconstruct the hidden
scene [16, 18]. Intensity-only information has been used
for tracking NLOS objects [22] or estimating limited scene
information [7]; however, high-quality 3D NLOS scene re-
construction remains challenging due to the limited amount
of information in the measurements.

We demonstrate acoustic non-line-of-sight imaging,
which uses readily available, low-cost microphones and
speakers to image and resolve 3D shapes hidden around cor-
ners. The key motivation of our work is that the reflection



properties of walls are usually specular, i.e. mirror-like, for
acoustic waves, so they should reveal hidden scene details
more easily than setups relying on visible or near-infrared
light. However, there are no focusing optics for acoustics,
so we cannot directly measure an “image” of the hidden
scene. Moreover, we need to take wave effects into account
when modeling sound propagation. The algorithmic frame-
work we develop is inspired by seismic imaging [40], where
shock waves are created by explosive charges on the sur-
face to probe hidden underground structures, and returning
wavefronts are analyzed to estimate the shape of these struc-
tures. While image formation models and inverse methods
in seismic imaging share certain properties with acoustic
NLOS imaging, the hardware setups and also the applica-
tions are very different. Our acoustic imaging setup more
closely resembles that of synthetic aperture radar (SAR) [5];
we emit sound chirps from an emitter array and measure
the returning wavefront with an array of microphones. In
contrast to existing SAR techniques, however, we use off-
the-shelf audio hardware and tackle the problem of imaging
around corners by analyzing multi-bounce sound effects.

2. Related Work

Optical NLOS Most non-line-of-sight imaging tech-
niques discussed in the literature operate in the optical do-
main. These approaches can be broadly classified as being
passive [7, 22], i.e. not requiring structured illumination, or
active. Active systems usually either rely on ultra-fast illu-
mination and detection [9, 10, 15, 17,21, 23, 27, 33, 34, 36,
, 39] or on coherence properties of light [0, 19, 20]. To
date, passive NLOS systems have only demonstrated scene
reconstructions with limited quality, systems that use co-
herent light are typically limited to microscopic scenes, and
time-resolved systems require expensive equipment, such
as streak cameras or single-photon avalanche diodes and
ultra-fast lasers. Our approach extends time-of-flight tech-
niques to the acoustic domain, leveraging acoustic scatter-
ing properties to more efficiently image diffuse objects with
comparatively lower acquisition times, longer ranges, and
with less expensive equipment than optical techniques.

Radar NLOS The capability of imaging or tracking ob-
jects through walls has also been demonstrated using other
parts of the electromagnetic spectrum, such as wifi and
radar [1, 2, 3, 42]. These approaches are successful for
through-wall imaging because the wavelengths they operate
at physically propagate through walls without much scat-
tering. Thus, this inverse problem is significantly easier
than that of optical approaches, which more closely resem-
bles diffuse optical tomography. Seeing around corners
with wifi or radar is substantially more difficult than seeing
through walls because the energy would have to be scat-
tered off of the wall and not through it. Further challenges
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Figure 2. Illustration of the scene geometry and measurement cap-
ture. The acoustic array emits an acoustic signal which reflects
specularly off of the wall, to the hidden object, and back. Due to
the mirror-like scattering of the wall at acoustic wavelengths, the
measurements appear to be captured from a mirrored volume lo-
cated behind the wall, as if the wall were transparent. The transmit
signal is a linear ramp in frequency over time. For a single reflec-
tor, the return signal is a delayed version of the transmit signal
(top right). The receive and transmit signals are mixed together
and Fourier transformed, producing a sharp peak at a frequency
proportional to the distance of the reflector (bottom right).

of some of these methods include strict government regula-
tions on through-wall imaging systems [35], which make it
difficult to release data and fully disclose algorithmic meth-
ods. Our approach focuses on seeing around corners with
readily available, low-cost acoustic systems.

Acoustic Imaging Imaging simple shapes with sound has
been proposed in the past [12, 13]. Moreover, visual-
acoustic imaging techniques have been successful for gen-
erating sound from video [ 1, 29, 44], for localizing sound
sources or speech signals from video [14, 28, 31, 41],
or for imaging with microphone arrays [25]. Acoustic
imaging techniques are also common in seismic applica-
tions [4, 26, 40], for through-tissue imaging with ultra-
sound [37], and for line-of-sight imaging, for example with
sonar [24]. To the best of our knowledge, this is the first
approach to non-line-of-sight 3D scene reconstruction with
acoustics.

3. Acoustic NLOS Imaging
3.1. Observation Model

We parameterize the acoustic wavefield such that the
transmitting speakers and receiving microphones are lo-
cated on the plane {(z,y,2) € R x R x R|z = 0}.
The wavefield is a 5D function given by 7(z¢, y¢, Zr, Yr, t),
where x;, y; indicate the spatial positions of the speakers,
Z,, Y, indicate the microphone positions, and ¢ indicates
time (see Figs. 1, 2).

We model the measurements as a function of the
spatially-varying albedo, p(z, y, z), and an acoustic bidirec-
tional reflectance distribution function (BRDF), f(wy,w.)
[32], which depends on the normalized vector w; point-
ing from a point (z,y, z) to the transmitting speaker and
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Figure 3. Illustration of acoustic scattering BRDFs. Surfaces that
are flat on a scale larger than the wavelength exhibit specular scat-
tering (center left). Corner geometries on the scale of the wave-
length exhibit retroreflective scattering (center right). For surfaces
smaller than the wavelength, diffraction around the object causes

a diffuse scattering event (right).

the normalized direction w,. pointing to the receive location
with wy, w, € R3. The measurements then capture the re-
sponse of a volume to an acoustic signal where the volume
occupies the half-space 2 = {(z,y,2) E RXx R x R|z >
0}. The acoustic signal is transmitted from (x¢, y¢, 2 = 0),
and the response recorded at (z,, ¥, 2 = 0):

t)=///ﬁp(x,y72) (1
(7]

flwe,we) gt — (re + 1) /c) dax dy dz.

Here, g is the acoustic signal (described below), c is the
speed of sound (=340 m/s in air), and the distance variables
r¢ and r,. are given by

rege = @ — )2+ (g

Like other NLOS image formation models, we assume the
volume to be free from self-occlusions and do not explicitly
model visibility terms [27].

The measurement geometry is further illustrated in
Figs. 1 and 2. At acoustic wavelengths, the wall acts as a
mirror-like reflector, scattering the transmit signal g specu-
larly around the corner, to the hidden object, and back to the
acoustic array. Due to the specular scattering of the wall, in
the measurements the hidden object appears to be located
at a position beyond the wall. For this cause we ignore the
wall, such that the image formation models the capture of
measurements from a virtual object located behind a trans-
parent wall.

For smooth hidden objects which also exhibit specular
scattering, we assume that the surface normals of the virtual
object are oriented towards the acoustic array so that the
signal can be observed. This assumption is also made e.g.
by radar systems which image through walls and capture
specular scattering [1, 3, 42].
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Acoustic Scattering The magnitude of the reflected
acoustic wave, or the observed acoustic albedo, p, depends
on the difference in material density and speed of sound at
the interface between air and the scattering object. As the
density of the object material increases, more of the sound
is reflected rather than transmitted through the object.
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Figure 4. Signal falloff (left) and resolution analysis (right). Mea-
surements captured for a corner reflector and a flat, specularly scat-
tering target are plotted along with a linear regression on a log-log
scale. The signal decay is approximately d~*-°2 for the corner
reflector and d =189 for the flat target which roughly matches the
expected d 2 falloff. The d~* falloff for optical NLOS imaging
with a diffuse reflector is also shown. The lateral resolution over
distance is shown for a range of acoustic signal bandwidths com-
pared to a typical optical setup.

The scattering response also depends on the acoustic
BRDF, f. For different size objects with different sur-
face geometries, the observed BRDF varies as illustrated in
Fig. 3. Specular scattering dominates from surfaces which
are on the order of the wavelength in size and flat relative
to the wavelength. In our implementation, the wavelength
varies from roughly 2 to 20 cm (i.e., 2 — 20 kHz). For this
specularly scattering case, f can be modeled as a delta func-
tion as given by Snell’s law:

fspecula.r (wtv wr) =0 (‘-‘-’r - (2<n, wt>n - wt)) , 3)

where n is the surface normal. For objects with sharp angu-
lar geometries and corners, which are larger than the wave-
length, a retroreflective effect can be observed. That is, the
sound is directed back in the direction from which it orig-
inated. We can again model the BRDF as a delta function
with a non-zero value where this criterion is satisfied:

fretroreﬂective (wty (4)7.) =9 (wt - wT‘) . (4)

For objects which are smaller than the wavelength, or at
edges, the acoustic wave diffracts around the object. This
diffractive scattering event can send energy in nearly all di-
rections, which can be modeled as diffuse reflection. In this
case the BRDF is Lambertian. Note that such diffuse scat-
tering events create a much weaker signal than strong spec-
ular reflections or reflections from corners. Therefore, we
rely primarily on specular and corner reflections to recon-
struct the hidden object in this work.

Distance Falloff The magnitude of the measured reflec-
tion relative to the emitted signal also depends on the dis-
tance to the scatterer. The emitted signal propagates along



a spherical wavefront from the emitter to the scatterer and
back. As specular and corner reflections redirect the wave-
front of sound rather than causing an additional diffuse
scattering event, the energy that finally arrives back to the
acoustic array is proportional to the total area of the spheri-
cal wavefront over a distance of r, +7,.. The signal falloff is
therefore proportional to 1/(r¢+7,.)% compared to 1/(r?72)
for diffuse reflections which are common in optical NLOS
imaging. We experimentally verify this falloff in Fig. 4.

Transmit Signal While we wish to capture the response
of the scene to an acoustic impulse, producing such an im-
pulse at high volume from conventional speakers is imprac-
tical. Instead, we transmit a modulated acoustic signal and
pre-process the receive signal to emulate the response of the
scene to a short pulse.

The modulation and preprocessing is adopted from
frequency-modulated continuous wave (FMCW) radar,
which provides a good tradeoff between hardware complex-
ity and range resolution compared to other CW or pulsed
modulation schemes [5]. The transmit signal, g(t), is a lin-
ear sweep from an initial frequency fy to a frequency f;
over a time T (see Fig. 2):

g(t) = sin {Qﬂ' (fot + le_TfotQ)] L0<t<T. (5)
The captured measurements 7(x¢, y¢, T, Y, t) thus contain
attenuated and delayed copies of g(t) backscattered by each
reflector in the scene. To emulate the response of a scene to
a short pulse we mix the received signal, 7, with the origi-
nal transmit signal, g(t), along the time dimension and then
take the squared magnitude of the Fourier transform. For a
fixed transmit and receive position, each reflector produces
a peak at frequency f; given by

77"t+7"r
fo= T

where B = f1 — fo is the bandwidth of g(t) [5]. We there-
fore approximate the FMCW pre-processed measurements
T as the scene response to an impulse, J, such that

- 1

T(wtaytaxray’r‘at) = ///mp(xayvz) (7)
pA T

—tc) dx dy dz,

B, (6)

f (wtawr) ] ((rt + rr)

where ¢ is the time dimension after scaling the frequency
axis of FMCW pre-processing by 7'/ B.

3.2. Reconstruction from Confocal Measurements

In the case where the transmit and receive locations are
at the same spatial position (zy = z,- and y; = y,-), we can
develop closed-form solutions for the reconstruction proce-
dure. This is referred to as a “confocal” scanning arrange-
ment in optical non-line-of-sight imaging where the laser

and sensor illuminate and image the same position on the
wall [27]. We proceed with this assumption of confocal
acoustic measurements for closely spaced speakers and mi-
crophones and then show how to incorporate non-confocal
measurements into this framework.

When the hidden object is specular, we assume that the
hidden object has surface normals that direct sound back to
the acoustic array, or that n(x,y, z) ~ %, which also

implies that wy ~ w, and f(w¢,wy) =9 (Z wi —wi |,
i
where 7 indexes an element of the vector. Then the confocal

measurements are given by

Te(@e, e, 1) = @///p(x,y,?&)lg (Tt a t2c)
2
S <Z ‘*’i - wi) dx dydz

where we use the relationship r; = %C to pull the atten-
uation factor ﬁ from Eq. | out of the integral. Note
that in the confocal case, we only have w; = w, when
Ty =, X T,y = yr ~ y, and § ~ z. Therefore the cap-
tured measurements approximate the reconstructed volume,
or Te(xy, T, %) ~ p(z,y,z). In other words, if the hid-
den object contains surface normals that return sound to the
acoustic array, we can directly capture the specular image
of the object. Of course, in the confocal case, the acoustic
reflection is only captured if the normal is oriented directly
towards the transmit and receive location. Being able to
capture and efficiently reconstruct the hidden volume from
specular reflections which return to other (non-confocal) re-
ceive locations can provide a large increase in the captured
signal and the reconstruction quality.

For diffuse or retroreflective hidden objects, the captured
measurement can be approximated as

- 1 t
ulernant) = oz [[ [ s ( - 2) ddyds,
(9]

©)
which ignores the Lambertian terms and assumes isotropic
scattering. Given this image formation model, the Light-
Cone Transform (LCT) can be used as a closed-form so-
lution for p(x,y,z). The transform consists of a re-
interpolation of the measurements along the ¢ dimension
and deconvolution with a pre-calibrated kernel [27].

)

3.3. Non-Confocal Reconstructions

Confocal measurements enable efficient reconstruction
of the 3D geometry of the hidden volume using the methods
outlined in the previous section; however, we also wish to
derive efficient reconstruction routines for the more general
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Figure 5. Illustration of normal moveout (NMO) correction and
dip moveout (DMO) correction. Given a known offset between
the transmit and receive positions with respect to a midpoint posi-
tion x,, and a scatter oriented with surface normal perpendicular
to the measurement plane, NMO correction adjusts the offset mea-
surements to emulate a confocal measurement taken at x,,. If the
scatterer is not oriented perpendicular to the measurement plane,
an additional DMO correction shifts the measurements in time and
in space to confocal position z*.

case of non-confocal measurements captured by the acous-
tic array which may contain additional specular reflections
returning outside the confocal receiver positions.

We achieve efficient processing of the non-confocal
measurements by computationally adjusting them such
that they emulate measurements captured over a confo-
cal sampling grid. This computational adjustment con-
sists of three steps. First, we reparameterize the measure-
ments by their midpoint and offset locations (2, ¥, ) and
(hg, hy) instead of transmit and receive positions (z, y¢)
and (2, y,). The midpoint and offset parameters are given
by ., = (¢ + x,)/2 and h, = |z, — x4|/2. Second, we
resample along the time dimension to remove the additional
roundtrip propagation time of measurements with non-zero
offset (hy, hy, > 0) relative to confocal measurements with
zero-offset (hy, hy = 0). Third, we apply an additional cor-
rective factor that adjusts the midpoint and time of captured
measurements to account for surface orientation. The sec-
ond and third processing steps are common to seismic imag-
ing and are known as normal moveout (NMO) correction
and dip moveout (DMO) correction [40]. A pseudocode
description of this adjustment procedure is included in the
supplementary material.

The emulated confocal measurements are then obtained
by integrating along the offset dimension of the NMO and
DMO corrected measurements 7* given as

7:: (me, Ym» tn) = // %* (xma Ym» h;w hya tn) dh.L dhy
thhy
(10)
Here (2,1, is the region of support of the offsets, 77 rep-
resents the emulated confocal measurements, and ¢,, is the

normal-moveout-corrected time dimension. For clarity we
describe NMO and DMO correction in detail for two di-
mensions (used in our linear acoustic array) in the following
sections and include the three-dimensional equations in the
supplementary information.

Normal Moveout Correction Normal moveout correc-
tion takes measurements whose transmit and receive loca-
tions have a midpoint location x,, and offset h,, and applies
an offset-dependent shift in time so that the resulting mea-
surements approximate confocal, or zero-offset, measure-
ments taken at the midpoint z,,. Given the measurement
geometry of Fig. 5, the time difference between measure-
ments taken with offset h, and zero-offset is

, an2

ty = |12 — 5

(1)

This formulation assumes that the measurements are cap-
tured from scatterers with location x = x,,,, or that the nor-
mal points in a direction perpendicular to the acoustic array
(see Fig. 5).

Dip Moveout Correction For scatterers whose surface
normals do not point perpendicular to the acoustic array, an
additional dip moveout (DMO) correction adjusts the time
of arrival and midpoint location to align with those of the
confocal measurement. Let ¢, be the angle orientation of a
scatterer and n, = sin ¢, and n, = — cos ¢, be the asso-
ciated normal vectors (shown in Fig. 5), then the corrected
time [40] is

12)

Generally, though, the angle ¢, is unknown. Furthermore,
the correction should adjust not only the measurement time,
but also the midpoint location of the measurement.

To apply these corrections without knowledge of ¢,., we
use a Fourier domain approach from seismology called log-
stretch DMO correction. This approach provides a closed-
form solution to DMO correction by re-interpolating or
stretching the NMO-corrected measurements along the time
domain such that ¢/, = Int,, and applying a phase shift in
the Fourier domain. Let T},,,, be the Fourier transform of
the NMO-corrected measurements along the x,,, and ¢/, di-
mensions, and let &, and W be their Fourier duals. Then
the Fourier transform of the DMO corrected measurements,
Tamos 1s derived by Zhou et al. [43] and given as

Tdmo(kan;hz) = €j¢ Tnmo(kwi;hz)v (13)

0, Ehy = 0
kehas W=0
w 2hsh, L+ (Be) +1
vz lla w
2{ 1+< W ) 1hl|:2:|}, W =#£0
(14
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Figure 6. Reconstruction pipeline shown for a scene with two
cutout shapes (top left). The subset of confocal measurements (top
right) is augmented by processing the set of non-confocal mea-
surements to emulate the confocal geometry (bottom left). An iter-
ative reconstruction procedure applies spatial deconvolution with
a measured spatial PSF and sparsity and sparse gradient priors to
produce the final reconstruction (bottom right).

The correction is performed for each offset h,, the result
is inverse Fourier transformed and then un-stretched along
the time dimension to yield the output of the correction, 7*.

Additional details on DMO correction can be found in the
supplementary material.

Reconstruction The reconstruction procedure consists of
applying NMO and DMO correction to the captured mea-
surements and using the LCT if the hidden object exhibits
diffuse or retroreflective scattering. We use the LCT se-
lectively, as applying it to specular measurements reduces
reconstruction quality (see supplementary material). To fur-
ther mitigate spatial blur and improve reconstruction results,
we apply an iterative reconstruction based on the alternating
direction method of multipliers [8]. The spatial blur is mea-
sured by fitting a Gaussian to the initial reconstruction of a
small (5 cm) corner reflector at a distance of approximately
1 m from the acoustic array. Along with the deconvolution,
we apply sparsity and total variation priors on the recon-
structed volume. Intermediate results of the reconstruction
(visualized using the Chimera volume renderer [30]) are
shown in Fig. 6, which demonstrates how incorporating the
non-confocal measurements improves signal quality and in-
creases spatial sampling by reconstructing on the midpoint
grid. Further details on the iterative reconstruction can be
found in the supplementary material.

4. Implementation

Our experimental setup is shown in Fig. 7. A linear ar-
ray of 16 pairs of collocated speakers and microphones is
mounted vertically on a horizontally scanning translation
stage. The speakers and microphones are evenly spaced
along 1 m in the vertical dimension, and the translation

N

microphones

speakers fx

audio interface

-
T

=
-
~
-
=
7
’
»
-
7
7
7
Y
4
7

e -
power supplies
—_—

translation stage

Figure 7. Photograph of the prototype system. The prototype com-
prises a linear array of 16 speakers and microphones mounted ver-
tically on a 1 m translation stage. Power amplifiers and a set of au-
dio interfaces drive the speakers and record from the microphones.

stage provides 1 m of travel distance. An acoustic foam
barrier is placed between the hidden object and the array,
leaving an indirect path for sound to scatter off of a visible
wall, to the hidden object, and back to the array.

Hardware The hardware comprises a set of off-the-shelf
omnidirectional measurement microphones (Dayton Audio
EMM-6), 1-inch automobile speakers (DS18 TWC), and
two 8-channel acoustic interfaces (Behringer ADA8200,
UMC1820) that are synchronized by fiber optic cable to
provide 16 channels of input and output at a sampling rate
of 48 kHz. We use two sets of 8-channel amplifiers (Emo-
tiva A-800) to drive the speakers with our transmit signal.
The translation stage (Zaber X-BLQ-E) is scanned to take
measurements at 32 positions along a I m interval.

The transmit signal is a linear frequency chirp from 2
to 20 kHz with a duration of 0.0625 s. Here, the chirp
bandwidth is limited by the frequency response and sam-
pling constraints of the hardware. We measure the chirp
volume to be approximately 80 dBgpp at 1 m. Given the
constraint that we have only a single chirp in flight at a
given time, the maximum range for the system is less than
0.0625s x %U% = 10.6 m. The total chirp time at each
scan position is therefore 16 x 0.0625 s = 1 s and the total
scan time, including mechanical scanning, is approximately
4.5 min.

Software All procedures are implemented in Python. An
initial reconstruction including NMO and DMO correction
with the LCT over a gated 2 m range (32 x 30 x 250 reso-
lution) requires 4 s on an Intel 2.50 GHz Core 17-4870-HQ.
The iterative reconstruction requires 0.1 s per iteration with-
out the LCT operator, and 9 s per iteration with the LCT op-
erator and typically converges in several hundred iterations.
All datasets and software are available online'.

Uhttps://github.com/computational-imaging/AcousticNLOS
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Figure 8. Results captured with the hardware prototype. Pho-
tographs of each scene are shown in the top row, and maximum
projection visualizations are shown in the bottom row.

Calibration We calibrate the microphone gain on the
acoustic interfaces to be approximately equal across chan-
nels by facing the acoustic array towards a flat target and
tuning the analog controls to equalize the received signal.
The microphone frequency response is also calibrated to
be approximately flat from 2 to 20 kHz using frequency-
dependent scaling factors provided for each microphone
from a factory calibration procedure. The experiment room
is isolated using acoustic foam paneling and we also sub-
tract a measurement taken without the hidden object to fur-
ther mitigate any signal from irrelevant room geometries.
Before the reconstruction, we scale the measurements by
(tc)? to compensate for squared distance falloff. The re-
constructed volumes enclosing the hidden object are visu-
alized by digitally gating out the measurements from the
direct path between the speaker and microphone and also
diffuse reflections from the surface of the wall.

5. Results

Experimental Results We capture experimental results
with the prototype hardware system as shown in Figs. 6
and 8. The results include the following: Letter “H”, Cor-
ner Reflectors, and Letters “LT”.

Letter “H”: This scene consists of a letter cut out from
posterboard which measures 76 cm by 86 cm. We place
the letter around the corner at a distance of 2.2 m from the
acoustic array along the indirect path of propagation and an-
gle it towards the direction of sound incident from the wall.
The reconstructed result captures the clear shape of the let-
ter as shown in Fig. 8. The dark gaps in the reconstruction
correspond to seams where posterboard panels are joined
together. At these locations, the acoustic waves appear to be
refracted around the letter or diffracted rather than strongly
reflected as at other locations.

Corner Reflectors: The four corner reflectors are placed
at different distances and heights in the scene to demon-
strate how the reconstructions resolve the relative position
of each reflector. The reflectors have a side length of 25 cm
and are centered at a distance of approximately 2.8 m from
the acoustic array along the indirect path. We place acous-
tic foam in front of the stands which hold the reflectors to
lessen their contribution to the measurements. Since these
objects are retroreflectively scattering, we use the LCT in
the initial and iterative reconstructions and show their rela-
tive 3D position in the reconstructed result of Fig. 8.

Letters “LT”: Two letters cut out of posterboard are
placed approximately 2.6 m from the acoustic array along
the indirect path. The “L” cutout is placed roughly 40 cm
behind the “T” cutout, and the letters are approximately 25
cm in width. The reconstruction recovers the shape of both
letters as shown in Fig. 6.

Signal Falloff We measure the signal falloff for acous-
tic NLOS by placing a corner reflector and flat wall (made
of posterboard) at increasing distances around the corner
from the acoustic array. A single speaker emits the FMCW
waveform and we measure the peak squared voltage of the
backscattered signal after FMCW processing. The squared
voltage (proportional to receive power) falls off roughly as
the square of the distance, as expected for a specularly re-
flecting wavefront. We measure the falloff using a linear
regression fit to the signal and distance values on a log-log
scale as shown in Fig. 4. The slope of the line indicates the
falloff; we find the slope to be -1.91 for a retroreflector and
-1.89 for a wall, where the expected value is -2.

Resolution We also derive resolution bounds on the lat-
eral resolution of our system which incorporates the FMCW
modulation scheme (see supplementary material for ex-
tended derivation) . For a temporal resolution of ~, the lat-
eral resolution Az is given as

~ye
(x —x)/rs + (20 — ) [7)

which provides the resolution given the locations of the
scatterer, source, and receiver positions. For FMCW mod-
ulation, 7 = 5= where B is the bandwidth of g(t) (see
Eq. 6). The lowest resolution is achieved with a confocal
measurement at the position of the acoustic array which
maximizes the lateral distance from the scatterer. Fig. 4
shows the theoretical lateral resolution for a scatterer with
0.5 m lateral distance over a range of axial distances from
a confocal measurement position. We also plot resolution
curves for various bandwidth values and for a confocal op-
tical NLOS setup with a temporal resolution of 60 ps [27].
Due to the relatively slow speed of sound through air com-
pared to the speed of light, a relatively small acoustic band-
width of 9.5 kHz achieves roughly the same lateral resolu-
tion as the optical setup.

Az = 15)



Optical NLOS Acoustic NLOS

Reconstruction

Figure 9. Comparison between optical and acoustic NLOS recon-
structions. The acoustic reconstruction (right) recovers the “"L”
letter while the optical reconstruction (left) fails to capture it due
to the more rapid signal falloff over distance (scaled “L” signal
shown in red box of x-z max projection). Reconstructed volumes
are centered in z around the scene for visualization.

While these results show a theoretical lateral resolution,
the achieved resolution also depends on the diffraction lim-
ited bandwidth of the transmit signal. For scatterers which
are smaller than the wavelength, less signal scatters back,
effectively reducing the bandwidth of the received signal.
This effect could be partially mitigated in an acoustic sys-
tem by using shorter wavelengths, e.g. by using ultrasonic
transducers. We show additional resolution experiments in
the supplementary material.

Comparison to Optical NLOS In order to provide a
qualitative comparison of the acoustic and optical NLOS re-
construction quality, we also capture the Letters “LT” scene
in a dark room using the optical setup and LCT reconstruc-
tion method of O’ Toole et al. [27] and compare the results in
Fig. 9. For the optical scan, we place the “T” of the scene 50
cm away from the wall and scan a confocal grid of 32 x 32
points with an exposure of 6 s per scan point. This expo-
sure time is roughly two orders of magnitude greater than
the acoustic chirp duration of 0.0625 s per speaker. While
we capture the acoustic result at a distance of roughly 1.6
m from the wall, the signal decay of the optical setup re-
quires a closer distance in order to reconstruct the closest
letter, “T”. The position of the more distant letter, “L”, is
only barely visible above the noise floor (see the z-z max
projection of the reconstructed volume in Fig. 9). Due to the
lower rate of signal falloff for acoustic NLOS, the recovered
shape of both letters is distinctly visible.

6. Discussion

In summary, we demonstrate an alternate modality for
NLOS imaging using sound. Inspired by inverse methods
from seismology and synthetic aperture radar, we develop

computational methods for acoustic NLOS imaging and
demonstrate the approach using a hardware prototype built
with inexpensive, off-the-shelf components. We also eval-
uate the resolution limits and signal decay of this modality
and provide comparisons to optical techniques.

Limitations and Future Work Our current hardware
setup simulates a 2D array by scanning a linear array;
though other hardware configurations are possible. For ex-
ample, a single scanned speaker and microphone could be
used to capture measurements from a compact device, a 1D
array could be used without scanning to capture 2D mea-
surements, perhaps for NLOS object detection, or a full 2D
array could capture the 3D volume without scanning, en-
abling faster acquisition speeds. In this work, we find that
the scanned 1D array allows a convenient tradeoff between
system complexity, measurement quality, and acquisition
speed.

For hidden objects with a weak or non-existent diffuse
component, which are not retroreflective, or which have sur-
face normals that reflect sound away from the acoustic ar-
ray, the reconstruction may fail in the absence of backscat-
tered signal. Moreover, features much smaller than the
emitted wavelengths can be difficult to resolve. In such
cases optical systems may yield better results, but at shorter
distances and with much longer exposure times due to a
more rapid falloff in signal intensity with distance. While
this shortcoming also applies to other wifi or radar-based
systems, acoustic imaging at shorter wavelengths, e.g. with
ultrasound, can potentially increase the amount of signal re-
turning by causing smaller surface features to act as diffuse
reflectors or retroreflectors.

We currently evaluate optical and acoustic NLOS sepa-
rately; however, both methods could be combined in a sys-
tem which leverages their unique benefits. A relevant appli-
cation could be for autonomous vehicle navigation where
optical systems have difficulty imaging reflections from
dark regions such as roads, tires, or buildings, but an acous-
tic signal would be strongly reflected. Many vehicles al-
ready deploy small arrays of ultrasonic transducers on their
bumpers, and so acoustic NLOS imaging in this scenario
could be practicable with existing hardware.
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