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Figure 1: Left: Reconstruction of a scene with varying scale. The surface triangle mesh adapts to the scale to capture details such as the

fountain. Right: Like the surface mesh, our volume discretization adapts to the available information and our multiscale convolutional

kernels adapt to the grid, allowing us to efficiently infer and learn an implicit representation of the surface with ConvNets.

Abstract

We propose generalized convolutional kernels for 3D re-

construction with ConvNets from point clouds. Our method

uses multiscale convolutional kernels that can be applied

to adaptive grids as generated with octrees. In addition

to standard kernels in which each element has a distinct

spatial location relative to the center, our elements have a

distinct relative location as well as a relative scale level.

Making our kernels span multiple resolutions allows us to

apply ConvNets to adaptive grids for large problem sizes

where the input data is sparse but the entire domain needs

to be processed. Our ConvNet architecture can predict the

signed and unsigned distance fields for large data sets with

millions of input points and is faster and more accurate than

classic energy minimization or recent learning approaches.

We demonstrate this in a zero-shot setting where we only

train on synthetic data and evaluate on the Tanks and Tem-

ples dataset of real-world large-scale 3D scenes.

1. Introduction

Generating a description of the surface of objects or

whole scenes is a key problem in 3D reconstruction. While

the acquisition of images and scans becomes easier and eas-

ier, combining this information into a global and consistent

3D structure becomes more difficult with the increasing size

of the datasets. However, large datasets are particularly in-

teresting as they can digitize our 3D world and enable ap-

plications like navigation or virtual sightseeing.

An important part of many 3D pipelines is volumetric

fusion, which fuses partial observations into a global 3D

description. In this approach, the problem of finding the 2D

surface is turned into finding a 3D scalar field from which

the surface can be extracted as a level set. An inherent prob-

lem of this approach is the cubic growth of the volume lead-

ing to high computational costs. Another difficulty arises

from noisy input data that requires the use of good priors in

the fusion process.

To tackle these challenges many works have proposed to

use specialized adaptive data structures like octrees to store

3D grids more efficiently and adapt algorithms to directly

operate on these structures. These types of algorithms are

often highly specialized and therefore have high engineer-

ing costs. They also often employ PDEs, which implement

rather simple priors that prefer surfaces with minimum cur-

vature or minimum area.

In contrast to this are learning approaches that can learn

complex priors from data, which makes them well suited for

the fusion task. Especially ConvNets have become a stan-

dard method in image processing pipelines due to their flex-

ibility and efficiency for data laid out in regular 2D grids.

While ConvNets naturally generalize to 3D data they also

suffer from the cubic growth in complexity.

To make use of ConvNets for volumetric fusion, we

propose to generalize the standard convolutional kernels to

adaptive grids. Adaptive grids not only allow to efficiently

store data but also allow to capture information at different

scales as shown in Figure 1, which is important for the re-

construction of large datasets where some regions are more
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Figure 2: The input for our method is an oriented point cloud. We aggregate the information in an adaptive grid and use our multiscale

convolutional kernels to compute distance functions. In the last stage we decode the distance functions and extract the zero-level set.

important. We design multiscale convolutional kernels that

span multiple scales. Compared to regular kernels where

each element has a distinct spatial position relative to the

center, our kernel elements additionally have a relative scale

with respect to the center element allowing the network to

learn spatial and scale relationships on adaptive grids. We

show that we can use our convolutions with a simple U-Net-

like architecture to learn an end-to-end trainable volumetric

fusion pipeline that computes the signed and unsigned dis-

tance field.

Our approach achieves significantly better reconstruc-

tions than classic analytical volumetric fusion approaches

and recent learning-based methods. We demonstrate this

qualitatively and quantitatively in a zero-shot generalization

setting on real-world datasets from Tanks and Temples [16]

and [8]. In addition, we can show that our method can re-

construct large datasets with hundreds of millions of points

and is more than two times faster than the baselines.

2. Related Work

Analytical volumetric fusion. Early approaches like [6]

use regular voxel grids and simple averaging to fuse infor-

mation from multiple scanners to create an implicit repre-

sentation of the surface, which then can be extracted with

marching cubes [19]. This concept has been evolved with

adaptive spatial data structures, PDE-based priors and so-

phisticated optimization algorithms by [14, 2, 18, 17, 30]

and many others. We compare to Poisson Surface Recon-

struction (PSR) [14], which is the most well-known method,

and Smoothed Signed Distance Reconstruction (SSD) [2]

in our experiments. Both methods use octrees as spatial

data structures and simple PDE-based priors. Methods for

fusing datasets with multiple scales have been proposed in

[8, 9, 27]. These methods make use of scale information of

the input data for steering the generation of the spatial data

structure and the fusion process. We adopt the use of scale

information and compare to [27] in our evaluation.

Learned surface reconstruction. Learning global implicit

functions for representing surfaces has been proposed by

[20, 21]. Both works use MLPs to encode the implicit func-

tion of shapes of entire objects. The MLPs allow querying

the value of the implicit function at arbitrary locations al-

lowing to sample the function at arbitrary resolution after

training. [12] and [3] combine the implicit function net-

works with regular grids and learn to represent local shapes.

Jiang et al. [12] use an autoencoder to learn the latent code

of local shapes and the decoder. Chabra et al. [3] directly

learn the code and decoder parameters. We adopt the rep-

resentation of local shapes in our network but instead of

optimizing for the latent code during inference, our Con-

vNet generates for each voxel a code in the forward pass

describing the local distances to the surface. This is also

similar to [22] combining the occupancy network in [20]

with a convolutional network. Peng et al. [22] use a regu-

lar 3D ConvNet and interpolate features within the grid to

evaluate the implicit function, while we use adaptive grids

and extrapolate the local functions.

Our method and many other surface reconstruction

methods assume per-point normal information to correctly

compute the sign or occupancy value for the implicit sur-

face representation. Recent exceptions to this are [1, 7, 4].

Atzmon and Lipman[1] shows that networks can be trained

to infer the sign of a distance function from unsigned data

and demonstrate this on object-centric datasets. Erler et

al. [7] uses a patch-based approach which samples addi-

tional global points to support the prediction of the correct

sign. Their method demonstrates good generalization per-

formance to unseen and real datasets. We use their method

as a baseline in our evaluation. Chibane et al. [4] propose to

use the unsigned distance function as implicit surface repre-

sentation allowing them to represent open shapes that do not

have a well-defined inside or outside. However, extracting

an explicit surface representation from unsigned distance

fields is more involved and comes at a higher computational

cost. Our method predicts the signed as well as the unsigned

distance function. We make use of the simplicity of detect-

ing the sign change in the signed distance function and use

the unsigned distance function to limit the surface genera-

tion to regions that are predicted to be close to the surface.

Learning on sparse data structures. Riegler et al. [24]

propose to use octrees to accelerate convolutions on sparse

3D grids and show an application for depth map fusion in

[23]. While their work aims to accelerate regular convo-

lutions by avoiding redundant computation between voxels

of different size, our method adapts the convolution kernel

to account for different voxel sizes and incorporate geomet-

ric information from multiple scales. Klokov and Lempit-

sky [15] define networks on kd-trees for segmentation and

classification. They assign learnable weights to each split

operation in a kd-tree to recursively combine information

of child nodes. In contrast to our method, which allows

us to define convolutions within an adaptive grid, the oper-



ations in Kd-Networks are only defined between different

depth levels, which is more limiting as it strongly couples

the network architecture to the tree depth. [11, 5] implement

submanifold sparse convolutional networks for sparse N-

dimensional grids, which can avoid computation on empty

space but would not be suitable for our task where datasets

span multiple resolution levels.

3. Overview

Our approach is a pipeline with three stages as depicted

in Figure 2, which we summarize here.

Octree Generation and Feature Aggregation. The input

to our method is a point cloud with per-point normal infor-

mation. To efficiently process the input data we aggregate

information in an adaptive grid. We, therefore, start our

pipeline by building a face-balanced octree. Working with

balanced octrees allows us to define efficient convolution

kernels for the next stage. To steer the subdivision of the

volume, we use the scale information associated with the

input points or estimate the scale from the point density.

After building the octree, we extract grids at multiple reso-

lutions starting with the leaf nodes and walking up the tree

hierarchy. We then aggregate features from the point cloud

in the grid with the highest resolution using a continuous

convolution. Continuous convolutions define a continuous

kernel and allow to process points at arbitrary positions. We

define them in Section 4.

Adaptive Grid Convolutions. The main stage of our ap-

proach applies the U-Net architecture shown in Figure 3 for

processing the aggregated information from the point cloud.

The output of this stage are features that encode local dis-

tance functions describing the sought surface. Convolutions

throughout the network work on the adaptive grids and use

multiscale convolutional kernels that contain elements for

voxels at multiple resolution levels. Since all grids are face-

balanced our kernels are compact and require only a small

number of elements. Similar to our grids adapting to the

input data, the kernels adapt to the grid. Moreover, un-

like standard convolutions, not all kernel elements are active

at all grid locations allowing us to efficiently process large

grids. We formally define the convolutions in Section 5.

Distance Field Decode and Contouring. The last stage

decodes the features generated from our ConvNet to ob-

tain signed and unsigned distances to the surface for each

voxel in the grid with the highest resolution. We use an

MLP for the decoding that allows us to query the distance

values at arbitrary points in the vicinity of the voxel cen-

ter. Further, we can use the MLP to query the gradient of

the distance values providing additional information for the

contouring. For the contouring, we implement dual con-

touring for adaptive grids, which generates a triangle mesh

for the zero-level set of the signed distance field. We use

the unsigned distance values to restrict vertex and triangle

generation to regions near the surface. We give more details

in Section 6.

4. Octree Generation and Feature Aggregation

We aggregate information from the input point cloud in

an adaptive grid based on an octree. To generate the oc-

tree we follow a similar strategy to [27]. We assign to each

input point a footprint size σ and use it to steer the subdi-

vision of the octree such that the edge length l of the voxel

containing the point is smaller than σ. The footprint size

of the point relates to the scale of the measurement. For

points generated from MVS methods, this is commonly de-

fined by the camera intrinsics – the sensor pixel size – and

the measured depth. For a pinhole camera we use σ = d
f

,

where d is the distance to the optical plane and f is the focal

length. For point clouds for which the footprint size infor-

mation is unknown, we define the footprint size of point

i as the radius of a sphere centered at the point’s position

xi such that the sphere encapsulates k neighboring points,

i.e., σi = maxj∈Nk(xi)(‖xi − xj‖2). Given the footprint

size, we discard obvious outliers based on a density thresh-

old and build a linear octree with location keys [10]. To this

end, we assign a location key to each point and collect all

unique keys. The tree depth d for each point is chosen such

that argmind(σ) >
L
2d

with L as the edge length of the cu-

bic bounding box. To ensure that the entire domain is cov-

ered by the octree, we create all missing parent nodes up to

the root node and in a second pass eliminate mixed nodes by

creating the missing child nodes. Since our convolution ker-

nels require a face-balanced octree we also subdivide nodes

that violate this property as illustrated in Figure 4 until all

nodes fulfill the condition. This process increases the num-

ber of nodes by a factor of 1.12 on average on our evaluation

data.

After constructing the octree, we aggregate information

from the input point cloud into the leaf nodes. We make

use of continuous convolutions [28], which allow us to per-

form a convolution between two point clouds with points

at arbitrary positions. Our two point clouds are the input

points with normal information as depicted in the first stage

in Figure 3 and the voxel centers of the leaf nodes of the

octree. Following [28] we define the convolution at xj , the

center of the voxel j, as

(f ∗ g)(xj) =
1

ψj

∑

i∈N (xj ,R)

aij fi g(Λ(xi − xj)). (1)

The feature fi of input point i is a vector with the normal

information. N (xj , R) is the set of input points within a ra-

dius R around xj . The radius R depends on the voxel j and

its edge length lj ; we set R = lj/2. aij is a scalar function

that defines the importance of an input point with respect
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Figure 3: Schematic overview of our network architecture. We give detailed information about parameters in the supplementary material.

We use a continuous convolution to aggregate the information from the oriented point set to the finest adaptive grid. We then employ a

U-Net-like architecture to process the hierarchy of adaptive grids and generate a code for each voxel that encodes a local distance function,

which gives us an implicit representation of the surface. To evaluate the implicit functions û and v̂ for a voxel we use coordinates r that

are relative to the voxel size and center and a small MLP decoder with 3 layers. Since the decoder is differentiable, we can add operations

from the backward pass to the network, visualized here as transposed layers, to compute the gradient of the signed distance ∇u, giving us

a decoder with a total of 6 layers of which 3 pairs share weights.

Figure 4: Left: Unbalanced quadtree. Right: Quadtree after bal-

ancing. The upper-right and lower-left cells have been subdivided

to make the tree face-balanced. The depth difference between

face-adjacent nodes is at most 1.

to the voxel that we want to aggregate the information into.

We define the importance of a sample based on the compat-

ibility of the scale between the point and the voxel and the

distance of the point to the voxel center. Assuming that each

point describes a small volume of the distance function, we

compute the scale compatibility of point i and voxel j as the

ratio of the volumes:

cij =

(

min(σi, lj)

max(σi, lj)

)3

. (2)

To account for the spatial distance of the point to the voxel

center we use a window function [28], which yields the im-

portance aij as

aij =







cij

(

1− ‖xi−xj‖
2

2

l2
j

)3

for ‖xi − xj‖2 < lj

0 else.
(3)

The normalizer ψj is therefore

ψj =
∑

i∈N (xj ,R)

aij . (4)

Normalization allows us to be invariant to changes in the

absolute point density. We propagate theψj obtained during

the aggregation step in our network architecture to retain

information about densities. For the convolution filter g we

use a resolution of 4×4×4. Λ is a ball-to-cube mapping,

which maps the spherical filter to the cubic kernel.

5. Adaptive Grid Convolution

Our grid adapts to the resolution present in the input

point cloud and represents data at multiple scales. As a con-

sequence, regular 3D convolutions which expect the data to

be represented at regularly spaced points cannot be used for

processing. Sparse convolutions [11, 5] relax the require-

ments from dense regular grids to sparse regular grids, but

again do not account for the irregular spacing found in adap-

tive grids. OctNet [24] accelerates convolutions on octrees,

but the convolutions have regular cubic kernels. In contrast,

our kernels adapt to the grid, just as the grid adapts to the

input point cloud.

In the following we describe convolutions for face-

balanced adaptive grids using multiscale convolutional ker-

nels. Figure 5(a) shows 4 examples of the kernels used. For

convolutions within the same grid, we use kernels that cover

the center element as well as the face neighbors at the same

and adjacent scales. Limiting the convolution to the face

neighbors results in a small kernel with 55 elements, which

is in between the storage requirements for regular 3×3×3
and 4×4×4 kernels. While for regular kernels in standard

3D convolutions all kernel elements are always active, only

some of the elements of our multiscale kernels are active

at each position. Depending on the spatial configuration of

the grid, the number of active elements ranges from 7 to

25, making our kernel computationally efficient, small, and

suitable for processing large grids.

Formally, we define the convolution at voxel j in the
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Figure 5: Convolution on an adaptive face-balanced grid. (a) shows 4 examples of the kernel shape used to compute the convolution at

the orange center element. Our convolution kernel considers all face-adjacent voxels to the center. Adjacent voxels may have a different

scale than the center and can have different alignments as can be seen in the first three examples. Since the grid is face-balanced there is

only a small number of configurations for neighboring voxel scales and alignments. (b) shows all elements of our multiscale kernel for this

quadtree example. The bottom shows the superposition of 8 neighboring elements for the next larger scale level. Note that the elements

for the larger voxels overlap due to the different alignments to the center element. This can be observed by comparing the alignment of the

dark blue voxels in the first two examples in (a) with the dark blue voxels in the third example. The kernel in this 2D example has in total

21 elements, while our 3D multiscale kernel has 55 elements in total. At each position in the grid only a subset of the elements is used as

in the examples given in (a).

adaptive grid similar to (1) as

(f ∗ g)j =
1

ηj

∑

i∈Nj

ai fi g(I(i, j)). (5)

The filter g is here a discrete kernel with 55 elements. The

index function I computes the index of the kernel element

with respect to the spatial configuration, which can be de-

duced from the location keys of the adjacent voxels i and

j. Similarly, the set of face-adjacent neighbors Nj can be

computed by looking up all neighbors of the location key

associated with the output voxel j. The number of neigh-

bors varies with respect to the spatial configuration and also

border voxels have fewer neighbors. Lookups in the linear

octree can be accelerated with a hash table, yielding O(1)
complexity for finding the neighbors of each voxel. In our

implementation, we precompute all neighbors during octree

generation, which allows us to reuse the neighbor lists for

multiple convolutions on the same grid. The order of voxels

being processed can be arbitrary but follows the ordering of

the location keys in our implementation. For the normalizer

ηj and the importance ai of the neighbor voxel i we use two

different configurations. For convolutions where we want

to normalize with respect to the neighbors we set

ηj =
∑

i∈Nj

ai with ai = ψi, (6)

where ψi are the importance values computed in the aggre-

gation stage (4) or the importance values propagated on the

adaptive grid. We use the same stencil as in the convolu-

tions to propagate the importance values and give details in

the supplement. For convolutions without normalization we

simply set

ηj = 1 and ai = 1. (7)

In our architecture we mix both configurations, convolution

with and convolution without normalization, to incorporate

and retain information about the density from the aggrega-

tion stage. For the first convolution on each grid level in the

encoder, we compute 8 feature channels with normalization

in addition to the unnormalized channels.

For transitions between grids of different resolutions we

define up- and down-convolutions with kernels that use 9

elements. 8 kernels elements are used for voxels that are

either subdivided or merged and another kernel element is

used for voxel that remain unchanged in both grids, which is

also reflected in the index function I . We give more details

on up- and down-convolutions in the supplement.

6. Distance Function Decode and Contouring

Our approach applies volumetric fusion, which com-

putes an implicit representation of a surface in a volume.

To extract the surface as a mesh, we use dual contouring

and evaluate the signed and unsigned distance function at

the voxel centers. The last convolution layer in our net-

work generates features that encode local distance functions

akin to [3]. We decode the signed distance value u, its spa-

tial gradient ∇u, and the unsigned distance value v with an

MLP. The input to the MLP are the features f , the relative

position r, which gives the query position relative to the

voxel center c and the voxel edge length l. Like r, the out-

put of the MLP is normalized with respect to the voxel size.

To find the distance values [u, v] for a voxel i at position x

we compute

[ûi(x), v̂i(x)] = h(fi, r, θ) (8)

with r = x−ci

li
, h as the MLP, and θ as the learned

parameters. The direct outputs of the MLP, ûi and v̂i,
are normalized distances with respect to the voxel edge

length li, and the unnormalized values can be obtained with

[u(x), v(x)] = li[ûi(x), v̂i(x)]. Note that in general x can

be an arbitrary position but is most meaningful if x is close

to ci. During training we randomly sample x such that



‖x− ci‖∞ < li, which also defines the range that we con-

sider valid for x when querying the distances for voxel i.
Since our MLP is differentiable, we can compute ∇u at x

simply by extending our decoder with

∇u(x) = ∇hû(fi, r, θ), (9)

where hû is the subset of the MLP that computes û. The use

of extending our decoder with the operations for comput-

ing the gradient are twofold. First, the extension allows us

to define a loss with respect to the surface normals, which

correspond to the gradient of the signed distance function

near the surface. Second, we can make use of the gradient

in the vertex computation in the dual contouring [13, 27].

In contrast to the marching cubes algorithm, which gener-

ates vertices on the edges, dual contouring generates ver-

tices for each dual cell that has edges crossing the surface.

We compute the vertex position by minimizing a quadratic

error function defined by the values of û and ∇u at the cen-

ters of the voxels that are connected by the dual cell. The

unsigned distance value v̂ is used as an additional threshold

in the contouring step to restrict the generation of triangles

near to the surface. We only generate triangles if we detect

a sign change in û and v̂ < 1.5.

7. Training

7.1. Data Generation

Our goal is to train a general surface reconstruction net-

work. The training data and sample generation reflect this

choice. We train our method on Creative Commons data

from the Thingi10K dataset [31] and the Scan the World

project. Both are collections of 3D models for 3D printing

with a large variety of models from technical parts to sculp-

tures. For sample generation, we randomly place 3D mod-

els and virtual scanners in a scene. To generate the noisy

point clouds we follow two approaches.

Our first approach generates depth maps for each scanner

using ray tracing and applies a simple noise simulation by

altering ray directions and depth values. We then generate

the input point cloud from the depth values. This approach

can generate point clouds online during training and allows

us to smoothly vary the noise level.

In our second approach, we use Blender to render im-

ages of the generated scenes and use the patch match stereo

implementation from COLMAP [26] to compute the depth

maps to generate more realistic point clouds.

For both approaches we compute the ground truth by

building the octree as described in Section 4 and sample for

each leaf voxel a random point x close to the voxel cen-

ter c, i.e., for a voxel i we sample xi uniformly such that

‖x − ci‖∞ < li. Note that x can lie outside of the voxel

similar as in [3]. For each of these points we then compute

the closest point on the ground-truth mesh and determine

Dataset #Points #Images Type GT

Barn 24 M 410 Object Laser scan

Caterpillar 24 M 383 Object Laser scan

Church 51 M 507 Indoor Laser scan

Courthouse 95 M 1106 Outdoor Laser scan

Ignatius 7 M 263 Object Laser scan

Meetingroom 33 M 371 Indoor Laser scan

Truck 17 M 251 Object Laser scan

Citywall 359 M 564 Outdoor n/a

Table 1: Datasets for evaluation. We test our method on all

datasets from Tanks and Temples [16] with publicly available

ground truth. In addition, we use the Citywall dataset from [8].

The datasets contain indoor and outdoor settings as well as scenes

focused on a single object.

the distance and the sign to obtain the ground truth ugt(xi)
and ∇ugt(xi). We use the Embree library [29] to acceler-

ate the ray casting and closest point computations. During

training we sample data equally using the two approaches

and randomly flip the sign of the ground-truth distance and

the normals for augmentation. We show examples from the

training data in the supplementary material and will release

code for generating the training data.

7.2. Loss Functions

We define the following loss functions on the network

outputs û, v̂, and ∇u.

LSDF =
1

N

N
∑

i

δi(xi) (û(xi)−max(−2,min(2, ûgt(xi))))
2
,

(10)

which is the squared difference of the predicted and ground-

truth signed distance normalized by the respective edge

length of the voxels and truncated at ±2. The normalized

ground-truth distance is defined as ûgt(xi) = liugt(xi) and

the mask function δi(xi) is defined as

δi(xi) =

{

1, if |ûgt(xi)| < 2

0, else
(11)

to enable the loss only near the surface.

Similarly we define the loss for the unsigned distance

LUDF =
1

N

N
∑

i

(v̂(xi)−min(2, |ûgt(xi)|))
2

(12)

but compute the loss for the whole domain.

We define a loss on the normals as

LNormal =
1

N

N
∑

i

ρ ‖∇u(xi)−∇ugt(xi)‖
2
2

(13)

with the ramp ρ = max(0, 1−
|ugt(xi)|

2li
) to linearly fade out

the loss LNormal with increasing distance to the surface as



Method Barn Caterpillar Church Courthouse Ignatius Meetingroom Truck Mean

PSR [14] 47.66 29.03 40.36 16.47 76.62 26.26 44.26 40.09

SSD [2] 45.74 19.51 34.94 5.49 74.71 19.04 36.22 33.66

GDMR [27] 46.78 27.74 37.64 14.97 73.97 28.34 46.93 39.48

LIG [12] 27.04 21.17 26.34 12.44 50.34 18.63 23.53 25.64

Points2Surf [7] 16.69 14.26 12.22 7.74 50.87 12.71 15.81 18.61

Points2Surf [7] (fine-tuned on our data) 18.33 18.26 26.01 7.12 43.75 14.76 33.71 23.13

Ours (w/o LNormal) 49.00 32.94 41.75 21.14 75.47 30.99 56.43 43.96

Ours (w/o rendered data) 50.59 35.07 43.28 21.45 74.25 30.26 59.18 44.87

Ours 49.83 35.94 43.50 18.41 75.58 32.95 59.86 45.15

Table 2: F-score on the Tanks and Temples dataset. All methods use the same input point clouds. Parameters were tuned for each method

and scene. For PSR and SSD we tune the density threshold and the maximum octree depth. For GDMR we additionally tune the strength of

the data term. For LIG we try different scales for the part size and enable backface removal. To compute reconstructions with Points2Surf

we use the max model and the authors’ preprocessing script which normalizes and downsamples the point cloud. We vary the grid size

and the target point cloud size and report the best result. Additionally, we also report results for Points2Surf fine-tuned with our training

data for 50k iterations. Our method scores higher on all scenes except for Ignatius, on which PSR has a slight edge. Ignatius is the easiest

dataset with respect to noise and surface complexity, and all methods except for LIG and Points2Surf produce a good reconstruction. For

ablations (bottom), we trained our method without normal loss and without point clouds generated with COLMAP from rendered data. In

both cases we see a decrease in performance.

we are more interested in accurate orientations closer to the

surface. In all equations, N is the number of voxels at the

finest grid level. Our optimization objective is

L = LSDF + LUDF + λLNormal, (14)

with empirically determined λ = 0.1. To learn the net-

work parameters we use the Adam optimizer with a constant

learning rate of 1× 10−3 and train the network for 25,000

iterations. Training takes about 10 hours on an RTX 2080

Ti GPU. We choose a batch size of 1 to fit large training

scenes in memory.

8. Results

We focus our evaluation on zero-shot generalization

to real-world data. To this end, we use datasets from

Tanks and Temples [16] with publicly available ground truth

and use the standard evaluation toolbox implemented with

Open3D [32]. Moreover, we use the Citywall dataset from

[8], which has multiple points of interest and varying de-

tail throughout the scene.For generating the input data we

use COLMAP [25, 26]. This produces noisy and incom-

plete point clouds, which we use as input for our approach

and the baselines. Table 1 gives an overview of the type and

size of all datasets.

We compare our method to a number of analytical vol-

umetric fusion approaches: Poisson Surface Reconstruc-

tion (PSR) [14], Smoothed Signed Distance Surface Re-

construction (SSD) [2], and Global Dense Multiscale Re-

construction (GDMR) [27]. We also compare to recent

learning-based approaches: Local Implicit Grid Represen-

tations (LIG) [12] and Points2Surf [7]. LIG is specialized

for indoor scenes but Jiang et al. [12] demonstrated good

generalization to unseen data. Points2Surf is a general sur-

face reconstructor that, in contrast to our and the other meth-

ods we compare to, does not require normal information.

We use the F-score with the default thresholds [16] to

quantify reconstruction performance and show our results

in Table 2. We give qualitative examples of the results in

Figure 6 and provide more results for all datasets in the sup-

plement.

In addition, we evaluate design decisions such as the loss

on the normals LNormal and the use of more realistic point

clouds generated from rendered images. We report these

ablations in Table 2 as well. The importance of the normal-

ization is illustrated qualitatively in the supplement.

For the large Citywall dataset with 359M points we show

our reconstruction in Figure 1. Besides our method, we

were only able to reconstruct this dataset with the full point

cloud with the GDMR baseline. Our method reconstructs

the scene more than two times faster (117min) compared

to GDMR (274min) on an Intel Xeon E7-8890v3 and pro-

duces a more faithful surface. We show qualitative compar-

isons and more runtime measurements in the supplement.

9. Conclusion

We have presented an efficient ConvNet architecture for

3D surface reconstruction. Multiscale convolutional ker-

nels generalize convolutions to adaptive grids, allowing us

to process large data sets. We have demonstrated this by re-

constructing large real-world scenes with millions of points.

We have demonstrated zero-shot generalization to real data.

Our method yields better reconstruction accuracy and run-

time than well-established analytical approaches and recent

learning-based techniques.
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Figure 6: Qualitative comparison of reconstructed surfaces on 3 datasets from Tanks and Temples. The traditional methods like PSR, SSD

and GDMR show spurious geometry and ballooning artifacts. The learning approaches LIG and Points2Surf have problems with most

scenes and often miss to reconstruct surfaces. The generated reconstructions also use a lower resolution to avoid problems due to the input

size of the data. On Meetingroom our reconstruction is less noisy than PSR or SSD and does not oversmooth surfaces as much as GDMR.
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