// MUSCLE NOTES: // joint1 == -1 indicates this MTU only acts on a single joint (joint0) // phi_max0 == -10000 indicates a constant moment arm is used for joint0 // // The parameters of our MTUs that actuate DOFs in the coronal and transverse // planes are motivated by parameters of major muscles that are capable of // generating significant torques in those DOFs based on the Delp et al. 1990 // model. An exception is the hip internal rotator (HIR), where torques arise // from muscles already captured by other MTUs such as the hip abductor (HAB). // For simplicity, we do not model effects of muscles across multiple DOFs in // the same joint. We instead set HIR parameters to be the same as its // antagonist MTU, the hip external rotator (HER). BODY 00: 'world' { mass +0.000 inertia +0.000 +0.000 +0.000 local_pos +0.000 +0.000 +0.000 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.000 +0.000 +0.000 global_quat +1.000 +0.000 +0.000 +0.000 parent 00 'world' GEOM 00 { type '' local_pos +0.000 +0.000 -1.440 local_quat +1.000 +0.000 +0.000 +0.000 size +0.000 +0.000 } } BODY 01: 'trunk' { mass +19.734 inertia +0.019 +0.014 +0.011 local_pos +0.000 +0.000 -0.100 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.000 +0.000 -0.100 global_quat +1.000 +0.000 +0.000 +0.000 parent 00 'world' JOINT 00 { type 'SLIDE' local_pos +0.000 +0.000 +0.000 local_axis +1.000 +0.000 +0.000 limit +0.000 +0.000 islimited 0 } JOINT 01 { type 'SLIDE' local_pos +0.000 +0.000 +0.000 local_axis +0.000 +1.000 +0.000 limit +0.000 +0.000 islimited 0 } JOINT 02 { type 'SLIDE' local_pos +0.000 +0.000 +0.000 local_axis +0.000 +0.000 +1.000 limit +0.000 +0.000 islimited 0 } JOINT 03 { type 'HINGE' local_pos +0.000 +0.000 +0.000 local_axis +1.000 +0.000 +0.000 limit +0.000 +0.000 islimited 0 } JOINT 04 { type 'HINGE' local_pos +0.000 +0.000 +0.000 local_axis +0.000 +1.000 +0.000 limit +0.000 +0.000 islimited 0 } JOINT 05 { type 'HINGE' local_pos +0.000 +0.000 +0.000 local_axis +0.000 +0.000 +1.000 limit +0.000 +0.000 islimited 0 } GEOM 01 { type 'CAPSULE' local_pos +0.015 +0.000 +0.023 local_quat -0.000 +0.000 +0.000 +0.000 size +0.130 +0.052 } } BODY 02: 'head' { mass +4.340 inertia +0.005 +0.006 +0.003 local_pos +0.010 +0.000 +0.323 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.010 +0.000 +0.223 global_quat +1.000 +0.000 +0.000 +0.000 parent 01 'trunk' JOINT 06 { type 'HINGE' local_pos -0.030 +0.000 -0.080 local_axis +1.000 +0.000 +0.000 limit -1.047 +1.047 islimited 1 } JOINT 07 { type 'HINGE' local_pos -0.030 +0.000 -0.080 local_axis +0.000 +1.000 +0.000 limit -0.873 +1.571 islimited 1 } JOINT 08 { type 'HINGE' local_pos -0.030 +0.000 -0.080 local_axis +0.000 +0.000 +1.000 limit -1.396 +1.396 islimited 1 } GEOM 02 { type 'CAPSULE' local_pos +0.010 +0.000 +0.000 local_quat +1.000 +0.000 +0.000 +0.000 size +0.080 +0.035 } } BODY 03: 'right upper arm' { mass +2.071 inertia +0.007 +0.007 +0.001 local_pos -0.024 +0.165 -0.023 local_quat +1.000 +0.000 +0.000 +0.000 global_pos -0.024 +0.165 -0.123 global_quat +1.000 +0.000 +0.000 +0.000 parent 01 'trunk' JOINT 09 { type 'HINGE' local_pos +0.000 +0.000 +0.102 local_axis +1.000 +0.000 +0.000 limit +0.087 +1.047 islimited 1 } JOINT 10 { type 'HINGE' local_pos +0.000 +0.000 +0.102 local_axis +0.000 +1.000 +0.000 limit -2.793 +1.047 islimited 1 } JOINT 11 { type 'HINGE' local_pos +0.000 +0.000 +0.102 local_axis +0.000 +0.000 +1.000 limit -0.785 -0.087 islimited 1 } GEOM 03 { type 'CAPSULE' local_pos +0.000 +0.000 -0.032 local_quat +1.000 +0.000 +0.000 +0.000 size +0.050 +0.134 } } BODY 04: 'right forearm' { mass +1.107 inertia +0.004 +0.004 +0.001 local_pos +0.000 +0.000 -0.263 local_quat +1.000 +0.000 +0.000 +0.000 global_pos -0.024 +0.165 -0.386 global_quat +1.000 +0.000 +0.000 +0.000 parent 03 'right upper arm' JOINT 12 { type 'HINGE' local_pos +0.000 +0.000 +0.096 local_axis +0.000 +1.000 +0.000 limit -2.094 -0.087 islimited 1 } GEOM 04 { type 'CAPSULE' local_pos +0.000 +0.000 -0.032 local_quat +1.000 +0.000 +0.000 +0.000 size +0.050 +0.129 } } BODY 05: 'left upper arm' { mass +2.071 inertia +0.007 +0.007 +0.001 local_pos -0.024 -0.165 -0.023 local_quat +1.000 +0.000 +0.000 +0.000 global_pos -0.024 -0.165 -0.123 global_quat +1.000 +0.000 +0.000 +0.000 parent 01 'trunk' JOINT 13 { type 'HINGE' local_pos +0.000 +0.000 +0.102 local_axis +1.000 +0.000 +0.000 limit -1.047 -0.087 islimited 1 } JOINT 14 { type 'HINGE' local_pos +0.000 +0.000 +0.102 local_axis +0.000 +1.000 +0.000 limit -2.793 +1.047 islimited 1 } JOINT 15 { type 'HINGE' local_pos +0.000 +0.000 +0.102 local_axis +0.000 +0.000 +1.000 limit +0.087 +0.785 islimited 1 } GEOM 05 { type 'CAPSULE' local_pos +0.000 +0.000 -0.032 local_quat +1.000 +0.000 +0.000 +0.000 size +0.050 +0.134 } } BODY 06: 'left forearm' { mass +1.107 inertia +0.004 +0.004 +0.001 local_pos +0.000 +0.000 -0.263 local_quat +1.000 +0.000 +0.000 +0.000 global_pos -0.024 -0.165 -0.386 global_quat +1.000 +0.000 +0.000 +0.000 parent 05 'left upper arm' JOINT 16 { type 'HINGE' local_pos +0.000 +0.000 +0.096 local_axis +0.000 +1.000 +0.000 limit -2.094 -0.087 islimited 1 } GEOM 06 { type 'CAPSULE' local_pos +0.000 +0.000 -0.032 local_quat +1.000 +0.000 +0.000 +0.000 size +0.050 +0.129 } } BODY 07: 'pelvis' { mass +13.925 inertia +0.013 +0.009 +0.010 local_pos +0.018 +0.000 -0.363 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.018 +0.000 -0.463 global_quat +1.000 +0.000 +0.000 +0.000 parent 01 'trunk' JOINT 17 { type 'HINGE' local_pos +0.023 +0.000 +0.153 local_axis +1.000 +0.000 +0.000 limit -0.349 +0.349 islimited 1 } JOINT 18 { type 'HINGE' local_pos +0.023 +0.000 +0.153 local_axis +0.000 +1.000 +0.000 limit -0.349 +0.175 islimited 1 } JOINT 19 { type 'HINGE' local_pos +0.023 +0.000 +0.153 local_axis +0.000 +0.000 +1.000 limit -0.349 +0.349 islimited 1 } GEOM 07 { type 'CAPSULE' local_pos +0.000 +0.000 +0.000 local_quat +1.000 +0.000 +0.000 +0.000 size +0.120 +0.050 } } BODY 08: 'right thigh' { mass +8.082 inertia +0.014 +0.015 +0.004 local_pos -0.008 +0.119 -0.217 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.010 +0.119 -0.680 global_quat +1.000 +0.000 +0.000 +0.000 parent 07 'pelvis' JOINT 20 { type 'HINGE' local_pos +0.000 -0.002 +0.179 local_axis +1.000 +0.000 +0.000 limit -0.524 +0.524 islimited 1 } JOINT 21 { type 'HINGE' local_pos +0.000 -0.002 +0.179 local_axis +0.000 +1.000 +0.000 limit -2.793 +1.047 islimited 1 } JOINT 22 { type 'HINGE' local_pos +0.000 -0.002 +0.179 local_axis +0.000 +0.000 +1.000 limit -0.175 +0.524 islimited 1 } GEOM 08 { type 'CAPSULE' local_pos -0.002 +0.001 -0.030 local_quat +1.000 +0.005 +0.006 +0.000 size +0.074 +0.208 } } BODY 09: 'right shank' { mass +3.222 inertia +0.014 +0.014 +0.001 local_pos -0.005 +0.008 -0.421 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.005 +0.127 -1.101 global_quat +1.000 +0.000 +0.000 +0.000 parent 08 'right thigh' JOINT 23 { type 'HINGE' local_pos +0.000 -0.006 +0.183 local_axis +0.000 +1.000 +0.000 limit +0.035 +2.880 islimited 1 } GEOM 09 { type 'CAPSULE' local_pos +0.000 -0.012 -0.028 local_quat +1.000 -0.014 +0.000 +0.000 size +0.050 +0.211 } } BODY 10: 'right foot' { mass +1.362 inertia +0.001 +0.005 +0.005 local_pos +0.053 -0.018 -0.293 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.058 +0.109 -1.393 global_quat +1.000 +0.000 +0.000 +0.000 parent 09 'right shank' JOINT 24 { type 'HINGE' local_pos -0.053 +0.001 +0.055 local_axis +0.000 +1.000 +0.000 limit -0.349 +0.524 islimited 1 } JOINT 25 { type 'HINGE' local_pos -0.053 +0.001 +0.055 local_axis +1.000 +0.000 +0.000 limit -0.524 +0.175 islimited 1 } GEOM 10 { type 'CAPSULE' local_pos +0.001 +0.001 +0.000 local_quat +0.707 -0.003 -0.707 +0.000 size +0.040 +0.066 } } BODY 11: 'left thigh' { mass +8.082 inertia +0.014 +0.015 +0.004 local_pos -0.008 -0.119 -0.217 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.010 -0.119 -0.680 global_quat +1.000 +0.000 +0.000 +0.000 parent 07 'pelvis' JOINT 26 { type 'HINGE' local_pos +0.000 +0.002 +0.179 local_axis +1.000 +0.000 +0.000 limit -0.524 +0.524 islimited 1 } JOINT 27 { type 'HINGE' local_pos +0.000 +0.002 +0.179 local_axis +0.000 +1.000 +0.000 limit -2.793 +1.047 islimited 1 } JOINT 28 { type 'HINGE' local_pos +0.000 +0.002 +0.179 local_axis +0.000 +0.000 +1.000 limit -0.524 +0.175 islimited 1 } GEOM 11 { type 'CAPSULE' local_pos -0.002 -0.001 -0.030 local_quat +1.000 -0.005 +0.006 +0.000 size +0.074 +0.208 } } BODY 12: 'left shank' { mass +3.222 inertia +0.014 +0.014 +0.001 local_pos -0.005 -0.008 -0.421 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.005 -0.127 -1.101 global_quat +1.000 +0.000 +0.000 +0.000 parent 11 'left thigh' JOINT 29 { type 'HINGE' local_pos +0.000 +0.006 +0.183 local_axis +0.000 +1.000 +0.000 limit +0.035 +2.880 islimited 1 } GEOM 12 { type 'CAPSULE' local_pos +0.000 +0.012 -0.028 local_quat +1.000 +0.014 +0.000 +0.000 size +0.050 +0.211 } } BODY 13: 'left foot' { mass +1.362 inertia +0.001 +0.005 +0.005 local_pos +0.053 +0.018 -0.293 local_quat +1.000 +0.000 +0.000 +0.000 global_pos +0.058 -0.109 -1.393 global_quat +1.000 +0.000 +0.000 +0.000 parent 12 'left shank' JOINT 30 { type 'HINGE' local_pos -0.053 -0.001 +0.055 local_axis +0.000 +1.000 +0.000 limit -0.349 +0.524 islimited 1 } JOINT 31 { type 'HINGE' local_pos -0.053 -0.001 +0.055 local_axis +1.000 +0.000 +0.000 limit -0.175 +0.524 islimited 1 } GEOM 13 { type 'CAPSULE' local_pos +0.001 -0.001 +0.000 local_quat +0.707 +0.003 -0.707 +0.000 size +0.040 +0.066 } } MUSCLE 00: 'GLU right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 21 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 -0.500 phi_ref0 +2.620 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.122 l_opt +0.103 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.103 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 01: 'HFL right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 21 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 +0.500 phi_ref0 +3.142 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.094 l_opt +0.103 F_max +2000.000 v_max -10.000 // Properties for metabolics calculation csa +0.008 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.103 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 02: 'HAM right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 21 joint1 23 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +2.710 phi_max0 -10000.000 r01 +0.047 rho1 +0.700 phi_ref1 +3.142 phi_max1 -10000.000 // MTU properties l_slack +0.290 l_opt +0.094 F_max +3000.000 v_max -10.000 // Properties for metabolics calculation csa +0.012 typeI_protion +0.440 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.094 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 03: 'RF right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 21 joint1 23 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 +0.700 phi_ref0 +3.142 phi_max0 -10000.000 r01 +0.047 rho1 -0.700 phi_ref1 +2.180 phi_max1 -10000.000 // MTU properties l_slack +0.281 l_opt +0.075 F_max +1000.000 v_max -10.000 // Properties for metabolics calculation csa +0.004 typeI_protion +0.423 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.075 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 04: 'VAS right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 23 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.047 rho0 -0.700 phi_ref0 +2.180 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.215 l_opt +0.075 F_max +6000.000 v_max -10.000 // Properties for metabolics calculation csa +0.024 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.075 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 05: 'GAS right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 23 joint1 24 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.047 rho0 +0.700 phi_ref0 +2.880 phi_max0 -10000.000 r01 +0.047 rho1 -0.700 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.374 l_opt +0.047 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.540 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.100 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.047 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 06: 'SOL right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 24 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.047 rho0 -0.500 phi_ref0 +1.400 phi_max0 +1.920 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.243 l_opt +0.037 F_max +4000.000 v_max -10.000 // Properties for metabolics calculation csa +0.016 typeI_protion +0.810 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.100 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.037 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 07: 'TA right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 24 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.037 rho0 +0.700 phi_ref0 +1.920 phi_max0 +1.400 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.225 l_opt +0.056 F_max +800.000 v_max -10.000 // Properties for metabolics calculation csa +0.003 typeI_protion +0.700 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.056 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 08: 'HAD right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 20 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 -0.500 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.103 l_opt +0.122 F_max +2000.000 v_max -10.000 // Properties for metabolics calculation csa +0.008 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.122 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 09: 'HAB right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 20 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.047 l_opt +0.075 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.075 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 10: 'TP right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 25 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.019 rho0 -0.700 phi_ref0 +0.000 phi_max0 -0.175 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.281 l_opt +0.028 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.028 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 11: 'AEV right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 25 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.028 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.328 l_opt +0.047 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.047 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 12: 'HER right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 22 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.094 l_opt +0.019 F_max +1000.000 v_max -10.000 // Properties for metabolics calculation csa +0.004 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.019 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 13: 'HIR right' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 22 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.094 l_opt +0.019 F_max +1000.000 v_max -10.000 // Properties for metabolics calculation csa +0.004 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.019 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 14: 'GLU left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 27 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 -0.500 phi_ref0 +2.620 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.122 l_opt +0.103 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.103 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 15: 'HFL left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 27 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 +0.500 phi_ref0 +3.142 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.094 l_opt +0.103 F_max +2000.000 v_max -10.000 // Properties for metabolics calculation csa +0.008 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.103 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 16: 'HAM left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 27 joint1 29 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +2.710 phi_max0 -10000.000 r01 +0.047 rho1 +0.700 phi_ref1 +3.142 phi_max1 -10000.000 // MTU properties l_slack +0.290 l_opt +0.094 F_max +3000.000 v_max -10.000 // Properties for metabolics calculation csa +0.012 typeI_protion +0.440 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.094 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 17: 'RF left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 27 joint1 29 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 +0.700 phi_ref0 +3.142 phi_max0 -10000.000 r01 +0.047 rho1 -0.700 phi_ref1 +2.180 phi_max1 -10000.000 // MTU properties l_slack +0.281 l_opt +0.075 F_max +1000.000 v_max -10.000 // Properties for metabolics calculation csa +0.004 typeI_protion +0.423 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.075 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 18: 'VAS left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 29 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.047 rho0 -0.700 phi_ref0 +2.180 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.215 l_opt +0.075 F_max +6000.000 v_max -10.000 // Properties for metabolics calculation csa +0.024 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.075 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 19: 'GAS left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 29 joint1 30 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.047 rho0 +0.700 phi_ref0 +2.880 phi_max0 -10000.000 r01 +0.047 rho1 -0.700 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.374 l_opt +0.047 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.540 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.100 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.047 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 20: 'SOL left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 30 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.047 rho0 -0.500 phi_ref0 +1.400 phi_max0 +1.920 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.243 l_opt +0.037 F_max +4000.000 v_max -10.000 // Properties for metabolics calculation csa +0.016 typeI_protion +0.810 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.100 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.037 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 21: 'TA left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 30 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.037 rho0 +0.700 phi_ref0 +1.920 phi_max0 +1.400 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.225 l_opt +0.056 F_max +800.000 v_max -10.000 // Properties for metabolics calculation csa +0.003 typeI_protion +0.700 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.056 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 22: 'HAD left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 26 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.094 rho0 -0.500 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.103 l_opt +0.122 F_max +2000.000 v_max -10.000 // Properties for metabolics calculation csa +0.008 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.122 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 23: 'HAB left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 26 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.047 l_opt +0.075 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.075 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 24: 'TP left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 31 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.019 rho0 -0.700 phi_ref0 +0.000 phi_max0 -0.175 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.281 l_opt +0.028 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.028 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 25: 'AEV left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 31 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.028 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.328 l_opt +0.047 F_max +1500.000 v_max -10.000 // Properties for metabolics calculation csa +0.006 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.047 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 26: 'HER left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 28 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.094 l_opt +0.019 F_max +1000.000 v_max -10.000 // Properties for metabolics calculation csa +0.004 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.019 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 } MUSCLE 27: 'HIR left' { // Global JOINT indices this muscle acts on (two for biarticular muscles) joint0 28 joint1 -1 // Attachment parameters, for moment arm and l_mtu calculation r00 +0.075 rho0 -0.700 phi_ref0 +0.000 phi_max0 -10000.000 r01 -1.000 rho1 +0.500 phi_ref1 +1.400 phi_max1 +1.920 // MTU properties l_slack +0.094 l_opt +0.019 F_max +1000.000 v_max -10.000 // Properties for metabolics calculation csa +0.004 typeI_protion +0.500 // Force-length, Force-velocity, and passive force curve shape parameters epsilon_ref +0.040 w +0.560 K +5.000 N +1.500 // State variables, only used when integrating the muscle fiber length l_ce +0.019 A +0.010 S +0.010 // Activation dynamics time constant T +0.010 }